Properties

Label 2040.2.cf.d.1441.3
Level $2040$
Weight $2$
Character 2040.1441
Analytic conductor $16.289$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2040,2,Mod(361,2040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2040.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2040.cf (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2894820123\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 56 x^{18} + 1252 x^{16} + 14246 x^{14} + 87676 x^{12} + 294068 x^{10} + 556337 x^{8} + \cdots + 16384 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1441.3
Root \(0.936527i\) of defining polynomial
Character \(\chi\) \(=\) 2040.1441
Dual form 2040.2.cf.d.361.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-0.707107 - 0.707107i) q^{5} +(-0.495578 + 0.495578i) q^{7} +1.00000i q^{9} +(-0.726655 + 0.726655i) q^{11} -3.72133 q^{13} +1.00000i q^{15} +(3.25135 + 2.53549i) q^{17} -3.95026i q^{19} +0.700853 q^{21} +(0.802136 - 0.802136i) q^{23} +1.00000i q^{25} +(0.707107 - 0.707107i) q^{27} +(-1.19043 - 1.19043i) q^{29} +(1.19355 + 1.19355i) q^{31} +1.02765 q^{33} +0.700853 q^{35} +(5.01679 + 5.01679i) q^{37} +(2.63138 + 2.63138i) q^{39} +(-4.36916 + 4.36916i) q^{41} +6.64394i q^{43} +(0.707107 - 0.707107i) q^{45} +7.90627 q^{47} +6.50880i q^{49} +(-0.506189 - 4.09192i) q^{51} -0.694352i q^{53} +1.02765 q^{55} +(-2.79326 + 2.79326i) q^{57} +0.237027i q^{59} +(7.68550 - 7.68550i) q^{61} +(-0.495578 - 0.495578i) q^{63} +(2.63138 + 2.63138i) q^{65} +5.30814 q^{67} -1.13439 q^{69} +(-3.87865 - 3.87865i) q^{71} +(9.04109 + 9.04109i) q^{73} +(0.707107 - 0.707107i) q^{75} -0.720228i q^{77} +(8.99382 - 8.99382i) q^{79} -1.00000 q^{81} -9.89941i q^{83} +(-0.506189 - 4.09192i) q^{85} +1.68352i q^{87} -7.51797 q^{89} +(1.84421 - 1.84421i) q^{91} -1.68793i q^{93} +(-2.79326 + 2.79326i) q^{95} +(11.9197 + 11.9197i) q^{97} +(-0.726655 - 0.726655i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{7} - 4 q^{11} + 8 q^{13} + 4 q^{17} - 4 q^{23} + 12 q^{29} + 8 q^{31} - 8 q^{33} - 12 q^{37} + 4 q^{39} - 12 q^{41} - 48 q^{47} + 16 q^{51} - 8 q^{55} + 8 q^{57} + 24 q^{61} - 4 q^{63} + 4 q^{65}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2040\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1021\) \(1361\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) 0 0
\(7\) −0.495578 + 0.495578i −0.187311 + 0.187311i −0.794533 0.607222i \(-0.792284\pi\)
0.607222 + 0.794533i \(0.292284\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −0.726655 + 0.726655i −0.219095 + 0.219095i −0.808117 0.589022i \(-0.799513\pi\)
0.589022 + 0.808117i \(0.299513\pi\)
\(12\) 0 0
\(13\) −3.72133 −1.03211 −0.516056 0.856555i \(-0.672600\pi\)
−0.516056 + 0.856555i \(0.672600\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 3.25135 + 2.53549i 0.788568 + 0.614947i
\(18\) 0 0
\(19\) 3.95026i 0.906252i −0.891447 0.453126i \(-0.850309\pi\)
0.891447 0.453126i \(-0.149691\pi\)
\(20\) 0 0
\(21\) 0.700853 0.152939
\(22\) 0 0
\(23\) 0.802136 0.802136i 0.167257 0.167257i −0.618516 0.785772i \(-0.712266\pi\)
0.785772 + 0.618516i \(0.212266\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) −1.19043 1.19043i −0.221057 0.221057i 0.587886 0.808943i \(-0.299960\pi\)
−0.808943 + 0.587886i \(0.799960\pi\)
\(30\) 0 0
\(31\) 1.19355 + 1.19355i 0.214367 + 0.214367i 0.806120 0.591752i \(-0.201564\pi\)
−0.591752 + 0.806120i \(0.701564\pi\)
\(32\) 0 0
\(33\) 1.02765 0.178890
\(34\) 0 0
\(35\) 0.700853 0.118466
\(36\) 0 0
\(37\) 5.01679 + 5.01679i 0.824755 + 0.824755i 0.986786 0.162031i \(-0.0518043\pi\)
−0.162031 + 0.986786i \(0.551804\pi\)
\(38\) 0 0
\(39\) 2.63138 + 2.63138i 0.421358 + 0.421358i
\(40\) 0 0
\(41\) −4.36916 + 4.36916i −0.682348 + 0.682348i −0.960529 0.278181i \(-0.910268\pi\)
0.278181 + 0.960529i \(0.410268\pi\)
\(42\) 0 0
\(43\) 6.64394i 1.01319i 0.862184 + 0.506596i \(0.169096\pi\)
−0.862184 + 0.506596i \(0.830904\pi\)
\(44\) 0 0
\(45\) 0.707107 0.707107i 0.105409 0.105409i
\(46\) 0 0
\(47\) 7.90627 1.15325 0.576624 0.817010i \(-0.304370\pi\)
0.576624 + 0.817010i \(0.304370\pi\)
\(48\) 0 0
\(49\) 6.50880i 0.929829i
\(50\) 0 0
\(51\) −0.506189 4.09192i −0.0708807 0.572983i
\(52\) 0 0
\(53\) 0.694352i 0.0953766i −0.998862 0.0476883i \(-0.984815\pi\)
0.998862 0.0476883i \(-0.0151854\pi\)
\(54\) 0 0
\(55\) 1.02765 0.138568
\(56\) 0 0
\(57\) −2.79326 + 2.79326i −0.369976 + 0.369976i
\(58\) 0 0
\(59\) 0.237027i 0.0308583i 0.999881 + 0.0154292i \(0.00491145\pi\)
−0.999881 + 0.0154292i \(0.995089\pi\)
\(60\) 0 0
\(61\) 7.68550 7.68550i 0.984028 0.984028i −0.0158468 0.999874i \(-0.505044\pi\)
0.999874 + 0.0158468i \(0.00504439\pi\)
\(62\) 0 0
\(63\) −0.495578 0.495578i −0.0624370 0.0624370i
\(64\) 0 0
\(65\) 2.63138 + 2.63138i 0.326382 + 0.326382i
\(66\) 0 0
\(67\) 5.30814 0.648492 0.324246 0.945973i \(-0.394889\pi\)
0.324246 + 0.945973i \(0.394889\pi\)
\(68\) 0 0
\(69\) −1.13439 −0.136565
\(70\) 0 0
\(71\) −3.87865 3.87865i −0.460311 0.460311i 0.438446 0.898757i \(-0.355529\pi\)
