Properties

Label 2040.2.cf.d.1441.6
Level $2040$
Weight $2$
Character 2040.1441
Analytic conductor $16.289$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2040,2,Mod(361,2040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2040.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2040.cf (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2894820123\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 56 x^{18} + 1252 x^{16} + 14246 x^{14} + 87676 x^{12} + 294068 x^{10} + 556337 x^{8} + \cdots + 16384 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1441.6
Root \(1.24830i\) of defining polynomial
Character \(\chi\) \(=\) 2040.1441
Dual form 2040.2.cf.d.361.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{3} +(0.707107 + 0.707107i) q^{5} +(-2.60629 + 2.60629i) q^{7} +1.00000i q^{9} +(0.984240 - 0.984240i) q^{11} -3.11298 q^{13} +1.00000i q^{15} +(-3.85878 - 1.45252i) q^{17} -6.44375i q^{19} -3.68584 q^{21} +(-5.42787 + 5.42787i) q^{23} +1.00000i q^{25} +(-0.707107 + 0.707107i) q^{27} +(1.84322 + 1.84322i) q^{29} +(-5.06877 - 5.06877i) q^{31} +1.39193 q^{33} -3.68584 q^{35} +(-0.390138 - 0.390138i) q^{37} +(-2.20121 - 2.20121i) q^{39} +(2.22853 - 2.22853i) q^{41} +8.16481i q^{43} +(-0.707107 + 0.707107i) q^{45} -7.24229 q^{47} -6.58545i q^{49} +(-1.70148 - 3.75566i) q^{51} -8.36985i q^{53} +1.39193 q^{55} +(4.55642 - 4.55642i) q^{57} +4.72663i q^{59} +(7.75320 - 7.75320i) q^{61} +(-2.60629 - 2.60629i) q^{63} +(-2.20121 - 2.20121i) q^{65} +13.0434 q^{67} -7.67616 q^{69} +(-10.3569 - 10.3569i) q^{71} +(-2.07683 - 2.07683i) q^{73} +(-0.707107 + 0.707107i) q^{75} +5.13042i q^{77} +(-10.1798 + 10.1798i) q^{79} -1.00000 q^{81} +3.73346i q^{83} +(-1.70148 - 3.75566i) q^{85} +2.60671i q^{87} +9.27359 q^{89} +(8.11332 - 8.11332i) q^{91} -7.16833i q^{93} +(4.55642 - 4.55642i) q^{95} +(-10.0783 - 10.0783i) q^{97} +(0.984240 + 0.984240i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{7} - 4 q^{11} + 8 q^{13} + 4 q^{17} - 4 q^{23} + 12 q^{29} + 8 q^{31} - 8 q^{33} - 12 q^{37} + 4 q^{39} - 12 q^{41} - 48 q^{47} + 16 q^{51} - 8 q^{55} + 8 q^{57} + 24 q^{61} - 4 q^{63} + 4 q^{65}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2040\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1021\) \(1361\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) −2.60629 + 2.60629i −0.985083 + 0.985083i −0.999890 0.0148070i \(-0.995287\pi\)
0.0148070 + 0.999890i \(0.495287\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 0.984240 0.984240i 0.296759 0.296759i −0.542984 0.839743i \(-0.682705\pi\)
0.839743 + 0.542984i \(0.182705\pi\)
\(12\) 0 0
\(13\) −3.11298 −0.863386 −0.431693 0.902021i \(-0.642084\pi\)
−0.431693 + 0.902021i \(0.642084\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) −3.85878 1.45252i −0.935892 0.352288i
\(18\) 0 0
\(19\) 6.44375i 1.47830i −0.673542 0.739149i \(-0.735228\pi\)
0.673542 0.739149i \(-0.264772\pi\)
\(20\) 0 0
\(21\) −3.68584 −0.804317
\(22\) 0 0
\(23\) −5.42787 + 5.42787i −1.13179 + 1.13179i −0.141909 + 0.989880i \(0.545324\pi\)
−0.989880 + 0.141909i \(0.954676\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 1.84322 + 1.84322i 0.342278 + 0.342278i 0.857223 0.514945i \(-0.172188\pi\)
−0.514945 + 0.857223i \(0.672188\pi\)
\(30\) 0 0
\(31\) −5.06877 5.06877i −0.910378 0.910378i 0.0859235 0.996302i \(-0.472616\pi\)
−0.996302 + 0.0859235i \(0.972616\pi\)
\(32\) 0 0
\(33\) 1.39193 0.242303
\(34\) 0 0
\(35\) −3.68584 −0.623021
\(36\) 0 0
\(37\) −0.390138 0.390138i −0.0641384 0.0641384i 0.674310 0.738448i \(-0.264441\pi\)
−0.738448 + 0.674310i \(0.764441\pi\)
\(38\) 0 0
\(39\) −2.20121 2.20121i −0.352476 0.352476i
\(40\) 0 0
\(41\) 2.22853 2.22853i 0.348037 0.348037i −0.511341 0.859378i \(-0.670851\pi\)
0.859378 + 0.511341i \(0.170851\pi\)
\(42\) 0 0
\(43\) 8.16481i 1.24512i 0.782572 + 0.622561i \(0.213908\pi\)
−0.782572 + 0.622561i \(0.786092\pi\)
\(44\) 0 0
\(45\) −0.707107 + 0.707107i −0.105409 + 0.105409i
\(46\) 0 0
\(47\) −7.24229 −1.05640 −0.528198 0.849121i \(-0.677132\pi\)
−0.528198 + 0.849121i \(0.677132\pi\)
\(48\) 0 0
\(49\) 6.58545i 0.940778i
\(50\) 0 0
\(51\) −1.70148 3.75566i −0.238255 0.525897i
\(52\) 0 0
\(53\) 8.36985i 1.14969i −0.818263 0.574844i \(-0.805063\pi\)
0.818263 0.574844i \(-0.194937\pi\)
\(54\) 0 0
\(55\) 1.39193 0.187687
\(56\) 0 0
\(57\) 4.55642 4.55642i 0.603512 0.603512i
\(58\) 0 0
\(59\) 4.72663i 0.615354i 0.951491 + 0.307677i \(0.0995517\pi\)
−0.951491 + 0.307677i \(0.900448\pi\)
\(60\) 0 0
\(61\) 7.75320 7.75320i 0.992696 0.992696i −0.00727757 0.999974i \(-0.502317\pi\)
0.999974 + 0.00727757i \(0.00231654\pi\)
\(62\) 0 0
\(63\) −2.60629 2.60629i −0.328361 0.328361i
\(64\) 0 0
\(65\) −2.20121 2.20121i −0.273027 0.273027i
\(66\) 0 0
\(67\) 13.0434 1.59351 0.796753 0.604306i \(-0.206549\pi\)
0.796753 + 0.604306i \(0.206549\pi\)
\(68\) 0 0
\(69\) −7.67616 −0.924101
\(70\) 0 0
\(71\) −10.3569 10.3569i −1.22913 1.22913i −0.964292 0.264842i \(-0.914680\pi\)
