Properties

Label 2040.2.m.i.409.5
Level $2040$
Weight $2$
Character 2040.409
Analytic conductor $16.289$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2040,2,Mod(409,2040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2040.409"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2040.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-12,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2894820123\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 2 x^{10} + 6 x^{9} - 14 x^{8} - 34 x^{7} + 114 x^{6} - 290 x^{5} + 529 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 409.5
Root \(-0.0924738 - 1.64386i\) of defining polynomial
Character \(\chi\) \(=\) 2040.409
Dual form 2040.2.m.i.409.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(1.42993 - 1.71910i) q^{5} -2.41349i q^{7} -1.00000 q^{9} -4.65192 q^{11} +3.62721i q^{13} +(-1.71910 - 1.42993i) q^{15} +1.00000i q^{17} -6.65192 q^{19} -2.41349 q^{21} +2.60832i q^{23} +(-0.910600 - 4.91638i) q^{25} +1.00000i q^{27} +1.21372 q^{29} -7.43531 q^{31} +4.65192i q^{33} +(-4.14903 - 3.45112i) q^{35} +3.46526i q^{37} +3.62721 q^{39} -10.0276 q^{41} -2.94823i q^{43} +(-1.42993 + 1.71910i) q^{45} +7.64325i q^{47} +1.17506 q^{49} +1.00000 q^{51} -6.35097i q^{53} +(-6.65192 + 7.99711i) q^{55} +6.65192i q^{57} +4.15614 q^{59} +1.31605 q^{61} +2.41349i q^{63} +(6.23554 + 5.18666i) q^{65} -6.78389i q^{67} +2.60832 q^{69} +16.5594 q^{71} -1.73243i q^{73} +(-4.91638 + 0.910600i) q^{75} +11.2274i q^{77} -11.1579 q^{79} +1.00000 q^{81} -4.11304i q^{83} +(1.71910 + 1.42993i) q^{85} -1.21372i q^{87} +5.54381 q^{89} +8.75425 q^{91} +7.43531i q^{93} +(-9.51178 + 11.4353i) q^{95} +8.66795i q^{97} +4.65192 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} + 4 q^{11} - 20 q^{19} + 4 q^{21} - 4 q^{29} + 16 q^{31} - 12 q^{35} - 8 q^{39} - 4 q^{41} + 8 q^{49} + 12 q^{51} - 20 q^{55} + 8 q^{59} + 8 q^{61} - 16 q^{65} - 8 q^{69} + 32 q^{71} - 4 q^{75}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2040\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1021\) \(1361\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.42993 1.71910i 0.639484 0.768804i
\(6\) 0 0
\(7\) 2.41349i 0.912214i −0.889925 0.456107i \(-0.849243\pi\)
0.889925 0.456107i \(-0.150757\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.65192 −1.40261 −0.701303 0.712863i \(-0.747398\pi\)
−0.701303 + 0.712863i \(0.747398\pi\)
\(12\) 0 0
\(13\) 3.62721i 1.00601i 0.864284 + 0.503004i \(0.167772\pi\)
−0.864284 + 0.503004i \(0.832228\pi\)
\(14\) 0 0
\(15\) −1.71910 1.42993i −0.443869 0.369206i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) −6.65192 −1.52605 −0.763027 0.646366i \(-0.776288\pi\)
−0.763027 + 0.646366i \(0.776288\pi\)
\(20\) 0 0
\(21\) −2.41349 −0.526667
\(22\) 0 0
\(23\) 2.60832i 0.543873i 0.962315 + 0.271937i \(0.0876641\pi\)
−0.962315 + 0.271937i \(0.912336\pi\)
\(24\) 0 0
\(25\) −0.910600 4.91638i −0.182120 0.983276i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 1.21372 0.225383 0.112691 0.993630i \(-0.464053\pi\)
0.112691 + 0.993630i \(0.464053\pi\)
\(30\) 0 0
\(31\) −7.43531 −1.33542 −0.667710 0.744421i \(-0.732725\pi\)
−0.667710 + 0.744421i \(0.732725\pi\)
\(32\) 0 0
\(33\) 4.65192i 0.809795i
\(34\) 0 0
\(35\) −4.14903 3.45112i −0.701314 0.583346i
\(36\) 0 0
\(37\) 3.46526i 0.569685i 0.958574 + 0.284842i \(0.0919413\pi\)
−0.958574 + 0.284842i \(0.908059\pi\)
\(38\) 0 0
\(39\) 3.62721 0.580819
\(40\) 0 0
\(41\) −10.0276 −1.56605 −0.783024 0.621992i \(-0.786324\pi\)
−0.783024 + 0.621992i \(0.786324\pi\)
\(42\) 0 0
\(43\) 2.94823i 0.449601i −0.974405 0.224801i \(-0.927827\pi\)
0.974405 0.224801i \(-0.0721731\pi\)
\(44\) 0 0
\(45\) −1.42993 + 1.71910i −0.213161 + 0.256268i
\(46\) 0 0
\(47\) 7.64325i 1.11488i 0.830217 + 0.557441i \(0.188217\pi\)
−0.830217 + 0.557441i \(0.811783\pi\)
\(48\) 0 0
\(49\) 1.17506 0.167866
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 6.35097i 0.872373i −0.899856 0.436186i \(-0.856329\pi\)
0.899856 0.436186i \(-0.143671\pi\)
\(54\) 0 0
\(55\) −6.65192 + 7.99711i −0.896945 + 1.07833i
\(56\) 0 0
\(57\) 6.65192i 0.881068i
\(58\) 0 0
\(59\) 4.15614 0.541083 0.270541 0.962708i \(-0.412797\pi\)
0.270541 + 0.962708i \(0.412797\pi\)
\(60\) 0 0
\(61\) 1.31605 0.168503 0.0842513 0.996445i \(-0.473150\pi\)
0.0842513 + 0.996445i \(0.473150\pi\)
\(62\) 0 0
\(63\) 2.41349i 0.304071i
\(64\) 0 0
\(65\) 6.23554 + 5.18666i 0.773423 + 0.643326i
\(66\) 0 0
\(67\) 6.78389i 0.828784i −0.910099 0.414392i \(-0.863994\pi\)