−0.898757 + 0.438446i \(0.855529\pi\)
\(72\) 0 0
\(73\) 9.04109 + 9.04109i 1.05818 + 1.05818i 0.998200 + 0.0599803i \(0.0191038\pi\)
0.0599803 + 0.998200i \(0.480896\pi\)
\(74\) 0 0
\(75\) 0.707107 0.707107i 0.0816497 0.0816497i
\(76\) 0 0
\(77\) 0.720228i 0.0820776i
\(78\) 0 0
\(79\) 8.99382 8.99382i 1.01188 1.01188i 0.0119554 0.999929i \(-0.496194\pi\)
0.999929 0.0119554i \(-0.00380561\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 9.89941i 1.08660i −0.839538 0.543301i \(-0.817174\pi\)
0.839538 0.543301i \(-0.182826\pi\)
\(84\) 0 0
\(85\) −0.506189 4.09192i −0.0549039 0.443831i
\(86\) 0 0
\(87\) 1.68352i 0.180492i
\(88\) 0 0
\(89\) −7.51797 −0.796903 −0.398452 0.917189i \(-0.630452\pi\)
−0.398452 + 0.917189i \(0.630452\pi\)
\(90\) 0 0
\(91\) 1.84421 1.84421i 0.193326 0.193326i
\(92\) 0 0
\(93\) 1.68793i 0.175030i
\(94\) 0 0
\(95\) −2.79326 + 2.79326i −0.286582 + 0.286582i
\(96\) 0 0
\(97\) 11.9197 + 11.9197i 1.21026 + 1.21026i 0.970941 + 0.239319i \(0.0769241\pi\)
0.239319 + 0.970941i \(0.423076\pi\)
\(98\) 0 0
\(99\) −0.726655 0.726655i −0.0730316 0.0730316i
\(100\) 0 0
\(101\) 13.2007 1.31352 0.656761 0.754099i \(-0.271926\pi\)
0.656761 + 0.754099i \(0.271926\pi\)
\(102\) 0 0
\(103\) 10.8849 1.07252 0.536261 0.844052i \(-0.319836\pi\)
0.536261 + 0.844052i \(0.319836\pi\)
\(104\) 0 0
\(105\) −0.495578 0.495578i −0.0483635 0.0483635i
\(106\) 0 0
\(107\) −6.81283 6.81283i −0.658621 0.658621i 0.296433 0.955054i \(-0.404203\pi\)
−0.955054 + 0.296433i \(0.904203\pi\)
\(108\) 0 0
\(109\) −10.3733 + 10.3733i −0.993582 + 0.993582i −0.999980 0.00639799i \(-0.997963\pi\)
0.00639799 + 0.999980i \(0.497963\pi\)
\(110\) 0 0
\(111\) 7.09481i 0.673410i
\(112\) 0 0
\(113\) 1.47390 1.47390i 0.138653 0.138653i −0.634373 0.773027i \(-0.718742\pi\)
0.773027 + 0.634373i \(0.218742\pi\)
\(114\) 0 0
\(115\) −1.13439 −0.105783
\(116\) 0 0
\(117\) 3.72133i 0.344037i
\(118\) 0 0
\(119\) −2.86783 + 0.354764i −0.262894 + 0.0325212i
\(120\) 0 0
\(121\) 9.94395i 0.903995i
\(122\) 0 0
\(123\) 6.17892 0.557134
\(124\) 0 0
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) 0 0
\(127\) 4.26828i 0.378749i 0.981905 + 0.189374i \(0.0606460\pi\)
−0.981905 + 0.189374i \(0.939354\pi\)
\(128\) 0 0
\(129\) 4.69798 4.69798i 0.413634 0.413634i
\(130\) 0 0
\(131\) −4.49787 4.49787i −0.392981 0.392981i 0.482768 0.875748i \(-0.339632\pi\)
−0.875748 + 0.482768i \(0.839632\pi\)
\(132\) 0 0
\(133\) 1.95766 + 1.95766i 0.169751 + 0.169751i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 16.0631 1.37236 0.686182 0.727430i \(-0.259285\pi\)
0.686182 + 0.727430i \(0.259285\pi\)
\(138\) 0 0
\(139\) 13.1291 + 13.1291i 1.11360 + 1.11360i 0.992660 + 0.120937i \(0.0385900\pi\)
0.120937 + 0.992660i \(0.461410\pi\)
\(140\) 0 0
\(141\) −5.59058 5.59058i −0.470812 0.470812i
\(142\) 0 0
\(143\) 2.70412 2.70412i 0.226130 0.226130i
\(144\) 0 0
\(145\) 1.68352i 0.139809i
\(146\) 0 0
\(147\) 4.60242 4.60242i 0.379601 0.379601i
\(148\) 0 0
\(149\) 9.52366 0.780209 0.390104 0.920771i \(-0.372439\pi\)
0.390104 + 0.920771i \(0.372439\pi\)
\(150\) 0 0
\(151\) 15.7089i 1.27837i −0.769052 0.639186i \(-0.779271\pi\)
0.769052 0.639186i \(-0.220729\pi\)
\(152\) 0 0
\(153\) −2.53549 + 3.25135i −0.204982 + 0.262856i
\(154\) 0 0
\(155\) 1.68793i 0.135578i
\(156\) 0 0
\(157\) 3.85592 0.307736 0.153868 0.988091i \(-0.450827\pi\)
0.153868 + 0.988091i \(0.450827\pi\)
\(158\) 0 0
\(159\) −0.490981 + 0.490981i −0.0389374 + 0.0389374i
\(160\) 0 0
\(161\) 0.795042i 0.0626581i
\(162\) 0 0
\(163\) 6.25717 6.25717i 0.490099 0.490099i −0.418238 0.908337i \(-0.637352\pi\)
0.908337 + 0.418238i \(0.137352\pi\)
\(164\) 0 0
\(165\) −0.726655 0.726655i −0.0565700 0.0565700i
\(166\) 0 0
\(167\) 10.4033 + 10.4033i 0.805033 + 0.805033i 0.983877 0.178844i \(-0.0572358\pi\)
−0.178844 + 0.983877i \(0.557236\pi\)
\(168\) 0 0
\(169\) 0.848296 0.0652535
\(170\) 0 0
\(171\) 3.95026 0.302084
\(172\) 0 0
\(173\) 6.17671 + 6.17671i 0.469607 + 0.469607i 0.901787 0.432180i \(-0.142256\pi\)
−0.432180 + 0.901787i \(0.642256\pi\)
\(174\) 0 0
\(175\) −0.495578 0.495578i −0.0374622 0.0374622i
\(176\) 0 0
\(177\) 0.167603 0.167603i 0.0125979 0.0125979i
\(178\) 0 0
\(179\) 3.66563i 0.273982i 0.990572 + 0.136991i \(0.0437432\pi\)
−0.990572 + 0.136991i \(0.956257\pi\)
\(180\) 0 0
\(181\) −16.0294 + 16.0294i −1.19146 + 1.19146i −0.214797 + 0.976659i \(0.568909\pi\)
−0.976659 + 0.214797i \(0.931091\pi\)
\(182\) 0 0
\(183\) −10.8689 −0.803455
\(184\) 0 0
\(185\) 7.09481i 0.521621i
\(186\) 0 0
\(187\) −4.20504 + 0.520183i −0.307503 + 0.0380396i
\(188\) 0 0
\(189\) 0.700853i 0.0509796i
\(190\) 0 0
\(191\) 0.170859 0.0123629 0.00618145 0.999981i \(-0.498032\pi\)
0.00618145 + 0.999981i \(0.498032\pi\)
\(192\) 0 0
\(193\) −13.2995 + 13.2995i −0.957322 + 0.957322i −0.999126 0.0418037i \(-0.986690\pi\)
0.0418037 + 0.999126i \(0.486690\pi\)
\(194\) 0 0
\(195\) 3.72133i 0.266490i
\(196\) 0 0