−0.264842 0.964292i \(-0.585320\pi\)
\(72\) 0 0
\(73\) −2.07683 2.07683i −0.243075 0.243075i 0.575046 0.818121i \(-0.304984\pi\)
−0.818121 + 0.575046i \(0.804984\pi\)
\(74\) 0 0
\(75\) −0.707107 + 0.707107i −0.0816497 + 0.0816497i
\(76\) 0 0
\(77\) 5.13042i 0.584666i
\(78\) 0 0
\(79\) −10.1798 + 10.1798i −1.14531 + 1.14531i −0.157850 + 0.987463i \(0.550456\pi\)
−0.987463 + 0.157850i \(0.949544\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 3.73346i 0.409801i 0.978783 + 0.204901i \(0.0656871\pi\)
−0.978783 + 0.204901i \(0.934313\pi\)
\(84\) 0 0
\(85\) −1.70148 3.75566i −0.184552 0.407358i
\(86\) 0 0
\(87\) 2.60671i 0.279468i
\(88\) 0 0
\(89\) 9.27359 0.982998 0.491499 0.870878i \(-0.336449\pi\)
0.491499 + 0.870878i \(0.336449\pi\)
\(90\) 0 0
\(91\) 8.11332 8.11332i 0.850507 0.850507i
\(92\) 0 0
\(93\) 7.16833i 0.743321i
\(94\) 0 0
\(95\) 4.55642 4.55642i 0.467479 0.467479i
\(96\) 0 0
\(97\) −10.0783 10.0783i −1.02329 1.02329i −0.999722 0.0235726i \(-0.992496\pi\)
−0.0235726 0.999722i \(-0.507504\pi\)
\(98\) 0 0
\(99\) 0.984240 + 0.984240i 0.0989198 + 0.0989198i
\(100\) 0 0
\(101\) 4.53448 0.451197 0.225599 0.974220i \(-0.427566\pi\)
0.225599 + 0.974220i \(0.427566\pi\)
\(102\) 0 0
\(103\) −7.50109 −0.739104 −0.369552 0.929210i \(-0.620489\pi\)
−0.369552 + 0.929210i \(0.620489\pi\)
\(104\) 0 0
\(105\) −2.60629 2.60629i −0.254347 0.254347i
\(106\) 0 0
\(107\) −10.7566 10.7566i −1.03988 1.03988i −0.999171 0.0407064i \(-0.987039\pi\)
−0.0407064 0.999171i \(-0.512961\pi\)
\(108\) 0 0
\(109\) −10.2067 + 10.2067i −0.977627 + 0.977627i −0.999755 0.0221277i \(-0.992956\pi\)
0.0221277 + 0.999755i \(0.492956\pi\)
\(110\) 0 0
\(111\) 0.551739i 0.0523687i
\(112\) 0 0
\(113\) −6.87012 + 6.87012i −0.646286 + 0.646286i −0.952093 0.305807i \(-0.901074\pi\)
0.305807 + 0.952093i \(0.401074\pi\)
\(114\) 0 0
\(115\) −7.67616 −0.715806
\(116\) 0 0
\(117\) 3.11298i 0.287795i
\(118\) 0 0
\(119\) 13.8428 6.27141i 1.26896 0.574899i
\(120\) 0 0
\(121\) 9.06254i 0.823868i
\(122\) 0 0
\(123\) 3.15161 0.284171
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 21.3097i 1.89093i 0.325718 + 0.945467i \(0.394394\pi\)
−0.325718 + 0.945467i \(0.605606\pi\)
\(128\) 0 0
\(129\) −5.77339 + 5.77339i −0.508319 + 0.508319i
\(130\) 0 0
\(131\) −11.9425 11.9425i −1.04342 1.04342i −0.999013 0.0444111i \(-0.985859\pi\)
−0.0444111 0.999013i \(-0.514141\pi\)
\(132\) 0 0
\(133\) 16.7943 + 16.7943i 1.45625 + 1.45625i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 19.2409 1.64386 0.821932 0.569586i \(-0.192897\pi\)
0.821932 + 0.569586i \(0.192897\pi\)
\(138\) 0 0
\(139\) 8.23532 + 8.23532i 0.698511 + 0.698511i 0.964089 0.265578i \(-0.0855629\pi\)
−0.265578 + 0.964089i \(0.585563\pi\)
\(140\) 0 0
\(141\) −5.12107 5.12107i −0.431272 0.431272i
\(142\) 0 0
\(143\) −3.06392 + 3.06392i −0.256218 + 0.256218i
\(144\) 0 0
\(145\) 2.60671i 0.216475i
\(146\) 0 0
\(147\) 4.65662 4.65662i 0.384071 0.384071i
\(148\) 0 0
\(149\) −1.77251 −0.145209 −0.0726047 0.997361i \(-0.523131\pi\)
−0.0726047 + 0.997361i \(0.523131\pi\)
\(150\) 0 0
\(151\) 18.0554i 1.46933i 0.678432 + 0.734664i \(0.262660\pi\)
−0.678432 + 0.734664i \(0.737340\pi\)
\(152\) 0 0
\(153\) 1.45252 3.85878i 0.117429 0.311964i
\(154\) 0 0
\(155\) 7.16833i 0.575774i
\(156\) 0 0
\(157\) −22.6892 −1.81079 −0.905396 0.424569i \(-0.860426\pi\)
−0.905396 + 0.424569i \(0.860426\pi\)
\(158\) 0 0
\(159\) 5.91838 5.91838i 0.469358 0.469358i
\(160\) 0 0
\(161\) 28.2931i 2.22981i
\(162\) 0 0
\(163\) 2.99444 2.99444i 0.234543 0.234543i −0.580043 0.814586i \(-0.696964\pi\)
0.814586 + 0.580043i \(0.196964\pi\)
\(164\) 0 0
\(165\) 0.984240 + 0.984240i 0.0766230 + 0.0766230i
\(166\) 0 0
\(167\) −3.53740 3.53740i −0.273732 0.273732i 0.556868 0.830601i \(-0.312003\pi\)
−0.830601 + 0.556868i \(0.812003\pi\)
\(168\) 0 0
\(169\) −3.30934 −0.254565
\(170\) 0 0
\(171\) 6.44375 0.492766
\(172\) 0 0
\(173\) 1.02328 + 1.02328i 0.0777988 + 0.0777988i 0.744935 0.667137i \(-0.232480\pi\)
−0.667137 + 0.744935i \(0.732480\pi\)
\(174\) 0 0
\(175\) −2.60629 2.60629i −0.197017 0.197017i
\(176\) 0 0
\(177\) −3.34223 + 3.34223i −0.251217 + 0.251217i
\(178\) 0 0
\(179\) 5.35529i 0.400273i 0.979768 + 0.200137i \(0.0641386\pi\)
−0.979768 + 0.200137i \(0.935861\pi\)
\(180\) 0 0
\(181\) 2.41206 2.41206i 0.179287 0.179287i −0.611758 0.791045i \(-0.709537\pi\)
0.791045 + 0.611758i \(0.209537\pi\)
\(182\) 0 0
\(183\) 10.9647 0.810533
\(184\) 0 0
\(185\) 0.551739i 0.0405647i
\(186\) 0 0
\(187\) −5.22759 + 2.36834i −0.382279 + 0.173190i
\(188\) 0 0
\(189\) 3.68584i 0.268106i
\(190\) 0 0
\(191\) 11.3707 0.822756 0.411378 0.911465i \(-0.365048\pi\)
0.411378 + 0.911465i \(0.365048\pi\)
\(192\) 0 0
\(193\) −0.162023 + 0.162023i −0.0116627 + 0.0116627i −0.712914 0.701251i \(-0.752625\pi\)
0.701251 + 0.712914i \(0.252625\pi\)
\(194\) 0 0
\(195\) 3.11298i 0.222925i
\(196\) 0 0