0.910099 0.414392i \(-0.136006\pi\)
\(68\) 0 0
\(69\) 2.60832 0.314005
\(70\) 0 0
\(71\) 16.5594 1.96524 0.982622 0.185616i \(-0.0594281\pi\)
0.982622 + 0.185616i \(0.0594281\pi\)
\(72\) 0 0
\(73\) 1.73243i 0.202766i −0.994847 0.101383i \(-0.967673\pi\)
0.994847 0.101383i \(-0.0323267\pi\)
\(74\) 0 0
\(75\) −4.91638 + 0.910600i −0.567695 + 0.105147i
\(76\) 0 0
\(77\) 11.2274i 1.27948i
\(78\) 0 0
\(79\) −11.1579 −1.25536 −0.627682 0.778470i \(-0.715996\pi\)
−0.627682 + 0.778470i \(0.715996\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.11304i 0.451465i −0.974189 0.225733i \(-0.927522\pi\)
0.974189 0.225733i \(-0.0724775\pi\)
\(84\) 0 0
\(85\) 1.71910 + 1.42993i 0.186462 + 0.155098i
\(86\) 0 0
\(87\) 1.21372i 0.130125i
\(88\) 0 0
\(89\) 5.54381 0.587643 0.293821 0.955860i \(-0.405073\pi\)
0.293821 + 0.955860i \(0.405073\pi\)
\(90\) 0 0
\(91\) 8.75425 0.917694
\(92\) 0 0
\(93\) 7.43531i 0.771005i
\(94\) 0 0
\(95\) −9.51178 + 11.4353i −0.975888 + 1.17324i
\(96\) 0 0
\(97\) 8.66795i 0.880097i 0.897974 + 0.440049i \(0.145039\pi\)
−0.897974 + 0.440049i \(0.854961\pi\)
\(98\) 0 0
\(99\) 4.65192 0.467535
\(100\) 0 0
\(101\) −6.53235 −0.649993 −0.324997 0.945715i \(-0.605363\pi\)
−0.324997 + 0.945715i \(0.605363\pi\)
\(102\) 0 0
\(103\) 12.1945i 1.20156i −0.799414 0.600781i \(-0.794856\pi\)
0.799414 0.600781i \(-0.205144\pi\)
\(104\) 0 0
\(105\) −3.45112 + 4.14903i −0.336795 + 0.404904i
\(106\) 0 0
\(107\) 5.03163i 0.486426i −0.969973 0.243213i \(-0.921799\pi\)
0.969973 0.243213i \(-0.0782015\pi\)
\(108\) 0 0
\(109\) −1.90349 −0.182321 −0.0911607 0.995836i \(-0.529058\pi\)
−0.0911607 + 0.995836i \(0.529058\pi\)
\(110\) 0 0
\(111\) 3.46526 0.328908
\(112\) 0 0
\(113\) 3.20320i 0.301331i 0.988585 + 0.150666i \(0.0481417\pi\)
−0.988585 + 0.150666i \(0.951858\pi\)
\(114\) 0 0
\(115\) 4.48397 + 3.72972i 0.418132 + 0.347798i
\(116\) 0 0
\(117\) 3.62721i 0.335336i
\(118\) 0 0
\(119\) 2.41349 0.221244
\(120\) 0 0
\(121\) 10.6404 0.967305
\(122\) 0 0
\(123\) 10.0276i 0.904158i
\(124\) 0 0
\(125\) −9.75384 5.46467i −0.872410 0.488775i
\(126\) 0 0
\(127\) 3.59322i 0.318847i −0.987210 0.159424i \(-0.949036\pi\)
0.987210 0.159424i \(-0.0509636\pi\)
\(128\) 0 0
\(129\) −2.94823 −0.259577
\(130\) 0 0
\(131\) −17.4984 −1.52884 −0.764419 0.644719i \(-0.776974\pi\)
−0.764419 + 0.644719i \(0.776974\pi\)
\(132\) 0 0
\(133\) 16.0543i 1.39209i
\(134\) 0 0
\(135\) 1.71910 + 1.42993i 0.147956 + 0.123069i
\(136\) 0 0
\(137\) 10.1460i 0.866827i −0.901195 0.433414i \(-0.857309\pi\)
0.901195 0.433414i \(-0.142691\pi\)
\(138\) 0 0
\(139\) −18.1308 −1.53784 −0.768918 0.639347i \(-0.779205\pi\)
−0.768918 + 0.639347i \(0.779205\pi\)
\(140\) 0 0
\(141\) 7.64325 0.643677
\(142\) 0 0
\(143\) 16.8735i 1.41103i
\(144\) 0 0
\(145\) 1.73554 2.08651i 0.144129 0.173275i
\(146\) 0 0
\(147\) 1.17506i 0.0969175i
\(148\) 0 0
\(149\) 0.271307 0.0222263 0.0111132 0.999938i \(-0.496462\pi\)
0.0111132 + 0.999938i \(0.496462\pi\)
\(150\) 0 0
\(151\) −4.39749 −0.357863 −0.178931 0.983862i \(-0.557264\pi\)
−0.178931 + 0.983862i \(0.557264\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) −10.6320 + 12.7820i −0.853980 + 1.02668i
\(156\) 0 0
\(157\) 4.88453i 0.389828i −0.980820 0.194914i \(-0.937557\pi\)
0.980820 0.194914i \(-0.0624428\pi\)
\(158\) 0 0
\(159\) −6.35097 −0.503665
\(160\) 0 0
\(161\) 6.29517 0.496129
\(162\) 0 0
\(163\) 3.73622i 0.292643i −0.989237 0.146322i \(-0.953257\pi\)
0.989237 0.146322i \(-0.0467435\pi\)
\(164\) 0 0
\(165\) 7.99711 + 6.65192i 0.622574 + 0.517851i
\(166\) 0 0
\(167\) 18.6763i 1.44521i 0.691259 + 0.722607i \(0.257056\pi\)
−0.691259 + 0.722607i \(0.742944\pi\)
\(168\) 0 0
\(169\) −0.156674 −0.0120519
\(170\) 0 0
\(171\) 6.65192 0.508685
\(172\) 0 0
\(173\) 3.39168i 0.257864i −0.991653 0.128932i \(-0.958845\pi\)
0.991653 0.128932i \(-0.0411550\pi\)
\(174\) 0 0
\(175\) −11.8656 + 2.19772i −0.896958 + 0.166132i
\(176\) 0 0
\(177\) 4.15614i 0.312394i
\(178\) 0 0
\(179\) −10.0412 −0.750515 −0.375257 0.926921i \(-0.622446\pi\)
−0.375257 + 0.926921i \(0.622446\pi\)
\(180\) 0 0
\(181\) −5.34811 −0.397522 −0.198761 0.980048i \(-0.563692\pi\)
−0.198761 + 0.980048i \(0.563692\pi\)
\(182\) 0 0
\(183\) 1.31605i 0.0972851i
\(184\) 0 0
\(185\) 5.95712 + 4.95508i 0.437976 + 0.364305i
\(186\) 0 0
\(187\) 4.65192i 0.340182i
\(188\) 0 0
\(189\) 2.41349 0.175556
\(190\) 0 0
\(191\) 4.01445 0.290476 0.145238 0.989397i \(-0.453605\pi\)
0.145238 + 0.989397i \(0.453605\pi\)
\(192\) 0 0