\(197\) 4.50191 4.50191i 0.320748 0.320748i −0.528306 0.849054i \(-0.677173\pi\)
0.849054 + 0.528306i \(0.177173\pi\)
\(198\) 0 0
\(199\) 3.99517 + 3.99517i 0.283210 + 0.283210i 0.834388 0.551178i \(-0.185821\pi\)
−0.551178 + 0.834388i \(0.685821\pi\)
\(200\) 0 0
\(201\) −3.75342 3.75342i −0.264746 0.264746i
\(202\) 0 0
\(203\) 1.17990 0.0828128
\(204\) 0 0
\(205\) 6.17892 0.431555
\(206\) 0 0
\(207\) 0.802136 + 0.802136i 0.0557523 + 0.0557523i
\(208\) 0 0
\(209\) 2.87047 + 2.87047i 0.198555 + 0.198555i
\(210\) 0 0
\(211\) 14.9522 14.9522i 1.02935 1.02935i 0.0297954 0.999556i \(-0.490514\pi\)
0.999556 0.0297954i \(-0.00948558\pi\)
\(212\) 0 0
\(213\) 5.48524i 0.375842i
\(214\) 0 0
\(215\) 4.69798 4.69798i 0.320399 0.320399i
\(216\) 0 0
\(217\) −1.18299 −0.0803067
\(218\) 0 0
\(219\) 12.7860i 0.864000i
\(220\) 0 0
\(221\) −12.0994 9.43540i −0.813890 0.634694i
\(222\) 0 0
\(223\) 9.83074i 0.658315i 0.944275 + 0.329157i \(0.106765\pi\)
−0.944275 + 0.329157i \(0.893235\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −9.35083 + 9.35083i −0.620636 + 0.620636i −0.945694 0.325058i \(-0.894616\pi\)
0.325058 + 0.945694i \(0.394616\pi\)
\(228\) 0 0
\(229\) 0.00923168i 0.000610047i 1.00000 0.000305023i \(9.70920e-5\pi\)
−1.00000 0.000305023i \(0.999903\pi\)
\(230\) 0 0
\(231\) −0.509278 + 0.509278i −0.0335081 + 0.0335081i
\(232\) 0 0
\(233\) −7.36277 7.36277i −0.482351 0.482351i 0.423531 0.905882i \(-0.360791\pi\)
−0.905882 + 0.423531i \(0.860791\pi\)
\(234\) 0 0
\(235\) −5.59058 5.59058i −0.364689 0.364689i
\(236\) 0 0
\(237\) −12.7192 −0.826200
\(238\) 0 0
\(239\) −4.77552 −0.308903 −0.154451 0.988000i \(-0.549361\pi\)
−0.154451 + 0.988000i \(0.549361\pi\)
\(240\) 0 0
\(241\) −10.3957 10.3957i −0.669646 0.669646i 0.287988 0.957634i \(-0.407014\pi\)
−0.957634 + 0.287988i \(0.907014\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 4.60242 4.60242i 0.294038 0.294038i
\(246\) 0 0
\(247\) 14.7002i 0.935352i
\(248\) 0 0
\(249\) −6.99994 + 6.99994i −0.443603 + 0.443603i
\(250\) 0 0
\(251\) −25.7247 −1.62373 −0.811863 0.583848i \(-0.801546\pi\)
−0.811863 + 0.583848i \(0.801546\pi\)
\(252\) 0 0
\(253\) 1.16575i 0.0732902i
\(254\) 0 0
\(255\) −2.53549 + 3.25135i −0.158779 + 0.203608i
\(256\) 0 0
\(257\) 6.48757i 0.404683i 0.979315 + 0.202342i \(0.0648551\pi\)
−0.979315 + 0.202342i \(0.935145\pi\)
\(258\) 0 0
\(259\) −4.97242 −0.308971
\(260\) 0 0
\(261\) 1.19043 1.19043i 0.0736857 0.0736857i
\(262\) 0 0
\(263\) 17.0164i 1.04927i −0.851326 0.524637i \(-0.824201\pi\)
0.851326 0.524637i \(-0.175799\pi\)
\(264\) 0 0
\(265\) −0.490981 + 0.490981i −0.0301607 + 0.0301607i
\(266\) 0 0
\(267\) 5.31601 + 5.31601i 0.325334 + 0.325334i
\(268\) 0 0
\(269\) 9.05468 + 9.05468i 0.552074 + 0.552074i 0.927039 0.374965i \(-0.122345\pi\)
−0.374965 + 0.927039i \(0.622345\pi\)
\(270\) 0 0
\(271\) −3.25162 −0.197522 −0.0987609 0.995111i \(-0.531488\pi\)
−0.0987609 + 0.995111i \(0.531488\pi\)
\(272\) 0 0
\(273\) −2.60811 −0.157850
\(274\) 0 0
\(275\) −0.726655 0.726655i −0.0438189 0.0438189i
\(276\) 0 0
\(277\) 11.6118 + 11.6118i 0.697684 + 0.697684i 0.963910 0.266227i \(-0.0857770\pi\)
−0.266227 + 0.963910i \(0.585777\pi\)
\(278\) 0 0
\(279\) −1.19355 + 1.19355i −0.0714558 + 0.0714558i
\(280\) 0 0
\(281\) 13.6008i 0.811357i −0.914016 0.405678i \(-0.867035\pi\)
0.914016 0.405678i \(-0.132965\pi\)
\(282\) 0 0
\(283\) −5.97736 + 5.97736i −0.355317 + 0.355317i −0.862084 0.506766i \(-0.830841\pi\)
0.506766 + 0.862084i \(0.330841\pi\)
\(284\) 0 0
\(285\) 3.95026 0.233993
\(286\) 0 0
\(287\) 4.33052i 0.255622i
\(288\) 0 0
\(289\) 4.14257 + 16.4875i 0.243680 + 0.969856i
\(290\) 0 0
\(291\) 16.8570i 0.988173i
\(292\) 0 0
\(293\) −7.21246 −0.421356 −0.210678 0.977555i \(-0.567567\pi\)
−0.210678 + 0.977555i \(0.567567\pi\)
\(294\) 0 0
\(295\) 0.167603 0.167603i 0.00975825 0.00975825i
\(296\) 0 0
\(297\) 1.02765i 0.0596300i
\(298\) 0 0
\(299\) −2.98501 + 2.98501i −0.172628 + 0.172628i
\(300\) 0 0
\(301\) −3.29259 3.29259i −0.189782 0.189782i
\(302\) 0 0
\(303\) −9.33433 9.33433i −0.536243 0.536243i
\(304\) 0 0
\(305\) −10.8689 −0.622354
\(306\) 0 0
\(307\) 12.8014 0.730612 0.365306 0.930887i \(-0.380964\pi\)
0.365306 + 0.930887i \(0.380964\pi\)
\(308\) 0 0
\(309\) −7.69679 7.69679i −0.437855 0.437855i
\(310\) 0 0
\(311\) 5.30160 + 5.30160i 0.300626 + 0.300626i 0.841259 0.540633i \(-0.181815\pi\)
−0.540633 + 0.841259i \(0.681815\pi\)
\(312\) 0 0
\(313\) −16.3795 + 16.3795i −0.925825 + 0.925825i −0.997433 0.0716077i \(-0.977187\pi\)
0.0716077 + 0.997433i \(0.477187\pi\)
\(314\) 0 0
\(315\) 0.700853i 0.0394886i
\(316\) 0 0
\(317\) −8.56631 + 8.56631i −0.481132 + 0.481132i −0.905493 0.424361i \(-0.860499\pi\)
0.424361 + 0.905493i \(0.360499\pi\)
\(318\) 0 0
\(319\) 1.73006 0.0968649
\(320\) 0 0
\(321\) 9.63479i 0.537762i
\(322\) 0 0
\(323\) 10.0158 12.8437i 0.557297 0.714641i
\(324\) 0 0
\(325\) 3.72133i 0.206422i
\(326\) 0 0
\(327\) 14.6701 0.811256
\(328\) 0 0