\(197\) 5.21844 5.21844i 0.371798 0.371798i −0.496333 0.868132i \(-0.665321\pi\)
0.868132 + 0.496333i \(0.165321\pi\)
\(198\) 0 0
\(199\) 15.2500 + 15.2500i 1.08105 + 1.08105i 0.996412 + 0.0846337i \(0.0269720\pi\)
0.0846337 + 0.996412i \(0.473028\pi\)
\(200\) 0 0
\(201\) 9.22308 + 9.22308i 0.650546 + 0.650546i
\(202\) 0 0
\(203\) −9.60792 −0.674344
\(204\) 0 0
\(205\) 3.15161 0.220118
\(206\) 0 0
\(207\) −5.42787 5.42787i −0.377263 0.377263i
\(208\) 0 0
\(209\) −6.34220 6.34220i −0.438699 0.438699i
\(210\) 0 0
\(211\) −19.3832 + 19.3832i −1.33439 + 1.33439i −0.432998 + 0.901395i \(0.642544\pi\)
−0.901395 + 0.432998i \(0.857456\pi\)
\(212\) 0 0
\(213\) 14.6468i 1.00358i
\(214\) 0 0
\(215\) −5.77339 + 5.77339i −0.393742 + 0.393742i
\(216\) 0 0
\(217\) 26.4213 1.79360
\(218\) 0 0
\(219\) 2.93709i 0.198470i
\(220\) 0 0
\(221\) 12.0123 + 4.52166i 0.808036 + 0.304160i
\(222\) 0 0
\(223\) 16.6332i 1.11384i −0.830567 0.556919i \(-0.811983\pi\)
0.830567 0.556919i \(-0.188017\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −17.7041 + 17.7041i −1.17506 + 1.17506i −0.194075 + 0.980987i \(0.562170\pi\)
−0.980987 + 0.194075i \(0.937830\pi\)
\(228\) 0 0
\(229\) 1.14016i 0.0753436i −0.999290 0.0376718i \(-0.988006\pi\)
0.999290 0.0376718i \(-0.0119941\pi\)
\(230\) 0 0
\(231\) −3.62775 + 3.62775i −0.238689 + 0.238689i
\(232\) 0 0
\(233\) −18.4627 18.4627i −1.20953 1.20953i −0.971179 0.238353i \(-0.923393\pi\)
−0.238353 0.971179i \(-0.576607\pi\)
\(234\) 0 0
\(235\) −5.12107 5.12107i −0.334062 0.334062i
\(236\) 0 0
\(237\) −14.3964 −0.935144
\(238\) 0 0
\(239\) 4.55032 0.294336 0.147168 0.989112i \(-0.452984\pi\)
0.147168 + 0.989112i \(0.452984\pi\)
\(240\) 0 0
\(241\) 3.08685 + 3.08685i 0.198842 + 0.198842i 0.799503 0.600662i \(-0.205096\pi\)
−0.600662 + 0.799503i \(0.705096\pi\)
\(242\) 0 0
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) 4.65662 4.65662i 0.297500 0.297500i
\(246\) 0 0
\(247\) 20.0593i 1.27634i
\(248\) 0 0
\(249\) −2.63996 + 2.63996i −0.167301 + 0.167301i
\(250\) 0 0
\(251\) −29.1745 −1.84148 −0.920738 0.390181i \(-0.872412\pi\)
−0.920738 + 0.390181i \(0.872412\pi\)
\(252\) 0 0
\(253\) 10.6846i 0.671738i
\(254\) 0 0
\(255\) 1.45252 3.85878i 0.0909603 0.241646i
\(256\) 0 0
\(257\) 3.17986i 0.198354i −0.995070 0.0991772i \(-0.968379\pi\)
0.995070 0.0991772i \(-0.0316211\pi\)
\(258\) 0 0
\(259\) 2.03362 0.126363
\(260\) 0 0
\(261\) −1.84322 + 1.84322i −0.114093 + 0.114093i
\(262\) 0 0
\(263\) 23.5499i 1.45215i 0.687617 + 0.726074i \(0.258657\pi\)
−0.687617 + 0.726074i \(0.741343\pi\)
\(264\) 0 0
\(265\) 5.91838 5.91838i 0.363563 0.363563i
\(266\) 0 0
\(267\) 6.55741 + 6.55741i 0.401307 + 0.401307i
\(268\) 0 0
\(269\) 1.53837 + 1.53837i 0.0937961 + 0.0937961i 0.752448 0.658652i \(-0.228873\pi\)
−0.658652 + 0.752448i \(0.728873\pi\)
\(270\) 0 0
\(271\) −14.4182 −0.875844 −0.437922 0.899013i \(-0.644285\pi\)
−0.437922 + 0.899013i \(0.644285\pi\)
\(272\) 0 0
\(273\) 11.4740 0.694436
\(274\) 0 0
\(275\) 0.984240 + 0.984240i 0.0593519 + 0.0593519i
\(276\) 0 0
\(277\) −0.508820 0.508820i −0.0305720 0.0305720i 0.691656 0.722228i \(-0.256882\pi\)
−0.722228 + 0.691656i \(0.756882\pi\)
\(278\) 0 0
\(279\) 5.06877 5.06877i 0.303459 0.303459i
\(280\) 0 0
\(281\) 25.9728i 1.54940i −0.632326 0.774702i \(-0.717900\pi\)
0.632326 0.774702i \(-0.282100\pi\)
\(282\) 0 0
\(283\) 16.0895 16.0895i 0.956424 0.956424i −0.0426654 0.999089i \(-0.513585\pi\)
0.999089 + 0.0426654i \(0.0135850\pi\)
\(284\) 0 0
\(285\) 6.44375 0.381695
\(286\) 0 0
\(287\) 11.6164i 0.685692i
\(288\) 0 0
\(289\) 12.7804 + 11.2099i 0.751787 + 0.659406i
\(290\) 0 0
\(291\) 14.2528i 0.835517i
\(292\) 0 0
\(293\) 15.0783 0.880882 0.440441 0.897782i \(-0.354822\pi\)
0.440441 + 0.897782i \(0.354822\pi\)
\(294\) 0 0
\(295\) −3.34223 + 3.34223i −0.194592 + 0.194592i
\(296\) 0 0
\(297\) 1.39193i 0.0807677i
\(298\) 0 0
\(299\) 16.8969 16.8969i 0.977170 0.977170i
\(300\) 0 0
\(301\) −21.2798 21.2798i −1.22655 1.22655i
\(302\) 0 0
\(303\) 3.20636 + 3.20636i 0.184201 + 0.184201i
\(304\) 0 0
\(305\) 10.9647 0.627836
\(306\) 0 0
\(307\) 14.7150 0.839829 0.419915 0.907564i \(-0.362060\pi\)
0.419915 + 0.907564i \(0.362060\pi\)
\(308\) 0 0
\(309\) −5.30407 5.30407i −0.301738 0.301738i
\(310\) 0 0
\(311\) −7.47281 7.47281i −0.423744 0.423744i 0.462746 0.886491i \(-0.346864\pi\)
−0.886491 + 0.462746i \(0.846864\pi\)
\(312\) 0 0
\(313\) 0.490796 0.490796i 0.0277414 0.0277414i −0.693100 0.720841i \(-0.743756\pi\)
0.720841 + 0.693100i \(0.243756\pi\)
\(314\) 0 0
\(315\) 3.68584i 0.207674i
\(316\) 0 0
\(317\) −0.871532 + 0.871532i −0.0489501 + 0.0489501i −0.731158 0.682208i \(-0.761020\pi\)
0.682208 + 0.731158i \(0.261020\pi\)
\(318\) 0 0
\(319\) 3.62834 0.203148
\(320\) 0 0
\(321\) 15.2121i 0.849056i
\(322\) 0 0
\(323\) −9.35967 + 24.8650i −0.520786 + 1.38353i
\(324\) 0 0
\(325\) 3.11298i 0.172677i
\(326\) 0 0
\(327\) −14.4345 −0.798229
\(328\) 0 0
\(329\) 18.8755 18.8755i 1.04064 1.04064i