\(193\) 22.6795i 1.63251i −0.577694 0.816254i \(-0.696047\pi\)
0.577694 0.816254i \(-0.303953\pi\)
\(194\) 0 0
\(195\) 5.18666 6.23554i 0.371425 0.446536i
\(196\) 0 0
\(197\) 25.4440i 1.81281i 0.422412 + 0.906404i \(0.361184\pi\)
−0.422412 + 0.906404i \(0.638816\pi\)
\(198\) 0 0
\(199\) −17.9355 −1.27141 −0.635706 0.771931i \(-0.719291\pi\)
−0.635706 + 0.771931i \(0.719291\pi\)
\(200\) 0 0
\(201\) −6.78389 −0.478499
\(202\) 0 0
\(203\) 2.92931i 0.205597i
\(204\) 0 0
\(205\) −14.3388 + 17.2384i −1.00146 + 1.20398i
\(206\) 0 0
\(207\) 2.60832i 0.181291i
\(208\) 0 0
\(209\) 30.9442 2.14045
\(210\) 0 0
\(211\) −12.6240 −0.869074 −0.434537 0.900654i \(-0.643088\pi\)
−0.434537 + 0.900654i \(0.643088\pi\)
\(212\) 0 0
\(213\) 16.5594i 1.13463i
\(214\) 0 0
\(215\) −5.06830 4.21577i −0.345655 0.287513i
\(216\) 0 0
\(217\) 17.9450i 1.21819i
\(218\) 0 0
\(219\) −1.73243 −0.117067
\(220\) 0 0
\(221\) −3.62721 −0.243993
\(222\) 0 0
\(223\) 16.0440i 1.07439i −0.843460 0.537193i \(-0.819485\pi\)
0.843460 0.537193i \(-0.180515\pi\)
\(224\) 0 0
\(225\) 0.910600 + 4.91638i 0.0607067 + 0.327759i
\(226\) 0 0
\(227\) 14.9392i 0.991549i 0.868451 + 0.495774i \(0.165116\pi\)
−0.868451 + 0.495774i \(0.834884\pi\)
\(228\) 0 0
\(229\) −19.7555 −1.30548 −0.652739 0.757583i \(-0.726380\pi\)
−0.652739 + 0.757583i \(0.726380\pi\)
\(230\) 0 0
\(231\) 11.2274 0.738706
\(232\) 0 0
\(233\) 19.1079i 1.25180i 0.779904 + 0.625899i \(0.215268\pi\)
−0.779904 + 0.625899i \(0.784732\pi\)
\(234\) 0 0
\(235\) 13.1395 + 10.9293i 0.857126 + 0.712949i
\(236\) 0 0
\(237\) 11.1579i 0.724785i
\(238\) 0 0
\(239\) −7.23997 −0.468315 −0.234157 0.972199i \(-0.575233\pi\)
−0.234157 + 0.972199i \(0.575233\pi\)
\(240\) 0 0
\(241\) −25.2468 −1.62629 −0.813145 0.582061i \(-0.802247\pi\)
−0.813145 + 0.582061i \(0.802247\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 1.68026 2.02005i 0.107348 0.129056i
\(246\) 0 0
\(247\) 24.1279i 1.53522i
\(248\) 0 0
\(249\) −4.11304 −0.260654
\(250\) 0 0
\(251\) 14.9474 0.943471 0.471736 0.881740i \(-0.343628\pi\)
0.471736 + 0.881740i \(0.343628\pi\)
\(252\) 0 0
\(253\) 12.1337i 0.762840i
\(254\) 0 0
\(255\) 1.42993 1.71910i 0.0895457 0.107654i
\(256\) 0 0
\(257\) 11.8165i 0.737092i 0.929609 + 0.368546i \(0.120144\pi\)
−0.929609 + 0.368546i \(0.879856\pi\)
\(258\) 0 0
\(259\) 8.36337 0.519674
\(260\) 0 0
\(261\) −1.21372 −0.0751275
\(262\) 0 0
\(263\) 29.9008i 1.84376i −0.387473 0.921881i \(-0.626652\pi\)
0.387473 0.921881i \(-0.373348\pi\)
\(264\) 0 0
\(265\) −10.9179 9.08144i −0.670684 0.557869i
\(266\) 0 0
\(267\) 5.54381i 0.339276i
\(268\) 0 0
\(269\) 15.7400 0.959684 0.479842 0.877355i \(-0.340694\pi\)
0.479842 + 0.877355i \(0.340694\pi\)
\(270\) 0 0
\(271\) 27.0474 1.64301 0.821505 0.570201i \(-0.193135\pi\)
0.821505 + 0.570201i \(0.193135\pi\)
\(272\) 0 0
\(273\) 8.75425i 0.529831i
\(274\) 0 0
\(275\) 4.23604 + 22.8706i 0.255443 + 1.37915i
\(276\) 0 0
\(277\) 11.4045i 0.685230i −0.939476 0.342615i \(-0.888687\pi\)
0.939476 0.342615i \(-0.111313\pi\)
\(278\) 0 0
\(279\) 7.43531 0.445140
\(280\) 0 0
\(281\) 31.2791 1.86595 0.932976 0.359938i \(-0.117202\pi\)
0.932976 + 0.359938i \(0.117202\pi\)
\(282\) 0 0
\(283\) 2.75051i 0.163501i 0.996653 + 0.0817503i \(0.0260510\pi\)
−0.996653 + 0.0817503i \(0.973949\pi\)
\(284\) 0 0
\(285\) 11.4353 + 9.51178i 0.677369 + 0.563429i
\(286\) 0 0
\(287\) 24.2015i 1.42857i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 8.66795 0.508124
\(292\) 0 0
\(293\) 29.9097i 1.74734i −0.486518 0.873671i \(-0.661733\pi\)
0.486518 0.873671i \(-0.338267\pi\)
\(294\) 0 0
\(295\) 5.94299 7.14481i 0.346014 0.415987i
\(296\) 0 0
\(297\) 4.65192i 0.269932i
\(298\) 0 0
\(299\) −9.46095 −0.547141
\(300\) 0 0
\(301\) −7.11553 −0.410132
\(302\) 0 0
\(303\) 6.53235i 0.375274i
\(304\) 0 0
\(305\) 1.88186 2.26242i 0.107755 0.129546i
\(306\) 0 0
\(307\) 13.5938i 0.775837i −0.921694 0.387918i \(-0.873194\pi\)
0.921694 0.387918i \(-0.126806\pi\)
\(308\) 0 0
\(309\) −12.1945 −0.693722
\(310\) 0 0
\(311\) 8.30743 0.471071 0.235535 0.971866i \(-0.424316\pi\)
0.235535 + 0.971866i \(0.424316\pi\)
\(312\) 0 0
\(313\) 1.35440i 0.0765552i −0.999267 0.0382776i \(-0.987813\pi\)
0.999267 0.0382776i \(-0.0121871\pi\)
\(314\) 0 0
\(315\) 4.14903 + 3.45112i 0.233771 + 0.194449i
\(316\) 0 0
\(317\) 2.02208i 0.113571i 0.998386 + 0.0567857i \(0.0180852\pi\)
−0.998386 + 0.0567857i \(0.981915\pi\)
\(318\) 0 0
\(319\) −5.64614 −0.316123
\(320\) 0 0
\(321\) −5.03163 −0.280838
\(322\) 0 0
\(323\) 6.65192i 0.370123i
\(324\) 0 0
