Properties

Label 2057.4.a.g
Level $2057$
Weight $4$
Character orbit 2057.a
Self dual yes
Analytic conductor $121.367$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2057,4,Mod(1,2057)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2057.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2057 = 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2057.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-6,24,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(121.366928882\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.22000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 15x^{2} + 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 187)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{2} + (\beta_{3} + \beta_{2} - 1) q^{3} + ( - 3 \beta_{3} + 2 \beta_{2} + 7) q^{4} + ( - \beta_{3} - \beta_{2} + 2 \beta_1 - 3) q^{5} + ( - 5 \beta_{3} - 3 \beta_{2} + \cdots + 3) q^{6}+ \cdots + ( - 291 \beta_{2} - 291 \beta_1 - 32) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 6 q^{3} + 24 q^{4} - 10 q^{5} + 18 q^{6} - 16 q^{7} + 84 q^{8} - 64 q^{9} + 50 q^{10} - 16 q^{12} + 10 q^{13} - 92 q^{14} - 40 q^{15} + 136 q^{16} - 68 q^{17} - 88 q^{18} + 114 q^{19} - 120 q^{20}+ \cdots + 454 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 15x^{2} + 55 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 8\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\nu^{2} + 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 15 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{3} + 8\beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.93565
2.52626
−2.52626
2.93565
−4.13195 −5.55368 9.07297 −2.07498 22.9475 7.72946 −4.43347 3.84339 8.57370
1.2 −3.17935 2.14429 2.10824 −14.3194 −6.81744 7.87813 18.7319 −22.4020 45.5264
1.3 −0.0567223 −2.90822 −7.99678 7.08336 0.164961 −24.8224 0.907375 −18.5422 −0.401784
1.4 5.36801 0.317615 20.8156 −0.688953 1.70496 −6.78519 68.7942 −26.8991 −3.69831
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2057.4.a.g 4
11.b odd 2 1 187.4.a.c 4
33.d even 2 1 1683.4.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
187.4.a.c 4 11.b odd 2 1
1683.4.a.e 4 33.d even 2 1
2057.4.a.g 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2057))\):

\( T_{2}^{4} + 2T_{2}^{3} - 26T_{2}^{2} - 72T_{2} - 4 \) Copy content Toggle raw display
\( T_{3}^{4} + 6T_{3}^{3} - 4T_{3}^{2} - 34T_{3} + 11 \) Copy content Toggle raw display
\( T_{5}^{4} + 10T_{5}^{3} - 80T_{5}^{2} - 270T_{5} - 145 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$3$ \( T^{4} + 6 T^{3} + \cdots + 11 \) Copy content Toggle raw display
$5$ \( T^{4} + 10 T^{3} + \cdots - 145 \) Copy content Toggle raw display
$7$ \( T^{4} + 16 T^{3} + \cdots + 10256 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 10 T^{3} + \cdots + 160380 \) Copy content Toggle raw display
$17$ \( (T + 17)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 114 T^{3} + \cdots + 29119996 \) Copy content Toggle raw display
$23$ \( T^{4} + 258 T^{3} + \cdots - 10141489 \) Copy content Toggle raw display
$29$ \( T^{4} - 10 T^{3} + \cdots + 534934180 \) Copy content Toggle raw display
$31$ \( T^{4} - 14 T^{3} + \cdots + 54054171 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 2373625351 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 1487647936 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 2213137904 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 3725923696 \) Copy content Toggle raw display
$53$ \( T^{4} - 636 T^{3} + \cdots + 34991296 \) Copy content Toggle raw display
$59$ \( T^{4} + 412 T^{3} + \cdots + 197861121 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 32055831296 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 2268239959 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 12642213631 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 57365296516 \) Copy content Toggle raw display
$79$ \( T^{4} - 598 T^{3} + \cdots - 10775844 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 62502614416 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 39747946519 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 1077654262225 \) Copy content Toggle raw display
show more
show less