\(330\) 0 0
\(331\) 0.385234i 0.0211744i −0.999944 0.0105872i \(-0.996630\pi\)
0.999944 0.0105872i \(-0.00337007\pi\)
\(332\) 0 0
\(333\) 0.390138 0.390138i 0.0213795 0.0213795i
\(334\) 0 0
\(335\) 9.22308 + 9.22308i 0.503911 + 0.503911i
\(336\) 0 0
\(337\) 21.7632 + 21.7632i 1.18552 + 1.18552i 0.978294 + 0.207224i \(0.0664428\pi\)
0.207224 + 0.978294i \(0.433557\pi\)
\(338\) 0 0
\(339\) −9.71581 −0.527691
\(340\) 0 0
\(341\) −9.97777 −0.540327
\(342\) 0 0
\(343\) −1.08044 1.08044i −0.0583381 0.0583381i
\(344\) 0 0
\(345\) −5.42787 5.42787i −0.292227 0.292227i
\(346\) 0 0
\(347\) −1.11918 + 1.11918i −0.0600809 + 0.0600809i −0.736509 0.676428i \(-0.763527\pi\)
0.676428 + 0.736509i \(0.263527\pi\)
\(348\) 0 0
\(349\) 25.0150i 1.33902i 0.742801 + 0.669512i \(0.233497\pi\)
−0.742801 + 0.669512i \(0.766503\pi\)
\(350\) 0 0
\(351\) 2.20121 2.20121i 0.117492 0.117492i
\(352\) 0 0
\(353\) −9.53899 −0.507709 −0.253855 0.967242i \(-0.581698\pi\)
−0.253855 + 0.967242i \(0.581698\pi\)
\(354\) 0 0
\(355\) 14.6468i 0.777373i
\(356\) 0 0
\(357\) 14.2229 + 5.35376i 0.752754 + 0.283351i
\(358\) 0 0
\(359\) 15.8414i 0.836079i 0.908429 + 0.418040i \(0.137283\pi\)
−0.908429 + 0.418040i \(0.862717\pi\)
\(360\) 0 0
\(361\) −22.5219 −1.18536
\(362\) 0 0
\(363\) −6.40819 + 6.40819i −0.336343 + 0.336343i
\(364\) 0 0
\(365\) 2.93709i 0.153734i
\(366\) 0 0
\(367\) −13.6825 + 13.6825i −0.714221 + 0.714221i −0.967415 0.253195i \(-0.918519\pi\)
0.253195 + 0.967415i \(0.418519\pi\)
\(368\) 0 0
\(369\) 2.22853 + 2.22853i 0.116012 + 0.116012i
\(370\) 0 0
\(371\) 21.8142 + 21.8142i 1.13254 + 1.13254i
\(372\) 0 0
\(373\) 20.7592 1.07487 0.537436 0.843304i \(-0.319393\pi\)
0.537436 + 0.843304i \(0.319393\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −5.73791 5.73791i −0.295518 0.295518i
\(378\) 0 0
\(379\) 0.437405 + 0.437405i 0.0224680 + 0.0224680i 0.718252 0.695784i \(-0.244943\pi\)
−0.695784 + 0.718252i \(0.744943\pi\)
\(380\) 0 0
\(381\) −15.0683 + 15.0683i −0.771970 + 0.771970i
\(382\) 0 0
\(383\) 12.4097i 0.634107i −0.948408 0.317054i \(-0.897306\pi\)
0.948408 0.317054i \(-0.102694\pi\)
\(384\) 0 0
\(385\) −3.62775 + 3.62775i −0.184888 + 0.184888i
\(386\) 0 0
\(387\) −8.16481 −0.415040
\(388\) 0 0
\(389\) 14.5525i 0.737841i 0.929461 + 0.368921i \(0.120273\pi\)
−0.929461 + 0.368921i \(0.879727\pi\)
\(390\) 0 0
\(391\) 28.8290 13.0609i 1.45795 0.660517i
\(392\) 0 0
\(393\) 16.8893i 0.851952i
\(394\) 0 0
\(395\) −14.3964 −0.724360
\(396\) 0 0
\(397\) 7.68172 7.68172i 0.385534 0.385534i −0.487557 0.873091i \(-0.662112\pi\)
0.873091 + 0.487557i \(0.162112\pi\)
\(398\) 0 0
\(399\) 23.7507i 1.18902i
\(400\) 0 0
\(401\) 3.99065 3.99065i 0.199284 0.199284i −0.600409 0.799693i \(-0.704996\pi\)
0.799693 + 0.600409i \(0.204996\pi\)
\(402\) 0 0
\(403\) 15.7790 + 15.7790i 0.786008 + 0.786008i
\(404\) 0 0
\(405\) −0.707107 0.707107i −0.0351364 0.0351364i
\(406\) 0 0
\(407\) −0.767979 −0.0380673
\(408\) 0 0
\(409\) 16.4058 0.811215 0.405607 0.914047i \(-0.367060\pi\)
0.405607 + 0.914047i \(0.367060\pi\)
\(410\) 0 0
\(411\) 13.6054 + 13.6054i 0.671104 + 0.671104i
\(412\) 0 0
\(413\) −12.3189 12.3189i −0.606175 0.606175i
\(414\) 0 0
\(415\) −2.63996 + 2.63996i −0.129590 + 0.129590i
\(416\) 0 0
\(417\) 11.6465i 0.570332i
\(418\) 0 0
\(419\) −2.79134 + 2.79134i −0.136366 + 0.136366i −0.771995 0.635629i \(-0.780741\pi\)
0.635629 + 0.771995i \(0.280741\pi\)
\(420\) 0 0
\(421\) 15.9717 0.778412 0.389206 0.921151i \(-0.372749\pi\)
0.389206 + 0.921151i \(0.372749\pi\)
\(422\) 0 0
\(423\) 7.24229i 0.352132i
\(424\) 0 0
\(425\) 1.45252 3.85878i 0.0704575 0.187178i
\(426\) 0 0
\(427\) 40.4141i 1.95578i
\(428\) 0 0
\(429\) −4.33304 −0.209201
\(430\) 0 0
\(431\) 6.75116 6.75116i 0.325192 0.325192i −0.525563 0.850755i \(-0.676145\pi\)
0.850755 + 0.525563i \(0.176145\pi\)
\(432\) 0 0
\(433\) 24.0298i 1.15480i 0.816461 + 0.577400i \(0.195933\pi\)
−0.816461 + 0.577400i \(0.804067\pi\)
\(434\) 0 0
\(435\) −1.84322 + 1.84322i −0.0883757 + 0.0883757i
\(436\) 0 0
\(437\) 34.9758 + 34.9758i 1.67312 + 1.67312i
\(438\) 0 0
\(439\) 16.4415 + 16.4415i 0.784710 + 0.784710i 0.980622 0.195912i \(-0.0627667\pi\)
−0.195912 + 0.980622i \(0.562767\pi\)
\(440\) 0 0
\(441\) 6.58545 0.313593
\(442\) 0 0
\(443\) 10.8518 0.515584 0.257792 0.966200i \(-0.417005\pi\)
0.257792 + 0.966200i \(0.417005\pi\)
\(444\) 0 0
\(445\) 6.55741 + 6.55741i 0.310851 + 0.310851i
\(446\) 0 0
\(447\) −1.25335 1.25335i −0.0592815 0.0592815i
\(448\) 0 0
\(449\) −19.4339 + 19.4339i −0.917141 + 0.917141i −0.996821 0.0796795i \(-0.974610\pi\)
0.0796795 + 0.996821i \(0.474610\pi\)
\(450\) 0 0
\(451\) 4.38681i 0.206567i
\(452\) 0 0
\(453\) −12.7671 + 12.7671i −0.599850 + 0.599850i
\(454\) 0 0
\(455\) 11.4740 0.537908
\(456\) 0 0
\(457\) 11.8665i 0.555093i 0.960712 + 0.277546i \(0.0895212\pi\)
−0.960712 + 0.277546i \(0.910479\pi\)
\(458\) 0 0
\(459\) 3.75566 1.70148i 0.175299 0.0794185i