\(325\) 17.8328 3.30294i 0.989184 0.183214i
\(326\) 0 0
\(327\) 1.90349i 0.105263i
\(328\) 0 0
\(329\) 18.4469 1.01701
\(330\) 0 0
\(331\) −6.58722 −0.362066 −0.181033 0.983477i \(-0.557944\pi\)
−0.181033 + 0.983477i \(0.557944\pi\)
\(332\) 0 0
\(333\) 3.46526i 0.189895i
\(334\) 0 0
\(335\) −11.6622 9.70048i −0.637172 0.529994i
\(336\) 0 0
\(337\) 1.11090i 0.0605143i −0.999542 0.0302572i \(-0.990367\pi\)
0.999542 0.0302572i \(-0.00963262\pi\)
\(338\) 0 0
\(339\) 3.20320 0.173974
\(340\) 0 0
\(341\) 34.5884 1.87307
\(342\) 0 0
\(343\) 19.7304i 1.06534i
\(344\) 0 0
\(345\) 3.72972 4.48397i 0.200801 0.241409i
\(346\) 0 0
\(347\) 10.5874i 0.568360i −0.958771 0.284180i \(-0.908279\pi\)
0.958771 0.284180i \(-0.0917213\pi\)
\(348\) 0 0
\(349\) −24.1172 −1.29096 −0.645482 0.763775i \(-0.723344\pi\)
−0.645482 + 0.763775i \(0.723344\pi\)
\(350\) 0 0
\(351\) −3.62721 −0.193606
\(352\) 0 0
\(353\) 20.8929i 1.11202i 0.831177 + 0.556008i \(0.187668\pi\)
−0.831177 + 0.556008i \(0.812332\pi\)
\(354\) 0 0
\(355\) 23.6788 28.4673i 1.25674 1.51089i
\(356\) 0 0
\(357\) 2.41349i 0.127735i
\(358\) 0 0
\(359\) 12.8218 0.676709 0.338354 0.941019i \(-0.390130\pi\)
0.338354 + 0.941019i \(0.390130\pi\)
\(360\) 0 0
\(361\) 25.2480 1.32884
\(362\) 0 0
\(363\) 10.6404i 0.558474i
\(364\) 0 0
\(365\) −2.97822 2.47725i −0.155887 0.129665i
\(366\) 0 0
\(367\) 12.2329i 0.638551i −0.947662 0.319276i \(-0.896560\pi\)
0.947662 0.319276i \(-0.103440\pi\)
\(368\) 0 0
\(369\) 10.0276 0.522016
\(370\) 0 0
\(371\) −15.3280 −0.795791
\(372\) 0 0
\(373\) 32.7589i 1.69619i −0.529844 0.848095i \(-0.677750\pi\)
0.529844 0.848095i \(-0.322250\pi\)
\(374\) 0 0
\(375\) −5.46467 + 9.75384i −0.282194 + 0.503686i
\(376\) 0 0
\(377\) 4.40243i 0.226737i
\(378\) 0 0
\(379\) −19.8034 −1.01723 −0.508617 0.860993i \(-0.669843\pi\)
−0.508617 + 0.860993i \(0.669843\pi\)
\(380\) 0 0
\(381\) −3.59322 −0.184086
\(382\) 0 0
\(383\) 10.8115i 0.552441i 0.961094 + 0.276220i \(0.0890820\pi\)
−0.961094 + 0.276220i \(0.910918\pi\)
\(384\) 0 0
\(385\) 19.3009 + 16.0543i 0.983667 + 0.818205i
\(386\) 0 0
\(387\) 2.94823i 0.149867i
\(388\) 0 0
\(389\) −15.2105 −0.771203 −0.385601 0.922665i \(-0.626006\pi\)
−0.385601 + 0.922665i \(0.626006\pi\)
\(390\) 0 0
\(391\) −2.60832 −0.131909
\(392\) 0 0
\(393\) 17.4984i 0.882676i
\(394\) 0 0
\(395\) −15.9550 + 19.1816i −0.802785 + 0.965129i
\(396\) 0 0
\(397\) 7.36643i 0.369711i 0.982766 + 0.184855i \(0.0591817\pi\)
−0.982766 + 0.184855i \(0.940818\pi\)
\(398\) 0 0
\(399\) 16.0543 0.803723
\(400\) 0 0
\(401\) −32.4755 −1.62175 −0.810874 0.585221i \(-0.801008\pi\)
−0.810874 + 0.585221i \(0.801008\pi\)
\(402\) 0 0
\(403\) 26.9694i 1.34344i
\(404\) 0 0
\(405\) 1.42993 1.71910i 0.0710538 0.0854227i
\(406\) 0 0
\(407\) 16.1201i 0.799044i
\(408\) 0 0
\(409\) 23.9935 1.18640 0.593202 0.805054i \(-0.297864\pi\)
0.593202 + 0.805054i \(0.297864\pi\)
\(410\) 0 0
\(411\) −10.1460 −0.500463
\(412\) 0 0
\(413\) 10.0308i 0.493583i
\(414\) 0 0
\(415\) −7.07073 5.88136i −0.347088 0.288705i
\(416\) 0 0
\(417\) 18.1308i 0.887870i
\(418\) 0 0
\(419\) −15.9394 −0.778691 −0.389346 0.921092i \(-0.627299\pi\)
−0.389346 + 0.921092i \(0.627299\pi\)
\(420\) 0 0
\(421\) −26.8290 −1.30757 −0.653783 0.756682i \(-0.726819\pi\)
−0.653783 + 0.756682i \(0.726819\pi\)
\(422\) 0 0
\(423\) 7.64325i 0.371627i
\(424\) 0 0
\(425\) 4.91638 0.910600i 0.238480 0.0441706i
\(426\) 0 0
\(427\) 3.17627i 0.153710i
\(428\) 0 0
\(429\) −16.8735 −0.814660
\(430\) 0 0
\(431\) −16.5673 −0.798017 −0.399009 0.916947i \(-0.630646\pi\)
−0.399009 + 0.916947i \(0.630646\pi\)
\(432\) 0 0
\(433\) 8.35634i 0.401580i −0.979634 0.200790i \(-0.935649\pi\)
0.979634 0.200790i \(-0.0643509\pi\)
\(434\) 0 0
\(435\) −2.08651 1.73554i −0.100040 0.0832127i
\(436\) 0 0
\(437\) 17.3504i 0.829980i
\(438\) 0 0
\(439\) 37.0665 1.76909 0.884545 0.466455i \(-0.154469\pi\)
0.884545 + 0.466455i \(0.154469\pi\)
\(440\) 0 0
\(441\) −1.17506 −0.0559553
\(442\) 0 0
\(443\) 41.3532i 1.96475i 0.186915 + 0.982376i \(0.440151\pi\)
−0.186915 + 0.982376i \(0.559849\pi\)
\(444\) 0 0
\(445\) 7.92726 9.53036i 0.375788 0.451782i
\(446\) 0 0
\(447\) 0.271307i 0.0128324i
\(448\) 0 0
\(449\) 24.0906 1.13691 0.568453 0.822716i \(-0.307542\pi\)
0.568453 + 0.822716i \(0.307542\pi\)
\(450\) 0 0
\(451\) 46.6476 2.19655
\(452\) 0 0
\(453\) 4.39749i 0.206612i
\(454\) 0 0
\(455\) 12.5180 15.0494i 0.586851 0.705527i
\(456\) 0 0
\(457\) 12.5492i 0.587028i −0.955955 0.293514i \(-0.905175\pi\)