\(329\) −3.91817 + 3.91817i −0.216016 + 0.216016i
\(330\) 0 0
\(331\) 1.16846i 0.0642245i 0.999484 + 0.0321122i \(0.0102234\pi\)
−0.999484 + 0.0321122i \(0.989777\pi\)
\(332\) 0 0
\(333\) −5.01679 + 5.01679i −0.274918 + 0.274918i
\(334\) 0 0
\(335\) −3.75342 3.75342i −0.205071 0.205071i
\(336\) 0 0
\(337\) 9.44915 + 9.44915i 0.514728 + 0.514728i 0.915971 0.401244i \(-0.131422\pi\)
−0.401244 + 0.915971i \(0.631422\pi\)
\(338\) 0 0
\(339\) −2.08442 −0.113210
\(340\) 0 0
\(341\) −1.73459 −0.0939335
\(342\) 0 0
\(343\) −6.69467 6.69467i −0.361478 0.361478i
\(344\) 0 0
\(345\) 0.802136 + 0.802136i 0.0431855 + 0.0431855i
\(346\) 0 0
\(347\) −22.7469 + 22.7469i −1.22112 + 1.22112i −0.253886 + 0.967234i \(0.581709\pi\)
−0.967234 + 0.253886i \(0.918291\pi\)
\(348\) 0 0
\(349\) 20.2106i 1.08185i −0.841071 0.540924i \(-0.818075\pi\)
0.841071 0.540924i \(-0.181925\pi\)
\(350\) 0 0
\(351\) −2.63138 + 2.63138i −0.140453 + 0.140453i
\(352\) 0 0
\(353\) −0.898226 −0.0478077 −0.0239039 0.999714i \(-0.507610\pi\)
−0.0239039 + 0.999714i \(0.507610\pi\)
\(354\) 0 0
\(355\) 5.48524i 0.291126i
\(356\) 0 0
\(357\) 2.27872 + 1.77701i 0.120603 + 0.0940492i
\(358\) 0 0
\(359\) 3.36863i 0.177789i −0.996041 0.0888947i \(-0.971667\pi\)
0.996041 0.0888947i \(-0.0283335\pi\)
\(360\) 0 0
\(361\) 3.39545 0.178708
\(362\) 0 0
\(363\) 7.03143 7.03143i 0.369054 0.369054i
\(364\) 0 0
\(365\) 12.7860i 0.669252i
\(366\) 0 0
\(367\) 4.29082 4.29082i 0.223979 0.223979i −0.586193 0.810172i \(-0.699374\pi\)
0.810172 + 0.586193i \(0.199374\pi\)
\(368\) 0 0
\(369\) −4.36916 4.36916i −0.227449 0.227449i
\(370\) 0 0
\(371\) 0.344106 + 0.344106i 0.0178651 + 0.0178651i
\(372\) 0 0
\(373\) −6.86133 −0.355266 −0.177633 0.984097i \(-0.556844\pi\)
−0.177633 + 0.984097i \(0.556844\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 4.42998 + 4.42998i 0.228156 + 0.228156i
\(378\) 0 0
\(379\) −1.00471 1.00471i −0.0516083 0.0516083i 0.680832 0.732440i \(-0.261619\pi\)
−0.732440 + 0.680832i \(0.761619\pi\)
\(380\) 0 0
\(381\) 3.01813 3.01813i 0.154623 0.154623i
\(382\) 0 0
\(383\) 15.9561i 0.815319i −0.913134 0.407660i \(-0.866345\pi\)
0.913134 0.407660i \(-0.133655\pi\)
\(384\) 0 0
\(385\) −0.509278 + 0.509278i −0.0259552 + 0.0259552i
\(386\) 0 0
\(387\) −6.64394 −0.337731
\(388\) 0 0
\(389\) 38.4164i 1.94779i −0.227005 0.973894i \(-0.572893\pi\)
0.227005 0.973894i \(-0.427107\pi\)
\(390\) 0 0
\(391\) 4.64183 0.574217i 0.234748 0.0290394i
\(392\) 0 0
\(393\) 6.36095i 0.320867i
\(394\) 0 0
\(395\) −12.7192 −0.639972
\(396\) 0 0
\(397\) 9.00384 9.00384i 0.451890 0.451890i −0.444092 0.895981i \(-0.646474\pi\)
0.895981 + 0.444092i \(0.146474\pi\)
\(398\) 0 0
\(399\) 2.76855i 0.138601i
\(400\) 0 0
\(401\) −12.4962 + 12.4962i −0.624030 + 0.624030i −0.946559 0.322530i \(-0.895467\pi\)
0.322530 + 0.946559i \(0.395467\pi\)
\(402\) 0 0
\(403\) −4.44158 4.44158i −0.221251 0.221251i
\(404\) 0 0
\(405\) 0.707107 + 0.707107i 0.0351364 + 0.0351364i
\(406\) 0 0
\(407\) −7.29095 −0.361399
\(408\) 0 0
\(409\) −7.67066 −0.379290 −0.189645 0.981853i \(-0.560734\pi\)
−0.189645 + 0.981853i \(0.560734\pi\)
\(410\) 0 0
\(411\) −11.3583 11.3583i −0.560265 0.560265i
\(412\) 0 0
\(413\) −0.117465 0.117465i −0.00578010 0.00578010i
\(414\) 0 0
\(415\) −6.99994 + 6.99994i −0.343614 + 0.343614i
\(416\) 0 0
\(417\) 18.5674i 0.909248i
\(418\) 0 0
\(419\) −3.87395 + 3.87395i −0.189255 + 0.189255i −0.795374 0.606119i \(-0.792725\pi\)
0.606119 + 0.795374i \(0.292725\pi\)
\(420\) 0 0
\(421\) −24.3203 −1.18530 −0.592650 0.805460i \(-0.701918\pi\)
−0.592650 + 0.805460i \(0.701918\pi\)
\(422\) 0 0
\(423\) 7.90627i 0.384416i
\(424\) 0 0
\(425\) −2.53549 + 3.25135i −0.122989 + 0.157714i
\(426\) 0 0
\(427\) 7.61753i 0.368638i
\(428\) 0 0
\(429\) −3.82421 −0.184634
\(430\) 0 0
\(431\) −9.81064 + 9.81064i −0.472562 + 0.472562i −0.902743 0.430181i \(-0.858450\pi\)
0.430181 + 0.902743i \(0.358450\pi\)
\(432\) 0 0
\(433\) 9.28570i 0.446242i −0.974791 0.223121i \(-0.928375\pi\)
0.974791 0.223121i \(-0.0716246\pi\)
\(434\) 0 0
\(435\) 1.19043 1.19043i 0.0570767 0.0570767i
\(436\) 0 0
\(437\) −3.16864 3.16864i −0.151577 0.151577i
\(438\) 0 0
\(439\) 26.6533 + 26.6533i 1.27209 + 1.27209i 0.944988 + 0.327105i \(0.106073\pi\)
0.327105 + 0.944988i \(0.393927\pi\)
\(440\) 0 0
\(441\) −6.50880 −0.309943
\(442\) 0 0
\(443\) 6.83183 0.324590 0.162295 0.986742i \(-0.448110\pi\)
0.162295 + 0.986742i \(0.448110\pi\)
\(444\) 0 0
\(445\) 5.31601 + 5.31601i 0.252003 + 0.252003i
\(446\) 0 0
\(447\) −6.73425 6.73425i −0.318519 0.318519i
\(448\) 0 0
\(449\) −7.37109 + 7.37109i −0.347863 + 0.347863i −0.859313 0.511450i \(-0.829109\pi\)
0.511450 + 0.859313i \(0.329109\pi\)
\(450\) 0 0
\(451\) 6.34974i 0.298997i
\(452\) 0 0
\(453\) −11.1079 + 11.1079i −0.521893 + 0.521893i
\(454\) 0 0
\(455\) −2.60811 −0.122270
\(456\) 0 0
\(457\) 8.73831i 0.408761i 0.978892 + 0.204380i \(0.0655180\pi\)
−0.978892 + 0.204380i \(0.934482\pi\)
\(458\) 0 0