\(460\) 0 0
\(461\) 4.71164i 0.219443i 0.993962 + 0.109722i \(0.0349959\pi\)
−0.993962 + 0.109722i \(0.965004\pi\)
\(462\) 0 0
\(463\) 24.2724 1.12803 0.564017 0.825763i \(-0.309255\pi\)
0.564017 + 0.825763i \(0.309255\pi\)
\(464\) 0 0
\(465\) 5.06877 5.06877i 0.235059 0.235059i
\(466\) 0 0
\(467\) 8.98717i 0.415876i 0.978142 + 0.207938i \(0.0666753\pi\)
−0.978142 + 0.207938i \(0.933325\pi\)
\(468\) 0 0
\(469\) −33.9948 + 33.9948i −1.56974 + 1.56974i
\(470\) 0 0
\(471\) −16.0437 16.0437i −0.739253 0.739253i
\(472\) 0 0
\(473\) 8.03613 + 8.03613i 0.369502 + 0.369502i
\(474\) 0 0
\(475\) 6.44375 0.295660
\(476\) 0 0
\(477\) 8.36985 0.383229
\(478\) 0 0
\(479\) −27.4728 27.4728i −1.25526 1.25526i −0.953328 0.301935i \(-0.902367\pi\)
−0.301935 0.953328i \(-0.597633\pi\)
\(480\) 0 0
\(481\) 1.21449 + 1.21449i 0.0553761 + 0.0553761i
\(482\) 0 0
\(483\) 20.0063 20.0063i 0.910317 0.910317i
\(484\) 0 0
\(485\) 14.2528i 0.647188i
\(486\) 0 0
\(487\) 4.03323 4.03323i 0.182763 0.182763i −0.609795 0.792559i \(-0.708748\pi\)
0.792559 + 0.609795i \(0.208748\pi\)
\(488\) 0 0
\(489\) 4.23478 0.191503
\(490\) 0 0
\(491\) 5.56937i 0.251342i −0.992072 0.125671i \(-0.959892\pi\)
0.992072 0.125671i \(-0.0401084\pi\)
\(492\) 0 0
\(493\) −4.43527 9.78990i −0.199755 0.440915i
\(494\) 0 0
\(495\) 1.39193i 0.0625624i
\(496\) 0 0
\(497\) 53.9859 2.42160
\(498\) 0 0
\(499\) −13.8153 + 13.8153i −0.618456 + 0.618456i −0.945135 0.326679i \(-0.894070\pi\)
0.326679 + 0.945135i \(0.394070\pi\)
\(500\) 0 0
\(501\) 5.00264i 0.223501i
\(502\) 0 0
\(503\) 9.87055 9.87055i 0.440106 0.440106i −0.451941 0.892048i \(-0.649268\pi\)
0.892048 + 0.451941i \(0.149268\pi\)
\(504\) 0 0
\(505\) 3.20636 + 3.20636i 0.142681 + 0.142681i
\(506\) 0 0
\(507\) −2.34006 2.34006i −0.103926 0.103926i
\(508\) 0 0
\(509\) −7.51858 −0.333255 −0.166628 0.986020i \(-0.553288\pi\)
−0.166628 + 0.986020i \(0.553288\pi\)
\(510\) 0 0
\(511\) 10.8256 0.478899
\(512\) 0 0
\(513\) 4.55642 + 4.55642i 0.201171 + 0.201171i
\(514\) 0 0
\(515\) −5.30407 5.30407i −0.233725 0.233725i
\(516\) 0 0
\(517\) −7.12815 + 7.12815i −0.313496 + 0.313496i
\(518\) 0 0
\(519\) 1.44714i 0.0635225i
\(520\) 0 0
\(521\) 15.7494 15.7494i 0.689995 0.689995i −0.272236 0.962231i \(-0.587763\pi\)
0.962231 + 0.272236i \(0.0877630\pi\)
\(522\) 0 0
\(523\) 10.5246 0.460209 0.230104 0.973166i \(-0.426093\pi\)
0.230104 + 0.973166i \(0.426093\pi\)
\(524\) 0 0
\(525\) 3.68584i 0.160863i
\(526\) 0 0
\(527\) 12.1968 + 26.9218i 0.531301 + 1.17273i
\(528\) 0 0
\(529\) 35.9235i 1.56189i
\(530\) 0 0
\(531\) −4.72663 −0.205118
\(532\) 0 0
\(533\) −6.93736 + 6.93736i −0.300491 + 0.300491i
\(534\) 0 0
\(535\) 15.2121i 0.657676i
\(536\) 0 0
\(537\) −3.78676 + 3.78676i −0.163411 + 0.163411i
\(538\) 0 0
\(539\) −6.48166 6.48166i −0.279185 0.279185i
\(540\) 0 0
\(541\) 2.75141 + 2.75141i 0.118292 + 0.118292i 0.763775 0.645483i \(-0.223344\pi\)
−0.645483 + 0.763775i \(0.723344\pi\)
\(542\) 0 0
\(543\) 3.41116 0.146387
\(544\) 0 0
\(545\) −14.4345 −0.618306
\(546\) 0 0
\(547\) −8.07559 8.07559i −0.345287 0.345287i 0.513063 0.858351i \(-0.328511\pi\)
−0.858351 + 0.513063i \(0.828511\pi\)
\(548\) 0 0
\(549\) 7.75320 + 7.75320i 0.330899 + 0.330899i
\(550\) 0 0
\(551\) 11.8773 11.8773i 0.505988 0.505988i
\(552\) 0 0
\(553\) 53.0628i 2.25646i
\(554\) 0 0
\(555\) 0.390138 0.390138i 0.0165605 0.0165605i
\(556\) 0 0
\(557\) 4.10126 0.173776 0.0868880 0.996218i \(-0.472308\pi\)
0.0868880 + 0.996218i \(0.472308\pi\)
\(558\) 0 0
\(559\) 25.4169i 1.07502i
\(560\) 0 0
\(561\) −5.37113 2.02180i −0.226769 0.0853604i
\(562\) 0 0
\(563\) 22.8644i 0.963621i 0.876275 + 0.481810i \(0.160021\pi\)
−0.876275 + 0.481810i \(0.839979\pi\)
\(564\) 0 0
\(565\) −9.71581 −0.408747
\(566\) 0 0
\(567\) 2.60629 2.60629i 0.109454 0.109454i
\(568\) 0 0
\(569\) 9.54376i 0.400095i −0.979786 0.200048i \(-0.935890\pi\)
0.979786 0.200048i \(-0.0641097\pi\)
\(570\) 0 0
\(571\) 28.1691 28.1691i 1.17884 1.17884i 0.198802 0.980040i \(-0.436295\pi\)
0.980040 0.198802i \(-0.0637050\pi\)
\(572\) 0 0
\(573\) 8.04031 + 8.04031i 0.335889 + 0.335889i
\(574\) 0 0
\(575\) −5.42787 5.42787i −0.226358 0.226358i
\(576\) 0 0
\(577\) 4.15731 0.173071 0.0865356 0.996249i \(-0.472420\pi\)
0.0865356 + 0.996249i \(0.472420\pi\)
\(578\) 0 0
\(579\) −0.229135 −0.00952254
\(580\) 0 0
\(581\) −9.73048 9.73048i −0.403688 0.403688i
\(582\) 0 0
\(583\) −8.23794 8.23794i −0.341181 0.341181i
\(584\) 0 0
\(585\) 2.20121 2.20121i 0.0910089 0.0910089i
\(586\) 0 0
\(587\) 43.9526i 1.81412i −0.421005 0.907058i \(-0.638323\pi\)
0.421005 0.907058i \(-0.361677\pi\)
\(588\) 0 0
\(589\) −32.6619 + 32.6619i −1.34581 + 1.34581i
\(590\) 0 0
\(591\) 7.37999 0.303572
\(592\) 0 0
\(593\) 35.9267i 1.47533i 0.675165 + 0.737666i \(0.264072\pi\)
−0.675165 + 0.737666i \(0.735928\pi\)
\(594\) 0 0
\(595\) 14.2229 + 5.35376i 0.583081 + 0.219483i
\(596\) 0 0
\(597\) 21.5668i 0.882670i
\(598\) 0 0