0.955955 0.293514i \(-0.0948248\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −6.94125 −0.323286 −0.161643 0.986849i \(-0.551679\pi\)
−0.161643 + 0.986849i \(0.551679\pi\)
\(462\) 0 0
\(463\) 30.9138i 1.43669i −0.695689 0.718343i \(-0.744901\pi\)
0.695689 0.718343i \(-0.255099\pi\)
\(464\) 0 0
\(465\) 12.7820 + 10.6320i 0.592752 + 0.493046i
\(466\) 0 0
\(467\) 10.0979i 0.467275i −0.972324 0.233638i \(-0.924937\pi\)
0.972324 0.233638i \(-0.0750630\pi\)
\(468\) 0 0
\(469\) −16.3728 −0.756028
\(470\) 0 0
\(471\) −4.88453 −0.225067
\(472\) 0 0
\(473\) 13.7149i 0.630614i
\(474\) 0 0
\(475\) 6.05724 + 32.7034i 0.277925 + 1.50053i
\(476\) 0 0
\(477\) 6.35097i 0.290791i
\(478\) 0 0
\(479\) 33.2723 1.52025 0.760126 0.649776i \(-0.225137\pi\)
0.760126 + 0.649776i \(0.225137\pi\)
\(480\) 0 0
\(481\) −12.5692 −0.573108
\(482\) 0 0
\(483\) 6.29517i 0.286440i
\(484\) 0 0
\(485\) 14.9011 + 12.3946i 0.676623 + 0.562808i
\(486\) 0 0
\(487\) 25.7880i 1.16857i 0.811550 + 0.584283i \(0.198624\pi\)
−0.811550 + 0.584283i \(0.801376\pi\)
\(488\) 0 0
\(489\) −3.73622 −0.168958
\(490\) 0 0
\(491\) 26.0082 1.17373 0.586867 0.809683i \(-0.300361\pi\)
0.586867 + 0.809683i \(0.300361\pi\)
\(492\) 0 0
\(493\) 1.21372i 0.0546633i
\(494\) 0 0
\(495\) 6.65192 7.99711i 0.298982 0.359443i
\(496\) 0 0
\(497\) 39.9661i 1.79272i
\(498\) 0 0
\(499\) 23.3224 1.04405 0.522027 0.852929i \(-0.325176\pi\)
0.522027 + 0.852929i \(0.325176\pi\)
\(500\) 0 0
\(501\) 18.6763 0.834395
\(502\) 0 0
\(503\) 11.9436i 0.532537i −0.963899 0.266269i \(-0.914209\pi\)
0.963899 0.266269i \(-0.0857908\pi\)
\(504\) 0 0
\(505\) −9.34080 + 11.2298i −0.415660 + 0.499718i
\(506\) 0 0
\(507\) 0.156674i 0.00695814i
\(508\) 0 0
\(509\) 1.17863 0.0522417 0.0261209 0.999659i \(-0.491685\pi\)
0.0261209 + 0.999659i \(0.491685\pi\)
\(510\) 0 0
\(511\) −4.18121 −0.184966
\(512\) 0 0
\(513\) 6.65192i 0.293689i
\(514\) 0 0
\(515\) −20.9636 17.4373i −0.923766 0.768380i
\(516\) 0 0
\(517\) 35.5558i 1.56374i
\(518\) 0 0
\(519\) −3.39168 −0.148878
\(520\) 0 0
\(521\) 24.0747 1.05473 0.527366 0.849638i \(-0.323180\pi\)
0.527366 + 0.849638i \(0.323180\pi\)
\(522\) 0 0
\(523\) 13.8144i 0.604063i 0.953298 + 0.302031i \(0.0976647\pi\)
−0.953298 + 0.302031i \(0.902335\pi\)
\(524\) 0 0
\(525\) 2.19772 + 11.8656i 0.0959166 + 0.517859i
\(526\) 0 0
\(527\) 7.43531i 0.323887i
\(528\) 0 0
\(529\) 16.1966 0.704202
\(530\) 0 0
\(531\) −4.15614 −0.180361
\(532\) 0 0
\(533\) 36.3722i 1.57546i
\(534\) 0 0
\(535\) −8.64987 7.19488i −0.373967 0.311062i
\(536\) 0 0
\(537\) 10.0412i 0.433310i
\(538\) 0 0
\(539\) −5.46629 −0.235450
\(540\) 0 0
\(541\) −31.6533 −1.36088 −0.680441 0.732803i \(-0.738212\pi\)
−0.680441 + 0.732803i \(0.738212\pi\)
\(542\) 0 0
\(543\) 5.34811i 0.229510i
\(544\) 0 0
\(545\) −2.72186 + 3.27229i −0.116592 + 0.140169i
\(546\) 0 0
\(547\) 10.1899i 0.435691i −0.975983 0.217845i \(-0.930097\pi\)
0.975983 0.217845i \(-0.0699028\pi\)
\(548\) 0 0
\(549\) −1.31605 −0.0561676
\(550\) 0 0
\(551\) −8.07358 −0.343946
\(552\) 0 0
\(553\) 26.9295i 1.14516i
\(554\) 0 0
\(555\) 4.95508 5.95712i 0.210331 0.252866i
\(556\) 0 0
\(557\) 26.6108i 1.12753i −0.825934 0.563767i \(-0.809352\pi\)
0.825934 0.563767i \(-0.190648\pi\)
\(558\) 0 0
\(559\) 10.6939 0.452302
\(560\) 0 0
\(561\) −4.65192 −0.196404
\(562\) 0 0
\(563\) 20.6769i 0.871429i −0.900085 0.435714i \(-0.856496\pi\)
0.900085 0.435714i \(-0.143504\pi\)
\(564\) 0 0
\(565\) 5.50661 + 4.58035i 0.231665 + 0.192697i
\(566\) 0 0
\(567\) 2.41349i 0.101357i
\(568\) 0 0
\(569\) −24.5961 −1.03112 −0.515561 0.856853i \(-0.672417\pi\)
−0.515561 + 0.856853i \(0.672417\pi\)
\(570\) 0 0
\(571\) 2.13842 0.0894902 0.0447451 0.998998i \(-0.485752\pi\)
0.0447451 + 0.998998i \(0.485752\pi\)
\(572\) 0 0
\(573\) 4.01445i 0.167706i
\(574\) 0 0
\(575\) 12.8235 2.37514i 0.534778 0.0990502i
\(576\) 0 0
\(577\) 38.1523i 1.58830i 0.607721 + 0.794151i \(0.292084\pi\)
−0.607721 + 0.794151i \(0.707916\pi\)
\(578\) 0 0
\(579\) −22.6795 −0.942529
\(580\) 0 0
\(581\) −9.92679 −0.411833
\(582\) 0 0
\(583\) 29.5442i 1.22360i
\(584\) 0 0
\(585\) −6.23554 5.18666i −0.257808 0.214442i
\(586\) 0 0
\(587\) 0.574837i 0.0237261i 0.999930 + 0.0118630i \(0.00377621\pi\)
−0.999930 + 0.0118630i \(0.996224\pi\)
\(588\) 0 0
\(589\) 49.4591 2.03792
\(590\) 0 0
\(591\) 25.4440 1.04663
\(592\) 0 0
\(593\) 11.9977i 0.492687i −0.969183 0.246344i \(-0.920771\pi\)
0.969183 0.246344i \(-0.0792292\pi\)
\(594\) 0 0
\(595\) 3.45112 4.14903i 0.141482 0.170094i
\(596\) 0 0