\(459\) 4.09192 0.506189i 0.190994 0.0236269i
\(460\) 0 0
\(461\) 27.6010i 1.28551i −0.766074 0.642753i \(-0.777792\pi\)
0.766074 0.642753i \(-0.222208\pi\)
\(462\) 0 0
\(463\) 14.9583 0.695173 0.347586 0.937648i \(-0.387001\pi\)
0.347586 + 0.937648i \(0.387001\pi\)
\(464\) 0 0
\(465\) −1.19355 + 1.19355i −0.0553494 + 0.0553494i
\(466\) 0 0
\(467\) 24.1589i 1.11794i 0.829188 + 0.558970i \(0.188803\pi\)
−0.829188 + 0.558970i \(0.811197\pi\)
\(468\) 0 0
\(469\) −2.63060 + 2.63060i −0.121470 + 0.121470i
\(470\) 0 0
\(471\) −2.72655 2.72655i −0.125633 0.125633i
\(472\) 0 0
\(473\) −4.82785 4.82785i −0.221985 0.221985i
\(474\) 0 0
\(475\) 3.95026 0.181250
\(476\) 0 0
\(477\) 0.694352 0.0317922
\(478\) 0 0
\(479\) 5.22619 + 5.22619i 0.238791 + 0.238791i 0.816349 0.577558i \(-0.195994\pi\)
−0.577558 + 0.816349i \(0.695994\pi\)
\(480\) 0 0
\(481\) −18.6691 18.6691i −0.851239 0.851239i
\(482\) 0 0
\(483\) 0.562179 0.562179i 0.0255800 0.0255800i
\(484\) 0 0
\(485\) 16.8570i 0.765435i
\(486\) 0 0
\(487\) −27.8970 + 27.8970i −1.26413 + 1.26413i −0.315062 + 0.949071i \(0.602025\pi\)
−0.949071 + 0.315062i \(0.897975\pi\)
\(488\) 0 0
\(489\) −8.84897 −0.400164
\(490\) 0 0
\(491\) 42.8025i 1.93165i −0.259197 0.965825i \(-0.583458\pi\)
0.259197 0.965825i \(-0.416542\pi\)
\(492\) 0 0
\(493\) −0.852180 6.88882i −0.0383803 0.310257i
\(494\) 0 0
\(495\) 1.02765i 0.0461892i
\(496\) 0 0
\(497\) 3.84435 0.172443
\(498\) 0 0
\(499\) −27.6934 + 27.6934i −1.23973 + 1.23973i −0.279617 + 0.960112i \(0.590207\pi\)
−0.960112 + 0.279617i \(0.909793\pi\)
\(500\) 0 0
\(501\) 14.7125i 0.657307i
\(502\) 0 0
\(503\) −19.3788 + 19.3788i −0.864060 + 0.864060i −0.991807 0.127747i \(-0.959226\pi\)
0.127747 + 0.991807i \(0.459226\pi\)
\(504\) 0 0
\(505\) −9.33433 9.33433i −0.415372 0.415372i
\(506\) 0 0
\(507\) −0.599836 0.599836i −0.0266396 0.0266396i
\(508\) 0 0
\(509\) −30.1174 −1.33493 −0.667466 0.744640i \(-0.732621\pi\)
−0.667466 + 0.744640i \(0.732621\pi\)
\(510\) 0 0
\(511\) −8.96113 −0.396417
\(512\) 0 0
\(513\) −2.79326 2.79326i −0.123325 0.123325i
\(514\) 0 0
\(515\) −7.69679 7.69679i −0.339161 0.339161i
\(516\) 0 0
\(517\) −5.74513 + 5.74513i −0.252671 + 0.252671i
\(518\) 0 0
\(519\) 8.73519i 0.383432i
\(520\) 0 0
\(521\) −6.48823 + 6.48823i −0.284255 + 0.284255i −0.834803 0.550549i \(-0.814419\pi\)
0.550549 + 0.834803i \(0.314419\pi\)
\(522\) 0 0
\(523\) −5.35644 −0.234221 −0.117110 0.993119i \(-0.537363\pi\)
−0.117110 + 0.993119i \(0.537363\pi\)
\(524\) 0 0
\(525\) 0.700853i 0.0305877i
\(526\) 0 0
\(527\) 0.854412 + 6.90687i 0.0372188 + 0.300868i
\(528\) 0 0
\(529\) 21.7132i 0.944050i
\(530\) 0 0
\(531\) −0.237027 −0.0102861
\(532\) 0 0
\(533\) 16.2591 16.2591i 0.704259 0.704259i
\(534\) 0 0
\(535\) 9.63479i 0.416548i
\(536\) 0 0
\(537\) 2.59199 2.59199i 0.111853 0.111853i
\(538\) 0 0
\(539\) −4.72965 4.72965i −0.203721 0.203721i
\(540\) 0 0
\(541\) −8.26481 8.26481i −0.355332 0.355332i 0.506757 0.862089i \(-0.330844\pi\)
−0.862089 + 0.506757i \(0.830844\pi\)
\(542\) 0 0
\(543\) 22.6690 0.972820
\(544\) 0 0
\(545\) 14.6701 0.628396
\(546\) 0 0
\(547\) −8.56770 8.56770i −0.366328 0.366328i 0.499808 0.866136i \(-0.333404\pi\)
−0.866136 + 0.499808i \(0.833404\pi\)
\(548\) 0 0
\(549\) 7.68550 + 7.68550i 0.328009 + 0.328009i
\(550\) 0 0
\(551\) −4.70250 + 4.70250i −0.200333 + 0.200333i
\(552\) 0 0
\(553\) 8.91428i 0.379074i
\(554\) 0 0
\(555\) −5.01679 + 5.01679i −0.212951 + 0.212951i
\(556\) 0 0
\(557\) 20.7902 0.880911 0.440456 0.897774i \(-0.354817\pi\)
0.440456 + 0.897774i \(0.354817\pi\)
\(558\) 0 0
\(559\) 24.7243i 1.04573i
\(560\) 0 0
\(561\) 3.34124 + 2.60559i 0.141067 + 0.110008i
\(562\) 0 0
\(563\) 3.03112i 0.127747i 0.997958 + 0.0638733i \(0.0203453\pi\)
−0.997958 + 0.0638733i \(0.979655\pi\)
\(564\) 0 0
\(565\) −2.08442 −0.0876921
\(566\) 0 0
\(567\) 0.495578 0.495578i 0.0208123 0.0208123i
\(568\) 0 0
\(569\) 23.7348i 0.995013i 0.867460 + 0.497507i \(0.165751\pi\)
−0.867460 + 0.497507i \(0.834249\pi\)
\(570\) 0 0
\(571\) 11.7353 11.7353i 0.491106 0.491106i −0.417549 0.908655i \(-0.637111\pi\)
0.908655 + 0.417549i \(0.137111\pi\)
\(572\) 0 0
\(573\) −0.120815 0.120815i −0.00504713 0.00504713i
\(574\) 0 0
\(575\) 0.802136 + 0.802136i 0.0334514 + 0.0334514i
\(576\) 0 0
\(577\) 41.0437 1.70867 0.854335 0.519723i \(-0.173965\pi\)
0.854335 + 0.519723i \(0.173965\pi\)
\(578\) 0 0
\(579\) 18.8084 0.781650
\(580\) 0 0
\(581\) 4.90593 + 4.90593i 0.203532 + 0.203532i
\(582\) 0 0
\(583\) 0.504555 + 0.504555i 0.0208965 + 0.0208965i
\(584\) 0 0
\(585\) −2.63138 + 2.63138i −0.108794 + 0.108794i
\(586\) 0 0
\(587\) 14.7480i 0.608717i 0.952558 + 0.304358i \(0.0984421\pi\)
−0.952558 + 0.304358i \(0.901558\pi\)
\(588\) 0 0
\(589\) 4.71482 4.71482i 0.194271 0.194271i
\(590\) 0 0
\(591\) −6.36667 −0.261890
\(592\) 0 0
\(593\) 8.22591i 0.337798i 0.985633 + 0.168899i \(0.0540211\pi\)
−0.985633 + 0.168899i \(0.945979\pi\)
\(594\) 0 0
\(595\) 2.27872 + 1.77701i 0.0934184 + 0.0728502i