\(599\) 35.1075 1.43445 0.717226 0.696841i \(-0.245412\pi\)
0.717226 + 0.696841i \(0.245412\pi\)
\(600\) 0 0
\(601\) −3.65146 + 3.65146i −0.148946 + 0.148946i −0.777647 0.628701i \(-0.783587\pi\)
0.628701 + 0.777647i \(0.283587\pi\)
\(602\) 0 0
\(603\) 13.0434i 0.531168i
\(604\) 0 0
\(605\) −6.40819 + 6.40819i −0.260530 + 0.260530i
\(606\) 0 0
\(607\) 8.89399 + 8.89399i 0.360996 + 0.360996i 0.864179 0.503184i \(-0.167838\pi\)
−0.503184 + 0.864179i \(0.667838\pi\)
\(608\) 0 0
\(609\) −6.79383 6.79383i −0.275300 0.275300i
\(610\) 0 0
\(611\) 22.5451 0.912078
\(612\) 0 0
\(613\) −33.1417 −1.33858 −0.669291 0.743000i \(-0.733402\pi\)
−0.669291 + 0.743000i \(0.733402\pi\)
\(614\) 0 0
\(615\) 2.22853 + 2.22853i 0.0898629 + 0.0898629i
\(616\) 0 0
\(617\) −1.83786 1.83786i −0.0739894 0.0739894i 0.669144 0.743133i \(-0.266661\pi\)
−0.743133 + 0.669144i \(0.766661\pi\)
\(618\) 0 0
\(619\) 4.14663 4.14663i 0.166667 0.166667i −0.618846 0.785513i \(-0.712399\pi\)
0.785513 + 0.618846i \(0.212399\pi\)
\(620\) 0 0
\(621\) 7.67616i 0.308034i
\(622\) 0 0
\(623\) −24.1696 + 24.1696i −0.968335 + 0.968335i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 8.96922i 0.358196i
\(628\) 0 0
\(629\) 0.938775 + 2.07214i 0.0374314 + 0.0826217i
\(630\) 0 0
\(631\) 12.6801i 0.504786i −0.967625 0.252393i \(-0.918782\pi\)
0.967625 0.252393i \(-0.0812176\pi\)
\(632\) 0 0
\(633\) −27.4120 −1.08953
\(634\) 0 0
\(635\) −15.0683 + 15.0683i −0.597966 + 0.597966i
\(636\) 0 0
\(637\) 20.5004i 0.812255i
\(638\) 0 0
\(639\) 10.3569 10.3569i 0.409711 0.409711i
\(640\) 0 0
\(641\) −22.4667 22.4667i −0.887380 0.887380i 0.106891 0.994271i \(-0.465910\pi\)
−0.994271 + 0.106891i \(0.965910\pi\)
\(642\) 0 0
\(643\) 9.09155 + 9.09155i 0.358536 + 0.358536i 0.863273 0.504737i \(-0.168411\pi\)
−0.504737 + 0.863273i \(0.668411\pi\)
\(644\) 0 0
\(645\) −8.16481 −0.321489
\(646\) 0 0
\(647\) 18.2921 0.719135 0.359567 0.933119i \(-0.382924\pi\)
0.359567 + 0.933119i \(0.382924\pi\)
\(648\) 0 0
\(649\) 4.65213 + 4.65213i 0.182612 + 0.182612i
\(650\) 0 0
\(651\) 18.6827 + 18.6827i 0.732233 + 0.732233i
\(652\) 0 0
\(653\) 1.01717 1.01717i 0.0398048 0.0398048i −0.686924 0.726729i \(-0.741040\pi\)
0.726729 + 0.686924i \(0.241040\pi\)
\(654\) 0 0
\(655\) 16.8893i 0.659920i
\(656\) 0 0
\(657\) 2.07683 2.07683i 0.0810250 0.0810250i
\(658\) 0 0
\(659\) −30.6681 −1.19466 −0.597329 0.801996i \(-0.703771\pi\)
−0.597329 + 0.801996i \(0.703771\pi\)
\(660\) 0 0
\(661\) 6.42933i 0.250072i −0.992152 0.125036i \(-0.960095\pi\)
0.992152 0.125036i \(-0.0399046\pi\)
\(662\) 0 0
\(663\) 5.29669 + 11.6913i 0.205706 + 0.454052i
\(664\) 0 0
\(665\) 23.7507i 0.921011i
\(666\) 0 0
\(667\) −20.0095 −0.774772
\(668\) 0 0
\(669\) 11.7614 11.7614i 0.454723 0.454723i
\(670\) 0 0
\(671\) 15.2620i 0.589184i
\(672\) 0 0
\(673\) 14.9520 14.9520i 0.576356 0.576356i −0.357542 0.933897i \(-0.616385\pi\)
0.933897 + 0.357542i \(0.116385\pi\)
\(674\) 0 0
\(675\) −0.707107 0.707107i −0.0272166 0.0272166i
\(676\) 0 0
\(677\) 10.1772 + 10.1772i 0.391141 + 0.391141i 0.875094 0.483953i \(-0.160799\pi\)
−0.483953 + 0.875094i \(0.660799\pi\)
\(678\) 0 0
\(679\) 52.5338 2.01606
\(680\) 0 0
\(681\) −25.0374 −0.959434
\(682\) 0 0
\(683\) −26.9866 26.9866i −1.03261 1.03261i −0.999450 0.0331645i \(-0.989441\pi\)
−0.0331645 0.999450i \(-0.510559\pi\)
\(684\) 0 0
\(685\) 13.6054 + 13.6054i 0.519835 + 0.519835i
\(686\) 0 0
\(687\) 0.806212 0.806212i 0.0307589 0.0307589i
\(688\) 0 0
\(689\) 26.0552i 0.992624i
\(690\) 0 0
\(691\) −24.4464 + 24.4464i −0.929985 + 0.929985i −0.997704 0.0677193i \(-0.978428\pi\)
0.0677193 + 0.997704i \(0.478428\pi\)
\(692\) 0 0
\(693\) −5.13042 −0.194889
\(694\) 0 0
\(695\) 11.6465i 0.441777i
\(696\) 0 0
\(697\) −11.8364 + 5.36242i −0.448335 + 0.203116i
\(698\) 0 0
\(699\) 26.1102i 0.987578i
\(700\) 0 0
\(701\) −32.7092 −1.23541 −0.617705 0.786410i \(-0.711937\pi\)
−0.617705 + 0.786410i \(0.711937\pi\)
\(702\) 0 0
\(703\) −2.51395 + 2.51395i −0.0948156 + 0.0948156i
\(704\) 0 0
\(705\) 7.24229i 0.272760i
\(706\) 0 0
\(707\) −11.8181 + 11.8181i −0.444467 + 0.444467i
\(708\) 0 0
\(709\) −8.26375 8.26375i −0.310352 0.310352i 0.534694 0.845046i \(-0.320427\pi\)
−0.845046 + 0.534694i \(0.820427\pi\)
\(710\) 0 0
\(711\) −10.1798 10.1798i −0.381771 0.381771i
\(712\) 0 0
\(713\) 55.0252 2.06071
\(714\) 0 0
\(715\) −4.33304 −0.162046
\(716\) 0 0
\(717\) 3.21756 + 3.21756i 0.120162 + 0.120162i
\(718\) 0 0
\(719\) 25.9650 + 25.9650i 0.968333 + 0.968333i 0.999514 0.0311810i \(-0.00992684\pi\)
−0.0311810 + 0.999514i \(0.509927\pi\)
\(720\) 0 0
\(721\) 19.5500 19.5500i 0.728079 0.728079i
\(722\) 0 0
\(723\) 4.36547i 0.162353i
\(724\) 0 0
\(725\) −1.84322 + 1.84322i −0.0684555 + 0.0684555i
\(726\) 0 0
\(727\) −14.2255 −0.527593 −0.263796 0.964578i \(-0.584975\pi\)
−0.263796 + 0.964578i \(0.584975\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 11.8595 31.5062i 0.438641 1.16530i
\(732\) 0 0