\(597\) 17.9355i 0.734051i
\(598\) 0 0
\(599\) 33.4831 1.36808 0.684041 0.729444i \(-0.260221\pi\)
0.684041 + 0.729444i \(0.260221\pi\)
\(600\) 0 0
\(601\) 6.45177 0.263173 0.131587 0.991305i \(-0.457993\pi\)
0.131587 + 0.991305i \(0.457993\pi\)
\(602\) 0 0
\(603\) 6.78389i 0.276261i
\(604\) 0 0
\(605\) 15.2150 18.2918i 0.618576 0.743668i
\(606\) 0 0
\(607\) 37.5464i 1.52396i 0.647601 + 0.761980i \(0.275773\pi\)
−0.647601 + 0.761980i \(0.724227\pi\)
\(608\) 0 0
\(609\) −2.92931 −0.118702
\(610\) 0 0
\(611\) −27.7237 −1.12158
\(612\) 0 0
\(613\) 34.4269i 1.39049i −0.718773 0.695244i \(-0.755296\pi\)
0.718773 0.695244i \(-0.244704\pi\)
\(614\) 0 0
\(615\) 17.2384 + 14.3388i 0.695120 + 0.578195i
\(616\) 0 0
\(617\) 46.5507i 1.87406i 0.349250 + 0.937030i \(0.386436\pi\)
−0.349250 + 0.937030i \(0.613564\pi\)
\(618\) 0 0
\(619\) −10.4479 −0.419936 −0.209968 0.977708i \(-0.567336\pi\)
−0.209968 + 0.977708i \(0.567336\pi\)
\(620\) 0 0
\(621\) −2.60832 −0.104668
\(622\) 0 0
\(623\) 13.3799i 0.536056i
\(624\) 0 0
\(625\) −23.3416 + 8.95371i −0.933665 + 0.358149i
\(626\) 0 0
\(627\) 30.9442i 1.23579i
\(628\) 0 0
\(629\) −3.46526 −0.138169
\(630\) 0 0
\(631\) −32.5916 −1.29745 −0.648725 0.761023i \(-0.724698\pi\)
−0.648725 + 0.761023i \(0.724698\pi\)
\(632\) 0 0
\(633\) 12.6240i 0.501760i
\(634\) 0 0
\(635\) −6.17711 5.13806i −0.245131 0.203898i
\(636\) 0 0
\(637\) 4.26220i 0.168875i
\(638\) 0 0
\(639\) −16.5594 −0.655082
\(640\) 0 0
\(641\) −20.5801 −0.812864 −0.406432 0.913681i \(-0.633227\pi\)
−0.406432 + 0.913681i \(0.633227\pi\)
\(642\) 0 0
\(643\) 16.0608i 0.633377i −0.948530 0.316688i \(-0.897429\pi\)
0.948530 0.316688i \(-0.102571\pi\)
\(644\) 0 0
\(645\) −4.21577 + 5.06830i −0.165996 + 0.199564i
\(646\) 0 0
\(647\) 14.9857i 0.589149i −0.955629 0.294575i \(-0.904822\pi\)
0.955629 0.294575i \(-0.0951779\pi\)
\(648\) 0 0
\(649\) −19.3340 −0.758926
\(650\) 0 0
\(651\) 17.9450 0.703322
\(652\) 0 0
\(653\) 27.0095i 1.05696i −0.848944 0.528482i \(-0.822761\pi\)
0.848944 0.528482i \(-0.177239\pi\)
\(654\) 0 0
\(655\) −25.0214 + 30.0814i −0.977668 + 1.17538i
\(656\) 0 0
\(657\) 1.73243i 0.0675886i
\(658\) 0 0
\(659\) −27.0266 −1.05281 −0.526404 0.850235i \(-0.676460\pi\)
−0.526404 + 0.850235i \(0.676460\pi\)
\(660\) 0 0
\(661\) 42.0903 1.63712 0.818562 0.574419i \(-0.194772\pi\)
0.818562 + 0.574419i \(0.194772\pi\)
\(662\) 0 0
\(663\) 3.62721i 0.140869i
\(664\) 0 0
\(665\) 27.5990 + 22.9566i 1.07024 + 0.890218i
\(666\) 0 0
\(667\) 3.16578i 0.122580i
\(668\) 0 0
\(669\) −16.0440 −0.620297
\(670\) 0 0
\(671\) −6.12215 −0.236343
\(672\) 0 0
\(673\) 42.5546i 1.64036i −0.572105 0.820181i \(-0.693873\pi\)
0.572105 0.820181i \(-0.306127\pi\)
\(674\) 0 0
\(675\) 4.91638 0.910600i 0.189232 0.0350490i
\(676\) 0 0
\(677\) 4.44192i 0.170717i −0.996350 0.0853585i \(-0.972796\pi\)
0.996350 0.0853585i \(-0.0272036\pi\)
\(678\) 0 0
\(679\) 20.9200 0.802837
\(680\) 0 0
\(681\) 14.9392 0.572471
\(682\) 0 0
\(683\) 50.4204i 1.92928i 0.263568 + 0.964641i \(0.415101\pi\)
−0.263568 + 0.964641i \(0.584899\pi\)
\(684\) 0 0
\(685\) −17.4419 14.5080i −0.666421 0.554322i
\(686\) 0 0
\(687\) 19.7555i 0.753718i
\(688\) 0 0
\(689\) 23.0363 0.877614
\(690\) 0 0
\(691\) 41.0903 1.56315 0.781575 0.623812i \(-0.214417\pi\)
0.781575 + 0.623812i \(0.214417\pi\)
\(692\) 0 0
\(693\) 11.2274i 0.426492i
\(694\) 0 0
\(695\) −25.9258 + 31.1687i −0.983422 + 1.18229i
\(696\) 0 0
\(697\) 10.0276i 0.379822i
\(698\) 0 0
\(699\) 19.1079 0.722726
\(700\) 0 0
\(701\) −3.65598 −0.138084 −0.0690422 0.997614i \(-0.521994\pi\)
−0.0690422 + 0.997614i \(0.521994\pi\)
\(702\) 0 0
\(703\) 23.0506i 0.869371i
\(704\) 0 0
\(705\) 10.9293 13.1395i 0.411622 0.494862i
\(706\) 0 0
\(707\) 15.7658i 0.592933i
\(708\) 0 0
\(709\) −0.347352 −0.0130451 −0.00652253 0.999979i \(-0.502076\pi\)
−0.00652253 + 0.999979i \(0.502076\pi\)
\(710\) 0 0
\(711\) 11.1579 0.418455
\(712\) 0 0
\(713\) 19.3937i 0.726299i
\(714\) 0 0
\(715\) −29.0072 24.1279i −1.08481 0.902333i
\(716\) 0 0
\(717\) 7.23997i 0.270382i
\(718\) 0 0
\(719\) 41.8701 1.56149 0.780746 0.624849i \(-0.214839\pi\)
0.780746 + 0.624849i \(0.214839\pi\)
\(720\) 0 0
\(721\) −29.4314 −1.09608
\(722\) 0 0
\(723\) 25.2468i 0.938940i
\(724\) 0 0
\(725\) −1.10522 5.96712i −0.0410467 0.221613i
\(726\) 0 0
\(727\) 30.6150i 1.13545i 0.823220 + 0.567723i \(0.192176\pi\)
−0.823220 + 0.567723i \(0.807824\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 2.94823 0.109044
\(732\) 0 0
\(733\) 37.7122i 1.39293i 0.717590 + 0.696466i \(0.245245\pi\)