\(596\) 0 0
\(597\) 5.65003i 0.231240i
\(598\) 0 0
\(599\) 3.14063 0.128323 0.0641614 0.997940i \(-0.479563\pi\)
0.0641614 + 0.997940i \(0.479563\pi\)
\(600\) 0 0
\(601\) 0.991175 0.991175i 0.0404309 0.0404309i −0.686602 0.727033i \(-0.740899\pi\)
0.727033 + 0.686602i \(0.240899\pi\)
\(602\) 0 0
\(603\) 5.30814i 0.216164i
\(604\) 0 0
\(605\) 7.03143 7.03143i 0.285868 0.285868i
\(606\) 0 0
\(607\) −27.3065 27.3065i −1.10834 1.10834i −0.993369 0.114967i \(-0.963324\pi\)
−0.114967 0.993369i \(-0.536676\pi\)
\(608\) 0 0
\(609\) −0.834316 0.834316i −0.0338082 0.0338082i
\(610\) 0 0
\(611\) −29.4218 −1.19028
\(612\) 0 0
\(613\) 36.9494 1.49237 0.746185 0.665738i \(-0.231883\pi\)
0.746185 + 0.665738i \(0.231883\pi\)
\(614\) 0 0
\(615\) −4.36916 4.36916i −0.176181 0.176181i
\(616\) 0 0
\(617\) 0.612821 + 0.612821i 0.0246713 + 0.0246713i 0.719335 0.694664i \(-0.244447\pi\)
−0.694664 + 0.719335i \(0.744447\pi\)
\(618\) 0 0
\(619\) 17.6664 17.6664i 0.710073 0.710073i −0.256477 0.966550i \(-0.582562\pi\)
0.966550 + 0.256477i \(0.0825618\pi\)
\(620\) 0 0
\(621\) 1.13439i 0.0455215i
\(622\) 0 0
\(623\) 3.72574 3.72574i 0.149269 0.149269i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 4.05946i 0.162119i
\(628\) 0 0
\(629\) 3.59132 + 29.0314i 0.143195 + 1.15756i
\(630\) 0 0
\(631\) 5.63808i 0.224448i −0.993683 0.112224i \(-0.964203\pi\)
0.993683 0.112224i \(-0.0357975\pi\)
\(632\) 0 0
\(633\) −21.1456 −0.840462
\(634\) 0 0
\(635\) 3.01813 3.01813i 0.119771 0.119771i
\(636\) 0 0
\(637\) 24.2214i 0.959687i
\(638\) 0 0
\(639\) 3.87865 3.87865i 0.153437 0.153437i
\(640\) 0 0
\(641\) −1.52609 1.52609i −0.0602770 0.0602770i 0.676326 0.736603i \(-0.263571\pi\)
−0.736603 + 0.676326i \(0.763571\pi\)
\(642\) 0 0
\(643\) 26.2062 + 26.2062i 1.03347 + 1.03347i 0.999420 + 0.0340535i \(0.0108417\pi\)
0.0340535 + 0.999420i \(0.489158\pi\)
\(644\) 0 0
\(645\) −6.64394 −0.261605
\(646\) 0 0
\(647\) −17.7695 −0.698589 −0.349295 0.937013i \(-0.613579\pi\)
−0.349295 + 0.937013i \(0.613579\pi\)
\(648\) 0 0
\(649\) −0.172237 0.172237i −0.00676089 0.00676089i
\(650\) 0 0
\(651\) 0.836501 + 0.836501i 0.0327851 + 0.0327851i
\(652\) 0 0
\(653\) 32.2881 32.2881i 1.26353 1.26353i 0.314164 0.949369i \(-0.398276\pi\)
0.949369 0.314164i \(-0.101724\pi\)
\(654\) 0 0
\(655\) 6.36095i 0.248543i
\(656\) 0 0
\(657\) −9.04109 + 9.04109i −0.352727 + 0.352727i
\(658\) 0 0
\(659\) 16.2874 0.634466 0.317233 0.948348i \(-0.397246\pi\)
0.317233 + 0.948348i \(0.397246\pi\)
\(660\) 0 0
\(661\) 24.6193i 0.957581i −0.877929 0.478790i \(-0.841075\pi\)
0.877929 0.478790i \(-0.158925\pi\)
\(662\) 0 0
\(663\) 1.88370 + 15.2274i 0.0731568 + 0.591382i
\(664\) 0 0
\(665\) 2.76855i 0.107360i
\(666\) 0 0
\(667\) −1.90977 −0.0739466
\(668\) 0 0
\(669\) 6.95138 6.95138i 0.268756 0.268756i
\(670\) 0 0
\(671\) 11.1694i 0.431190i
\(672\) 0 0
\(673\) −9.42174 + 9.42174i −0.363181 + 0.363181i −0.864983 0.501801i \(-0.832671\pi\)
0.501801 + 0.864983i \(0.332671\pi\)
\(674\) 0 0
\(675\) 0.707107 + 0.707107i 0.0272166 + 0.0272166i
\(676\) 0 0
\(677\) −3.54825 3.54825i −0.136370 0.136370i 0.635627 0.771997i \(-0.280742\pi\)
−0.771997 + 0.635627i \(0.780742\pi\)
\(678\) 0 0
\(679\) −11.8143 −0.453390
\(680\) 0 0
\(681\) 13.2241 0.506747
\(682\) 0 0
\(683\) −19.5488 19.5488i −0.748015 0.748015i 0.226091 0.974106i \(-0.427405\pi\)
−0.974106 + 0.226091i \(0.927405\pi\)
\(684\) 0 0
\(685\) −11.3583 11.3583i −0.433980 0.433980i
\(686\) 0 0
\(687\) 0.00652779 0.00652779i 0.000249051 0.000249051i
\(688\) 0 0
\(689\) 2.58391i 0.0984393i
\(690\) 0 0
\(691\) 7.29522 7.29522i 0.277523 0.277523i −0.554596 0.832120i \(-0.687127\pi\)
0.832120 + 0.554596i \(0.187127\pi\)
\(692\) 0 0
\(693\) 0.720228 0.0273592
\(694\) 0 0
\(695\) 18.5674i 0.704301i
\(696\) 0 0
\(697\) −25.2836 + 3.12770i −0.957685 + 0.118470i
\(698\) 0 0
\(699\) 10.4125i 0.393838i
\(700\) 0 0
\(701\) −8.47019 −0.319915 −0.159957 0.987124i \(-0.551136\pi\)
−0.159957 + 0.987124i \(0.551136\pi\)
\(702\) 0 0
\(703\) 19.8176 19.8176i 0.747436 0.747436i
\(704\) 0 0
\(705\) 7.90627i 0.297767i
\(706\) 0 0
\(707\) −6.54199 + 6.54199i −0.246037 + 0.246037i
\(708\) 0 0
\(709\) 25.9418 + 25.9418i 0.974265 + 0.974265i 0.999677 0.0254117i \(-0.00808967\pi\)
−0.0254117 + 0.999677i \(0.508090\pi\)
\(710\) 0 0
\(711\) 8.99382 + 8.99382i 0.337295 + 0.337295i
\(712\) 0 0
\(713\) 1.91477 0.0717088
\(714\) 0 0
\(715\) −3.82421 −0.143017
\(716\) 0 0
\(717\) 3.37680 + 3.37680i 0.126109 + 0.126109i
\(718\) 0 0
\(719\) 7.53238 + 7.53238i 0.280910 + 0.280910i 0.833472 0.552562i \(-0.186350\pi\)
−0.552562 + 0.833472i \(0.686350\pi\)
\(720\) 0 0
\(721\) −5.39432 + 5.39432i −0.200895 + 0.200895i
\(722\) 0 0
\(723\) 14.7017i 0.546764i
\(724\) 0 0
\(725\) 1.19043 1.19043i 0.0442114 0.0442114i
\(726\) 0 0
\(727\) −18.9985 −0.704616 −0.352308 0.935884i \(-0.614603\pi\)
−0.352308 + 0.935884i \(0.614603\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −16.8457 + 21.6018i −0.623059 + 0.798971i