\(733\) 38.5540i 1.42402i 0.702167 + 0.712012i \(0.252216\pi\)
−0.702167 + 0.712012i \(0.747784\pi\)
\(734\) 0 0
\(735\) 6.58545 0.242908
\(736\) 0 0
\(737\) 12.8378 12.8378i 0.472888 0.472888i
\(738\) 0 0
\(739\) 36.4229i 1.33984i −0.742433 0.669920i \(-0.766328\pi\)
0.742433 0.669920i \(-0.233672\pi\)
\(740\) 0 0
\(741\) −14.1841 + 14.1841i −0.521064 + 0.521064i
\(742\) 0 0
\(743\) −9.71602 9.71602i −0.356446 0.356446i 0.506055 0.862501i \(-0.331103\pi\)
−0.862501 + 0.506055i \(0.831103\pi\)
\(744\) 0 0
\(745\) −1.25335 1.25335i −0.0459193 0.0459193i
\(746\) 0 0
\(747\) −3.73346 −0.136600
\(748\) 0 0
\(749\) 56.0694 2.04873
\(750\) 0 0
\(751\) −7.23612 7.23612i −0.264050 0.264050i 0.562647 0.826697i \(-0.309783\pi\)
−0.826697 + 0.562647i \(0.809783\pi\)
\(752\) 0 0
\(753\) −20.6295 20.6295i −0.751779 0.751779i
\(754\) 0 0
\(755\) −12.7671 + 12.7671i −0.464642 + 0.464642i
\(756\) 0 0
\(757\) 14.7376i 0.535646i 0.963468 + 0.267823i \(0.0863043\pi\)
−0.963468 + 0.267823i \(0.913696\pi\)
\(758\) 0 0
\(759\) −7.55519 + 7.55519i −0.274236 + 0.274236i
\(760\) 0 0
\(761\) 51.0059 1.84896 0.924481 0.381227i \(-0.124498\pi\)
0.924481 + 0.381227i \(0.124498\pi\)
\(762\) 0 0
\(763\) 53.2033i 1.92609i
\(764\) 0 0
\(765\) 3.75566 1.70148i 0.135786 0.0615173i
\(766\) 0 0
\(767\) 14.7139i 0.531288i
\(768\) 0 0
\(769\) −19.6050 −0.706975 −0.353488 0.935439i \(-0.615004\pi\)
−0.353488 + 0.935439i \(0.615004\pi\)
\(770\) 0 0
\(771\) 2.24850 2.24850i 0.0809778 0.0809778i
\(772\) 0 0
\(773\) 36.5059i 1.31303i 0.754315 + 0.656513i \(0.227969\pi\)
−0.754315 + 0.656513i \(0.772031\pi\)
\(774\) 0 0
\(775\) 5.06877 5.06877i 0.182076 0.182076i
\(776\) 0 0
\(777\) 1.43799 + 1.43799i 0.0515876 + 0.0515876i
\(778\) 0 0
\(779\) −14.3601 14.3601i −0.514503 0.514503i
\(780\) 0 0
\(781\) −20.3873 −0.729514
\(782\) 0 0
\(783\) −2.60671 −0.0931561
\(784\) 0 0
\(785\) −16.0437 16.0437i −0.572623 0.572623i
\(786\) 0 0
\(787\) 5.10153 + 5.10153i 0.181850 + 0.181850i 0.792161 0.610312i \(-0.208956\pi\)
−0.610312 + 0.792161i \(0.708956\pi\)
\(788\) 0 0
\(789\) −16.6523 + 16.6523i −0.592837 + 0.592837i
\(790\) 0 0
\(791\) 35.8110i 1.27329i
\(792\) 0 0
\(793\) −24.1356 + 24.1356i −0.857080 + 0.857080i
\(794\) 0 0
\(795\) 8.36985 0.296848
\(796\) 0 0
\(797\) 18.4209i 0.652503i −0.945283 0.326251i \(-0.894214\pi\)
0.945283 0.326251i \(-0.105786\pi\)
\(798\) 0 0
\(799\) 27.9464 + 10.5196i 0.988673 + 0.372155i
\(800\) 0 0
\(801\) 9.27359i 0.327666i
\(802\) 0 0
\(803\) −4.08821 −0.144270
\(804\) 0 0
\(805\) 20.0063 20.0063i 0.705128 0.705128i
\(806\) 0 0
\(807\) 2.17558i 0.0765842i
\(808\) 0 0
\(809\) −37.1750 + 37.1750i −1.30700 + 1.30700i −0.383435 + 0.923568i \(0.625259\pi\)
−0.923568 + 0.383435i \(0.874741\pi\)
\(810\) 0 0
\(811\) 6.19841 + 6.19841i 0.217656 + 0.217656i 0.807510 0.589854i \(-0.200815\pi\)
−0.589854 + 0.807510i \(0.700815\pi\)
\(812\) 0 0
\(813\) −10.1952 10.1952i −0.357562 0.357562i
\(814\) 0 0
\(815\) 4.23478 0.148338
\(816\) 0 0
\(817\) 52.6120 1.84066
\(818\) 0 0
\(819\) 8.11332 + 8.11332i 0.283502 + 0.283502i
\(820\) 0 0
\(821\) 13.9232 + 13.9232i 0.485923 + 0.485923i 0.907017 0.421094i \(-0.138354\pi\)
−0.421094 + 0.907017i \(0.638354\pi\)
\(822\) 0 0
\(823\) −30.8697 + 30.8697i −1.07605 + 1.07605i −0.0791918 + 0.996859i \(0.525234\pi\)
−0.996859 + 0.0791918i \(0.974766\pi\)
\(824\) 0 0
\(825\) 1.39193i 0.0484606i
\(826\) 0 0
\(827\) −29.5016 + 29.5016i −1.02587 + 1.02587i −0.0262139 + 0.999656i \(0.508345\pi\)
−0.999656 + 0.0262139i \(0.991655\pi\)
\(828\) 0 0
\(829\) −13.2016 −0.458512 −0.229256 0.973366i \(-0.573629\pi\)
−0.229256 + 0.973366i \(0.573629\pi\)
\(830\) 0 0
\(831\) 0.719579i 0.0249619i
\(832\) 0 0
\(833\) −9.56549 + 25.4118i −0.331425 + 0.880467i
\(834\) 0 0
\(835\) 5.00264i 0.173124i
\(836\) 0 0
\(837\) 7.16833 0.247774
\(838\) 0 0
\(839\) 18.9990 18.9990i 0.655918 0.655918i −0.298493 0.954412i \(-0.596484\pi\)
0.954412 + 0.298493i \(0.0964841\pi\)
\(840\) 0 0
\(841\) 22.2051i 0.765692i
\(842\) 0 0
\(843\) 18.3655 18.3655i 0.632542 0.632542i
\(844\) 0 0
\(845\) −2.34006 2.34006i −0.0805005 0.0805005i
\(846\) 0 0
\(847\) −23.6196 23.6196i −0.811578 0.811578i
\(848\) 0 0
\(849\) 22.7540 0.780917
\(850\) 0 0
\(851\) 4.23524 0.145182
\(852\) 0 0
\(853\) 20.4559 + 20.4559i 0.700395 + 0.700395i 0.964495 0.264100i \(-0.0850749\pi\)
−0.264100 + 0.964495i \(0.585075\pi\)
\(854\) 0 0
\(855\) 4.55642 + 4.55642i 0.155826 + 0.155826i
\(856\) 0 0
\(857\) 22.4495 22.4495i 0.766859 0.766859i −0.210693 0.977552i \(-0.567572\pi\)
0.977552 + 0.210693i \(0.0675722\pi\)
\(858\) 0 0
\(859\) 8.69843i 0.296787i −0.988928 0.148393i \(-0.952590\pi\)
0.988928 0.148393i \(-0.0474101\pi\)
\(860\) 0 0
\(861\) −8.21400 + 8.21400i −0.279932 + 0.279932i
\(862\) 0 0
\(863\) −34.4058 −1.17119 −0.585593 0.810605i \(-0.699138\pi\)
−0.585593 + 0.810605i \(0.699138\pi\)
\(864\) 0 0
\(865\) 1.44714i 0.0492043i
\(866\) 0 0