−0.717590 + 0.696466i \(0.754755\pi\)
\(734\) 0 0
\(735\) −2.02005 1.68026i −0.0745106 0.0619772i
\(736\) 0 0
\(737\) 31.5581i 1.16246i
\(738\) 0 0
\(739\) −28.1417 −1.03521 −0.517605 0.855619i \(-0.673176\pi\)
−0.517605 + 0.855619i \(0.673176\pi\)
\(740\) 0 0
\(741\) −24.1279 −0.886362
\(742\) 0 0
\(743\) 20.1838i 0.740471i 0.928938 + 0.370235i \(0.120723\pi\)
−0.928938 + 0.370235i \(0.879277\pi\)
\(744\) 0 0
\(745\) 0.387950 0.466404i 0.0142134 0.0170877i
\(746\) 0 0
\(747\) 4.11304i 0.150488i
\(748\) 0 0
\(749\) −12.1438 −0.443725
\(750\) 0 0
\(751\) −6.27963 −0.229147 −0.114574 0.993415i \(-0.536550\pi\)
−0.114574 + 0.993415i \(0.536550\pi\)
\(752\) 0 0
\(753\) 14.9474i 0.544713i
\(754\) 0 0
\(755\) −6.28811 + 7.55972i −0.228848 + 0.275126i
\(756\) 0 0
\(757\) 0.0623304i 0.00226544i −0.999999 0.00113272i \(-0.999639\pi\)
0.999999 0.00113272i \(-0.000360556\pi\)
\(758\) 0 0
\(759\) −12.1337 −0.440426
\(760\) 0 0
\(761\) −5.39043 −0.195403 −0.0977015 0.995216i \(-0.531149\pi\)
−0.0977015 + 0.995216i \(0.531149\pi\)
\(762\) 0 0
\(763\) 4.59406i 0.166316i
\(764\) 0 0
\(765\) −1.71910 1.42993i −0.0621541 0.0516992i
\(766\) 0 0
\(767\) 15.0752i 0.544334i
\(768\) 0 0
\(769\) 10.7412 0.387339 0.193669 0.981067i \(-0.437961\pi\)
0.193669 + 0.981067i \(0.437961\pi\)
\(770\) 0 0
\(771\) 11.8165 0.425561
\(772\) 0 0
\(773\) 50.8382i 1.82852i −0.405126 0.914261i \(-0.632772\pi\)
0.405126 0.914261i \(-0.367228\pi\)
\(774\) 0 0
\(775\) 6.77059 + 36.5548i 0.243207 + 1.31309i
\(776\) 0 0
\(777\) 8.36337i 0.300034i
\(778\) 0 0
\(779\) 66.7028 2.38987
\(780\) 0 0
\(781\) −77.0332 −2.75646
\(782\) 0 0
\(783\) 1.21372i 0.0433749i
\(784\) 0 0
\(785\) −8.39699 6.98454i −0.299701 0.249289i
\(786\) 0 0
\(787\) 47.5523i 1.69506i 0.530749 + 0.847529i \(0.321911\pi\)
−0.530749 + 0.847529i \(0.678089\pi\)
\(788\) 0 0
\(789\) −29.9008 −1.06450
\(790\) 0 0
\(791\) 7.73088 0.274879
\(792\) 0 0
\(793\) 4.77359i 0.169515i
\(794\) 0 0
\(795\) −9.08144 + 10.9179i −0.322086 + 0.387220i
\(796\) 0 0
\(797\) 23.2489i 0.823517i −0.911293 0.411759i \(-0.864915\pi\)
0.911293 0.411759i \(-0.135085\pi\)
\(798\) 0 0
\(799\) −7.64325 −0.270399
\(800\) 0 0
\(801\) −5.54381 −0.195881
\(802\) 0 0
\(803\) 8.05913i 0.284400i
\(804\) 0 0
\(805\) 9.00165 10.8220i 0.317266 0.381426i
\(806\) 0 0
\(807\) 15.7400i 0.554074i
\(808\) 0 0
\(809\) 48.4670 1.70401 0.852005 0.523534i \(-0.175387\pi\)
0.852005 + 0.523534i \(0.175387\pi\)
\(810\) 0 0
\(811\) 27.5894 0.968796 0.484398 0.874848i \(-0.339039\pi\)
0.484398 + 0.874848i \(0.339039\pi\)
\(812\) 0 0
\(813\) 27.0474i 0.948592i
\(814\) 0 0
\(815\) −6.42293 5.34253i −0.224986 0.187141i
\(816\) 0 0
\(817\) 19.6114i 0.686116i
\(818\) 0 0
\(819\) −8.75425 −0.305898
\(820\) 0 0
\(821\) 2.76951 0.0966566 0.0483283 0.998832i \(-0.484611\pi\)
0.0483283 + 0.998832i \(0.484611\pi\)
\(822\) 0 0
\(823\) 20.4456i 0.712687i 0.934355 + 0.356344i \(0.115977\pi\)
−0.934355 + 0.356344i \(0.884023\pi\)
\(824\) 0 0
\(825\) 22.8706 4.23604i 0.796252 0.147480i
\(826\) 0 0
\(827\) 29.7493i 1.03448i 0.855839 + 0.517242i \(0.173041\pi\)
−0.855839 + 0.517242i \(0.826959\pi\)
\(828\) 0 0
\(829\) −8.81029 −0.305994 −0.152997 0.988227i \(-0.548892\pi\)
−0.152997 + 0.988227i \(0.548892\pi\)
\(830\) 0 0
\(831\) −11.4045 −0.395618
\(832\) 0 0
\(833\) 1.17506i 0.0407135i
\(834\) 0 0
\(835\) 32.1064 + 26.7058i 1.11109 + 0.924191i
\(836\) 0 0
\(837\) 7.43531i 0.257002i
\(838\) 0 0
\(839\) −30.3579 −1.04807 −0.524036 0.851696i \(-0.675574\pi\)
−0.524036 + 0.851696i \(0.675574\pi\)
\(840\) 0 0
\(841\) −27.5269 −0.949203
\(842\) 0 0
\(843\) 31.2791i 1.07731i
\(844\) 0 0
\(845\) −0.224033 + 0.269338i −0.00770697 + 0.00926552i
\(846\) 0 0
\(847\) 25.6804i 0.882389i
\(848\) 0 0
\(849\) 2.75051 0.0943972
\(850\) 0 0
\(851\) −9.03852 −0.309836
\(852\) 0 0
\(853\) 9.91876i 0.339612i 0.985478 + 0.169806i \(0.0543141\pi\)
−0.985478 + 0.169806i \(0.945686\pi\)
\(854\) 0 0
\(855\) 9.51178 11.4353i 0.325296 0.391079i
\(856\) 0 0
\(857\) 40.5012i 1.38350i −0.722139 0.691748i \(-0.756841\pi\)
0.722139 0.691748i \(-0.243159\pi\)
\(858\) 0 0
\(859\) 10.4163 0.355400 0.177700 0.984085i \(-0.443134\pi\)
0.177700 + 0.984085i \(0.443134\pi\)
\(860\) 0 0
\(861\) 24.2015 0.824785
\(862\) 0 0
\(863\) 29.9264i 1.01871i 0.860558 + 0.509353i \(0.170115\pi\)
−0.860558 + 0.509353i \(0.829885\pi\)
\(864\) 0 0
\(865\) −5.83063 4.84986i −0.198247 0.164900i
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) 51.9057 1.76078