\(732\) 0 0
\(733\) 17.7453i 0.655436i 0.944776 + 0.327718i \(0.106280\pi\)
−0.944776 + 0.327718i \(0.893720\pi\)
\(734\) 0 0
\(735\) −6.50880 −0.240081
\(736\) 0 0
\(737\) −3.85718 + 3.85718i −0.142081 + 0.142081i
\(738\) 0 0
\(739\) 36.5429i 1.34425i −0.740436 0.672127i \(-0.765381\pi\)
0.740436 0.672127i \(-0.234619\pi\)
\(740\) 0 0
\(741\) 10.3946 10.3946i 0.381856 0.381856i
\(742\) 0 0
\(743\) −6.84312 6.84312i −0.251050 0.251050i 0.570351 0.821401i \(-0.306807\pi\)
−0.821401 + 0.570351i \(0.806807\pi\)
\(744\) 0 0
\(745\) −6.73425 6.73425i −0.246724 0.246724i
\(746\) 0 0
\(747\) 9.89941 0.362200
\(748\) 0 0
\(749\) 6.75258 0.246734
\(750\) 0 0
\(751\) −9.06554 9.06554i −0.330806 0.330806i 0.522086 0.852893i \(-0.325154\pi\)
−0.852893 + 0.522086i \(0.825154\pi\)
\(752\) 0 0
\(753\) 18.1901 + 18.1901i 0.662883 + 0.662883i
\(754\) 0 0
\(755\) −11.1079 + 11.1079i −0.404257 + 0.404257i
\(756\) 0 0
\(757\) 6.13521i 0.222988i −0.993765 0.111494i \(-0.964436\pi\)
0.993765 0.111494i \(-0.0355636\pi\)
\(758\) 0 0
\(759\) 0.824311 0.824311i 0.0299206 0.0299206i
\(760\) 0 0
\(761\) 37.5051 1.35956 0.679779 0.733417i \(-0.262076\pi\)
0.679779 + 0.733417i \(0.262076\pi\)
\(762\) 0 0
\(763\) 10.2816i 0.372217i
\(764\) 0 0
\(765\) 4.09192 0.506189i 0.147944 0.0183013i
\(766\) 0 0
\(767\) 0.882056i 0.0318492i
\(768\) 0 0
\(769\) −11.8273 −0.426504 −0.213252 0.976997i \(-0.568406\pi\)
−0.213252 + 0.976997i \(0.568406\pi\)
\(770\) 0 0
\(771\) 4.58740 4.58740i 0.165211 0.165211i
\(772\) 0 0
\(773\) 27.7733i 0.998937i −0.866332 0.499469i \(-0.833529\pi\)
0.866332 0.499469i \(-0.166471\pi\)
\(774\) 0 0
\(775\) −1.19355 + 1.19355i −0.0428735 + 0.0428735i
\(776\) 0 0
\(777\) 3.51603 + 3.51603i 0.126137 + 0.126137i
\(778\) 0 0
\(779\) 17.2593 + 17.2593i 0.618379 + 0.618379i
\(780\) 0 0
\(781\) 5.63688 0.201703
\(782\) 0 0
\(783\) −1.68352 −0.0601641
\(784\) 0 0
\(785\) −2.72655 2.72655i −0.0973147 0.0973147i
\(786\) 0 0
\(787\) 21.8950 + 21.8950i 0.780473 + 0.780473i 0.979910 0.199438i \(-0.0639116\pi\)
−0.199438 + 0.979910i \(0.563912\pi\)
\(788\) 0 0
\(789\) −12.0324 + 12.0324i −0.428364 + 0.428364i
\(790\) 0 0
\(791\) 1.46087i 0.0519426i
\(792\) 0 0
\(793\) −28.6003 + 28.6003i −1.01563 + 1.01563i
\(794\) 0 0
\(795\) 0.694352 0.0246261
\(796\) 0 0
\(797\) 2.48271i 0.0879420i −0.999033 0.0439710i \(-0.985999\pi\)
0.999033 0.0439710i \(-0.0140009\pi\)
\(798\) 0 0
\(799\) 25.7061 + 20.0463i 0.909415 + 0.709186i
\(800\) 0 0
\(801\) 7.51797i 0.265634i
\(802\) 0 0
\(803\) −13.1395 −0.463683
\(804\) 0 0
\(805\) 0.562179 0.562179i 0.0198142 0.0198142i
\(806\) 0 0
\(807\) 12.8053i 0.450766i
\(808\) 0 0
\(809\) 24.0086 24.0086i 0.844097 0.844097i −0.145292 0.989389i \(-0.546412\pi\)
0.989389 + 0.145292i \(0.0464121\pi\)
\(810\) 0 0
\(811\) 11.0734 + 11.0734i 0.388840 + 0.388840i 0.874273 0.485434i \(-0.161338\pi\)
−0.485434 + 0.874273i \(0.661338\pi\)
\(812\) 0 0
\(813\) 2.29924 + 2.29924i 0.0806380 + 0.0806380i
\(814\) 0 0
\(815\) −8.84897 −0.309966
\(816\) 0 0
\(817\) 26.2453 0.918207
\(818\) 0 0
\(819\) 1.84421 + 1.84421i 0.0644419 + 0.0644419i
\(820\) 0 0
\(821\) 2.02082 + 2.02082i 0.0705273 + 0.0705273i 0.741491 0.670963i \(-0.234119\pi\)
−0.670963 + 0.741491i \(0.734119\pi\)
\(822\) 0 0
\(823\) −23.1991 + 23.1991i −0.808669 + 0.808669i −0.984432 0.175764i \(-0.943761\pi\)
0.175764 + 0.984432i \(0.443761\pi\)
\(824\) 0 0
\(825\) 1.02765i 0.0357780i
\(826\) 0 0
\(827\) −29.5467 + 29.5467i −1.02744 + 1.02744i −0.0278261 + 0.999613i \(0.508858\pi\)
−0.999613 + 0.0278261i \(0.991142\pi\)
\(828\) 0 0
\(829\) 4.77641 0.165892 0.0829459 0.996554i \(-0.473567\pi\)
0.0829459 + 0.996554i \(0.473567\pi\)
\(830\) 0 0
\(831\) 16.4215i 0.569656i
\(832\) 0 0
\(833\) −16.5030 + 21.1624i −0.571796 + 0.733234i
\(834\) 0 0
\(835\) 14.7125i 0.509148i
\(836\) 0 0
\(837\) 1.68793 0.0583434
\(838\) 0 0
\(839\) 8.72408 8.72408i 0.301189 0.301189i −0.540290 0.841479i \(-0.681685\pi\)
0.841479 + 0.540290i \(0.181685\pi\)
\(840\) 0 0
\(841\) 26.1658i 0.902268i
\(842\) 0 0
\(843\) −9.61723 + 9.61723i −0.331235 + 0.331235i
\(844\) 0 0
\(845\) −0.599836 0.599836i −0.0206350 0.0206350i
\(846\) 0 0
\(847\) −4.92800 4.92800i −0.169328 0.169328i
\(848\) 0 0
\(849\) 8.45327 0.290115
\(850\) 0 0
\(851\) 8.04829 0.275892
\(852\) 0 0
\(853\) −3.24497 3.24497i −0.111106 0.111106i 0.649368 0.760474i \(-0.275033\pi\)
−0.760474 + 0.649368i \(0.775033\pi\)
\(854\) 0 0
\(855\) −2.79326 2.79326i −0.0955273 0.0955273i
\(856\) 0 0
\(857\) 19.0232 19.0232i 0.649821 0.649821i −0.303129 0.952950i \(-0.598031\pi\)
0.952950 + 0.303129i \(0.0980312\pi\)
\(858\) 0 0
\(859\) 4.39230i 0.149863i 0.997189 + 0.0749316i \(0.0238738\pi\)
−0.997189 + 0.0749316i \(0.976126\pi\)
\(860\) 0 0
\(861\) −3.06214 + 3.06214i −0.104357 + 0.104357i
\(862\) 0 0
\(863\) −15.1478 −0.515636 −0.257818 0.966194i \(-0.583003\pi\)
−0.257818 + 0.966194i \(0.583003\pi\)
\(864\) 0 0
\(865\) 8.73519i 0.297005i