\(867\) 1.11049 + 16.9637i 0.0377143 + 0.576117i
\(868\) 0 0
\(869\) 20.0387i 0.679765i
\(870\) 0 0
\(871\) −40.6039 −1.37581
\(872\) 0 0
\(873\) 10.0783 10.0783i 0.341098 0.341098i
\(874\) 0 0
\(875\) 3.68584i 0.124604i
\(876\) 0 0
\(877\) 2.31022 2.31022i 0.0780105 0.0780105i −0.667025 0.745035i \(-0.732433\pi\)
0.745035 + 0.667025i \(0.232433\pi\)
\(878\) 0 0
\(879\) 10.6619 + 10.6619i 0.359619 + 0.359619i
\(880\) 0 0
\(881\) −26.2289 26.2289i −0.883674 0.883674i 0.110231 0.993906i \(-0.464841\pi\)
−0.993906 + 0.110231i \(0.964841\pi\)
\(882\) 0 0
\(883\) −28.1516 −0.947377 −0.473688 0.880693i \(-0.657078\pi\)
−0.473688 + 0.880693i \(0.657078\pi\)
\(884\) 0 0
\(885\) −4.72663 −0.158884
\(886\) 0 0
\(887\) −40.8071 40.8071i −1.37017 1.37017i −0.860182 0.509987i \(-0.829650\pi\)
−0.509987 0.860182i \(-0.670350\pi\)
\(888\) 0 0
\(889\) −55.5393 55.5393i −1.86273 1.86273i
\(890\) 0 0
\(891\) −0.984240 + 0.984240i −0.0329733 + 0.0329733i
\(892\) 0 0
\(893\) 46.6675i 1.56167i
\(894\) 0 0
\(895\) −3.78676 + 3.78676i −0.126578 + 0.126578i
\(896\) 0 0
\(897\) 23.8958 0.797856
\(898\) 0 0
\(899\) 18.6857i 0.623204i
\(900\) 0 0
\(901\) −12.1574 + 32.2974i −0.405021 + 1.07598i
\(902\) 0 0
\(903\) 30.0942i 1.00147i
\(904\) 0 0
\(905\) 3.41116 0.113391
\(906\) 0 0
\(907\) 1.54996 1.54996i 0.0514656 0.0514656i −0.680906 0.732371i \(-0.738414\pi\)
0.732371 + 0.680906i \(0.238414\pi\)
\(908\) 0 0
\(909\) 4.53448i 0.150399i
\(910\) 0 0
\(911\) 30.4027 30.4027i 1.00728 1.00728i 0.00731159 0.999973i \(-0.497673\pi\)
0.999973 0.00731159i \(-0.00232737\pi\)
\(912\) 0 0
\(913\) 3.67462 + 3.67462i 0.121612 + 0.121612i
\(914\) 0 0
\(915\) 7.75320 + 7.75320i 0.256313 + 0.256313i
\(916\) 0 0
\(917\) 62.2513 2.05572
\(918\) 0 0
\(919\) 0.696653 0.0229805 0.0114902 0.999934i \(-0.496342\pi\)
0.0114902 + 0.999934i \(0.496342\pi\)
\(920\) 0 0
\(921\) 10.4051 + 10.4051i 0.342859 + 0.342859i
\(922\) 0 0
\(923\) 32.2407 + 32.2407i 1.06122 + 1.06122i
\(924\) 0 0
\(925\) 0.390138 0.390138i 0.0128277 0.0128277i
\(926\) 0 0
\(927\) 7.50109i 0.246368i
\(928\) 0 0
\(929\) 1.90744 1.90744i 0.0625811 0.0625811i −0.675124 0.737705i \(-0.735910\pi\)
0.737705 + 0.675124i \(0.235910\pi\)
\(930\) 0 0
\(931\) −42.4350 −1.39075
\(932\) 0 0
\(933\) 10.5682i 0.345986i
\(934\) 0 0
\(935\) −5.37113 2.02180i −0.175655 0.0661199i
\(936\) 0 0
\(937\) 28.8392i 0.942136i 0.882097 + 0.471068i \(0.156131\pi\)
−0.882097 + 0.471068i \(0.843869\pi\)
\(938\) 0 0
\(939\) 0.694091 0.0226508
\(940\) 0 0
\(941\) 11.7247 11.7247i 0.382214 0.382214i −0.489685 0.871899i \(-0.662888\pi\)
0.871899 + 0.489685i \(0.162888\pi\)
\(942\) 0 0
\(943\) 24.1923i 0.787809i
\(944\) 0 0
\(945\) 2.60629 2.60629i 0.0847825 0.0847825i
\(946\) 0 0
\(947\) −11.0521 11.0521i −0.359145 0.359145i 0.504353 0.863498i \(-0.331731\pi\)
−0.863498 + 0.504353i \(0.831731\pi\)
\(948\) 0 0
\(949\) 6.46515 + 6.46515i 0.209868 + 0.209868i
\(950\) 0 0
\(951\) −1.23253 −0.0399676
\(952\) 0 0
\(953\) −15.4158 −0.499365 −0.249683 0.968328i \(-0.580326\pi\)
−0.249683 + 0.968328i \(0.580326\pi\)
\(954\) 0 0
\(955\) 8.04031 + 8.04031i 0.260178 + 0.260178i
\(956\) 0 0
\(957\) 2.56563 + 2.56563i 0.0829349 + 0.0829349i
\(958\) 0 0
\(959\) −50.1473 + 50.1473i −1.61934 + 1.61934i
\(960\) 0 0
\(961\) 20.3849i 0.657577i
\(962\) 0 0
\(963\) 10.7566 10.7566i 0.346626 0.346626i
\(964\) 0 0
\(965\) −0.229135 −0.00737613
\(966\) 0 0
\(967\) 10.6770i 0.343349i −0.985154 0.171674i \(-0.945082\pi\)
0.985154 0.171674i \(-0.0549177\pi\)
\(968\) 0 0
\(969\) −24.2005 + 10.9639i −0.777432 + 0.352212i
\(970\) 0 0
\(971\) 7.37080i 0.236540i 0.992981 + 0.118270i \(0.0377349\pi\)
−0.992981 + 0.118270i \(0.962265\pi\)
\(972\) 0 0
\(973\) −42.9272 −1.37618
\(974\) 0 0
\(975\) 2.20121 2.20121i 0.0704952 0.0704952i
\(976\) 0 0
\(977\) 30.2732i 0.968526i −0.874922 0.484263i \(-0.839088\pi\)
0.874922 0.484263i \(-0.160912\pi\)
\(978\) 0 0
\(979\) 9.12743 9.12743i 0.291714 0.291714i
\(980\) 0 0
\(981\) −10.2067 10.2067i −0.325876 0.325876i
\(982\) 0 0
\(983\) 14.1772 + 14.1772i 0.452183 + 0.452183i 0.896078 0.443896i \(-0.146404\pi\)
−0.443896 + 0.896078i \(0.646404\pi\)
\(984\) 0 0
\(985\) 7.37999 0.235146
\(986\) 0 0
\(987\) 26.6940 0.849678
\(988\) 0 0
\(989\) −44.3175 44.3175i −1.40921 1.40921i
\(990\) 0 0
\(991\) −18.1132 18.1132i −0.575386 0.575386i 0.358243 0.933629i \(-0.383376\pi\)
−0.933629 + 0.358243i \(0.883376\pi\)
\(992\) 0 0
\(993\) 0.272402 0.272402i 0.00864441 0.00864441i
\(994\) 0 0
\(995\) 21.5668i 0.683713i
\(996\) 0 0
\(997\) −2.91628 + 2.91628i −0.0923595 + 0.0923595i −0.751777 0.659417i \(-0.770803\pi\)
0.659417 + 0.751777i \(0.270803\pi\)
\(998\) 0 0
\(999\) 0.551739 0.0174562
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2040.2.cf.d.1441.6 yes 20
17.4 even 4 inner 2040.2.cf.d.361.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.cf.d.361.6 20 17.4 even 4 inner
2040.2.cf.d.1441.6 yes 20 1.1 even 1 trivial