\(870\) 0 0
\(871\) 24.6066 0.833763
\(872\) 0 0
\(873\) 8.66795i 0.293366i
\(874\) 0 0
\(875\) −13.1889 + 23.5408i −0.445867 + 0.795824i
\(876\) 0 0
\(877\) 49.5750i 1.67403i −0.547180 0.837015i \(-0.684299\pi\)
0.547180 0.837015i \(-0.315701\pi\)
\(878\) 0 0
\(879\) −29.9097 −1.00883
\(880\) 0 0
\(881\) −41.4197 −1.39547 −0.697733 0.716358i \(-0.745808\pi\)
−0.697733 + 0.716358i \(0.745808\pi\)
\(882\) 0 0
\(883\) 57.6726i 1.94084i −0.241426 0.970419i \(-0.577615\pi\)
0.241426 0.970419i \(-0.422385\pi\)
\(884\) 0 0
\(885\) −7.14481 5.94299i −0.240170 0.199771i
\(886\) 0 0
\(887\) 27.9702i 0.939147i −0.882893 0.469573i \(-0.844408\pi\)
0.882893 0.469573i \(-0.155592\pi\)
\(888\) 0 0
\(889\) −8.67222 −0.290857
\(890\) 0 0
\(891\) −4.65192 −0.155845
\(892\) 0 0
\(893\) 50.8423i 1.70137i
\(894\) 0 0
\(895\) −14.3582 + 17.2618i −0.479942 + 0.576999i
\(896\) 0 0
\(897\) 9.46095i 0.315892i
\(898\) 0 0
\(899\) −9.02440 −0.300980
\(900\) 0 0
\(901\) 6.35097 0.211581
\(902\) 0 0
\(903\) 7.11553i 0.236790i
\(904\) 0 0
\(905\) −7.64743 + 9.19394i −0.254209 + 0.305617i
\(906\) 0 0
\(907\) 53.1133i 1.76360i 0.471626 + 0.881799i \(0.343667\pi\)
−0.471626 + 0.881799i \(0.656333\pi\)
\(908\) 0 0
\(909\) 6.53235 0.216664
\(910\) 0 0
\(911\) −3.23393 −0.107145 −0.0535724 0.998564i \(-0.517061\pi\)
−0.0535724 + 0.998564i \(0.517061\pi\)
\(912\) 0 0
\(913\) 19.1335i 0.633228i
\(914\) 0 0
\(915\) −2.26242 1.88186i −0.0747932 0.0622123i
\(916\) 0 0
\(917\) 42.2321i 1.39463i
\(918\) 0 0
\(919\) −49.8990 −1.64602 −0.823008 0.568030i \(-0.807706\pi\)
−0.823008 + 0.568030i \(0.807706\pi\)
\(920\) 0 0
\(921\) −13.5938 −0.447930
\(922\) 0 0
\(923\) 60.0646i 1.97705i
\(924\) 0 0
\(925\) 17.0365 3.15546i 0.560158 0.103751i
\(926\) 0 0
\(927\) 12.1945i 0.400521i
\(928\) 0 0
\(929\) 12.7837 0.419418 0.209709 0.977764i \(-0.432748\pi\)
0.209709 + 0.977764i \(0.432748\pi\)
\(930\) 0 0
\(931\) −7.81642 −0.256173
\(932\) 0 0
\(933\) 8.30743i 0.271973i
\(934\) 0 0
\(935\) −7.99711 6.65192i −0.261533 0.217541i
\(936\) 0 0
\(937\) 48.3516i 1.57958i 0.613380 + 0.789788i \(0.289810\pi\)
−0.613380 + 0.789788i \(0.710190\pi\)
\(938\) 0 0
\(939\) −1.35440 −0.0441991
\(940\) 0 0
\(941\) −47.1424 −1.53680 −0.768399 0.639971i \(-0.778946\pi\)
−0.768399 + 0.639971i \(0.778946\pi\)
\(942\) 0 0
\(943\) 26.1552i 0.851731i
\(944\) 0 0
\(945\) 3.45112 4.14903i 0.112265 0.134968i
\(946\) 0 0
\(947\) 35.4078i 1.15060i −0.817943 0.575299i \(-0.804886\pi\)
0.817943 0.575299i \(-0.195114\pi\)
\(948\) 0 0
\(949\) 6.28389 0.203984
\(950\) 0 0
\(951\) 2.02208 0.0655704
\(952\) 0 0
\(953\) 46.1846i 1.49606i −0.663662 0.748032i \(-0.730999\pi\)
0.663662 0.748032i \(-0.269001\pi\)
\(954\) 0 0
\(955\) 5.74039 6.90124i 0.185755 0.223319i
\(956\) 0 0
\(957\) 5.64614i 0.182514i
\(958\) 0 0
\(959\) −24.4872 −0.790732
\(960\) 0 0
\(961\) 24.2838 0.783347
\(962\) 0 0
\(963\) 5.03163i 0.162142i
\(964\) 0 0
\(965\) −38.9883 32.4301i −1.25508 1.04396i
\(966\) 0 0
\(967\) 54.0845i 1.73924i 0.493721 + 0.869620i \(0.335636\pi\)
−0.493721 + 0.869620i \(0.664364\pi\)
\(968\) 0 0
\(969\) −6.65192 −0.213690
\(970\) 0 0
\(971\) 30.9595 0.993536 0.496768 0.867883i \(-0.334520\pi\)
0.496768 + 0.867883i \(0.334520\pi\)
\(972\) 0 0
\(973\) 43.7586i 1.40284i
\(974\) 0 0
\(975\) −3.30294 17.8328i −0.105779 0.571105i
\(976\) 0 0
\(977\) 6.78722i 0.217142i −0.994089 0.108571i \(-0.965372\pi\)
0.994089 0.108571i \(-0.0346275\pi\)
\(978\) 0 0
\(979\) −25.7894 −0.824232
\(980\) 0 0
\(981\) 1.90349 0.0607738
\(982\) 0 0
\(983\) 18.1512i 0.578934i −0.957188 0.289467i \(-0.906522\pi\)
0.957188 0.289467i \(-0.0934781\pi\)
\(984\) 0 0
\(985\) 43.7407 + 36.3831i 1.39369 + 1.15926i
\(986\) 0 0
\(987\) 18.4469i 0.587171i
\(988\) 0 0
\(989\) 7.68994 0.244526
\(990\) 0 0
\(991\) 60.4926 1.92161 0.960805 0.277226i \(-0.0894152\pi\)
0.960805 + 0.277226i \(0.0894152\pi\)
\(992\) 0 0
\(993\) 6.58722i 0.209039i
\(994\) 0 0
\(995\) −25.6465 + 30.8329i −0.813048 + 0.977468i
\(996\) 0 0
\(997\) 23.5773i 0.746700i −0.927691 0.373350i \(-0.878209\pi\)
0.927691 0.373350i \(-0.121791\pi\)
\(998\) 0 0
\(999\) −3.46526 −0.109636
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2040.2.m.i.409.5 12
4.3 odd 2 4080.2.m.t.2449.11 12
5.4 even 2 inner 2040.2.m.i.409.11 yes 12
20.19 odd 2 4080.2.m.t.2449.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.m.i.409.5 12 1.1 even 1 trivial
2040.2.m.i.409.11 yes 12 5.4 even 2 inner
4080.2.m.t.2449.5 12 20.19 odd 2
4080.2.m.t.2449.11 12 4.3 odd 2