\(866\) 0 0
\(867\) 8.72922 14.5877i 0.296460 0.495424i
\(868\) 0 0
\(869\) 13.0708i 0.443397i
\(870\) 0 0
\(871\) −19.7533 −0.669316
\(872\) 0 0
\(873\) −11.9197 + 11.9197i −0.403420 + 0.403420i
\(874\) 0 0
\(875\) 0.700853i 0.0236932i
\(876\) 0 0
\(877\) 34.3907 34.3907i 1.16129 1.16129i 0.177099 0.984193i \(-0.443329\pi\)
0.984193 0.177099i \(-0.0566713\pi\)
\(878\) 0 0
\(879\) 5.09998 + 5.09998i 0.172018 + 0.172018i
\(880\) 0 0
\(881\) −4.53591 4.53591i −0.152819 0.152819i 0.626557 0.779376i \(-0.284464\pi\)
−0.779376 + 0.626557i \(0.784464\pi\)
\(882\) 0 0
\(883\) 28.0472 0.943863 0.471931 0.881635i \(-0.343557\pi\)
0.471931 + 0.881635i \(0.343557\pi\)
\(884\) 0 0
\(885\) −0.237027 −0.00796758
\(886\) 0 0
\(887\) 33.6130 + 33.6130i 1.12861 + 1.12861i 0.990403 + 0.138211i \(0.0441353\pi\)
0.138211 + 0.990403i \(0.455865\pi\)
\(888\) 0 0
\(889\) −2.11527 2.11527i −0.0709438 0.0709438i
\(890\) 0 0
\(891\) 0.726655 0.726655i 0.0243439 0.0243439i
\(892\) 0 0
\(893\) 31.2318i 1.04513i
\(894\) 0 0
\(895\) 2.59199 2.59199i 0.0866408 0.0866408i
\(896\) 0 0
\(897\) 4.22144 0.140950
\(898\) 0 0
\(899\) 2.84166i 0.0947748i
\(900\) 0 0
\(901\) 1.76052 2.25758i 0.0586516 0.0752110i
\(902\) 0 0
\(903\) 4.65643i 0.154956i
\(904\) 0 0
\(905\) 22.6690 0.753543
\(906\) 0 0
\(907\) −23.7069 + 23.7069i −0.787174 + 0.787174i −0.981030 0.193856i \(-0.937901\pi\)
0.193856 + 0.981030i \(0.437901\pi\)
\(908\) 0 0
\(909\) 13.2007i 0.437841i
\(910\) 0 0
\(911\) 16.7890 16.7890i 0.556246 0.556246i −0.371991 0.928236i \(-0.621325\pi\)
0.928236 + 0.371991i \(0.121325\pi\)
\(912\) 0 0
\(913\) 7.19345 + 7.19345i 0.238069 + 0.238069i
\(914\) 0 0
\(915\) 7.68550 + 7.68550i 0.254075 + 0.254075i
\(916\) 0 0
\(917\) 4.45809 0.147219
\(918\) 0 0
\(919\) 28.3419 0.934914 0.467457 0.884016i \(-0.345170\pi\)
0.467457 + 0.884016i \(0.345170\pi\)
\(920\) 0 0
\(921\) −9.05193 9.05193i −0.298271 0.298271i
\(922\) 0 0
\(923\) 14.4337 + 14.4337i 0.475092 + 0.475092i
\(924\) 0 0
\(925\) −5.01679 + 5.01679i −0.164951 + 0.164951i
\(926\) 0 0
\(927\) 10.8849i 0.357507i
\(928\) 0 0
\(929\) −0.0454483 + 0.0454483i −0.00149111 + 0.00149111i −0.707852 0.706361i \(-0.750336\pi\)
0.706361 + 0.707852i \(0.250336\pi\)
\(930\) 0 0
\(931\) 25.7115 0.842659
\(932\) 0 0
\(933\) 7.49760i 0.245460i
\(934\) 0 0
\(935\) 3.34124 + 2.60559i 0.109270 + 0.0852117i
\(936\) 0 0
\(937\) 4.27502i 0.139659i 0.997559 + 0.0698295i \(0.0222455\pi\)
−0.997559 + 0.0698295i \(0.977754\pi\)
\(938\) 0 0
\(939\) 23.1641 0.755933
\(940\) 0 0
\(941\) 5.47147 5.47147i 0.178365 0.178365i −0.612278 0.790643i \(-0.709747\pi\)
0.790643 + 0.612278i \(0.209747\pi\)
\(942\) 0 0
\(943\) 7.00931i 0.228255i
\(944\) 0 0
\(945\) 0.495578 0.495578i 0.0161212 0.0161212i
\(946\) 0 0
\(947\) −12.4524 12.4524i −0.404648 0.404648i 0.475219 0.879867i \(-0.342369\pi\)
−0.879867 + 0.475219i \(0.842369\pi\)
\(948\) 0 0
\(949\) −33.6449 33.6449i −1.09216 1.09216i
\(950\) 0 0
\(951\) 12.1146 0.392843
\(952\) 0 0
\(953\) 44.8118 1.45160 0.725798 0.687907i \(-0.241471\pi\)
0.725798 + 0.687907i \(0.241471\pi\)
\(954\) 0 0
\(955\) −0.120815 0.120815i −0.00390949 0.00390949i
\(956\) 0 0
\(957\) −1.22334 1.22334i −0.0395449 0.0395449i
\(958\) 0 0
\(959\) −7.96053 + 7.96053i −0.257059 + 0.257059i
\(960\) 0 0
\(961\) 28.1509i 0.908093i
\(962\) 0 0
\(963\) 6.81283 6.81283i 0.219540 0.219540i
\(964\) 0 0
\(965\) 18.8084 0.605464
\(966\) 0 0
\(967\) 13.8845i 0.446497i −0.974762 0.223248i \(-0.928334\pi\)
0.974762 0.223248i \(-0.0716661\pi\)
\(968\) 0 0
\(969\) −16.1641 + 1.99958i −0.519267 + 0.0642357i
\(970\) 0 0
\(971\) 53.5344i 1.71800i 0.511975 + 0.859000i \(0.328914\pi\)
−0.511975 + 0.859000i \(0.671086\pi\)
\(972\) 0 0
\(973\) −13.0130 −0.417178
\(974\) 0 0
\(975\) −2.63138 + 2.63138i −0.0842715 + 0.0842715i
\(976\) 0 0
\(977\) 11.6340i 0.372206i 0.982530 + 0.186103i \(0.0595857\pi\)
−0.982530 + 0.186103i \(0.940414\pi\)
\(978\) 0 0
\(979\) 5.46297 5.46297i 0.174597 0.174597i
\(980\) 0 0
\(981\) −10.3733 10.3733i −0.331194 0.331194i
\(982\) 0 0
\(983\) 23.0219 + 23.0219i 0.734284 + 0.734284i 0.971465 0.237181i \(-0.0762235\pi\)
−0.237181 + 0.971465i \(0.576224\pi\)
\(984\) 0 0
\(985\) −6.36667 −0.202859
\(986\) 0 0
\(987\) 5.54114 0.176376
\(988\) 0 0
\(989\) 5.32934 + 5.32934i 0.169463 + 0.169463i
\(990\) 0 0
\(991\) 19.2935 + 19.2935i 0.612877 + 0.612877i 0.943695 0.330817i \(-0.107324\pi\)
−0.330817 + 0.943695i \(0.607324\pi\)
\(992\) 0 0
\(993\) 0.826227 0.826227i 0.0262195 0.0262195i
\(994\) 0 0
\(995\) 5.65003i 0.179118i
\(996\) 0 0
\(997\) 0.558779 0.558779i 0.0176967 0.0176967i −0.698203 0.715900i \(-0.746017\pi\)
0.715900 + 0.698203i \(0.246017\pi\)
\(998\) 0 0
\(999\) 7.09481 0.224470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2040.2.cf.d.1441.3 yes 20
17.4 even 4 inner 2040.2.cf.d.361.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.cf.d.361.3 20 17.4 even 4 inner
2040.2.cf.d.1441.3 yes 20 1.1 even 1 trivial