Properties

Label 2040.1.df.b.1589.2
Level $2040$
Weight $1$
Character 2040.1589
Analytic conductor $1.018$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -120
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2040,1,Mod(389,2040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 4, 4, 4, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2040.389"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2040.df (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.01809262577\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{8} - \cdots)\)

Embedding invariants

Embedding label 1589.2
Root \(-0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 2040.1589
Dual form 2040.1.df.b.389.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(0.382683 - 0.923880i) q^{3} -1.00000i q^{4} +(-0.923880 - 0.382683i) q^{5} +(0.382683 + 0.923880i) q^{6} +(0.707107 + 0.707107i) q^{8} +(-0.707107 - 0.707107i) q^{9} +(0.923880 - 0.382683i) q^{10} +(0.541196 + 1.30656i) q^{11} +(-0.923880 - 0.382683i) q^{12} +1.84776i q^{13} +(-0.707107 + 0.707107i) q^{15} -1.00000 q^{16} +(0.707107 + 0.707107i) q^{17} +1.00000 q^{18} +(-0.382683 + 0.923880i) q^{20} +(-1.30656 - 0.541196i) q^{22} +(0.292893 + 0.707107i) q^{23} +(0.923880 - 0.382683i) q^{24} +(0.707107 + 0.707107i) q^{25} +(-1.30656 - 1.30656i) q^{26} +(-0.923880 + 0.382683i) q^{27} +(-1.30656 - 0.541196i) q^{29} -1.00000i q^{30} +(0.292893 - 0.707107i) q^{31} +(0.707107 - 0.707107i) q^{32} +1.41421 q^{33} -1.00000 q^{34} +(-0.707107 + 0.707107i) q^{36} +(1.70711 + 0.707107i) q^{39} +(-0.382683 - 0.923880i) q^{40} +(1.30656 + 1.30656i) q^{43} +(1.30656 - 0.541196i) q^{44} +(0.382683 + 0.923880i) q^{45} +(-0.707107 - 0.292893i) q^{46} +(-0.382683 + 0.923880i) q^{48} +(0.707107 - 0.707107i) q^{49} -1.00000 q^{50} +(0.923880 - 0.382683i) q^{51} +1.84776 q^{52} +(0.382683 - 0.923880i) q^{54} -1.41421i q^{55} +(1.30656 - 0.541196i) q^{58} +(-0.541196 - 0.541196i) q^{59} +(0.707107 + 0.707107i) q^{60} +(0.292893 + 0.707107i) q^{62} +1.00000i q^{64} +(0.707107 - 1.70711i) q^{65} +(-1.00000 + 1.00000i) q^{66} -0.765367 q^{67} +(0.707107 - 0.707107i) q^{68} +0.765367 q^{69} -1.00000i q^{72} +(0.923880 - 0.382683i) q^{75} +(-1.70711 + 0.707107i) q^{78} +(0.707107 + 1.70711i) q^{79} +(0.923880 + 0.382683i) q^{80} +1.00000i q^{81} +(-0.382683 - 0.923880i) q^{85} -1.84776 q^{86} +(-1.00000 + 1.00000i) q^{87} +(-0.541196 + 1.30656i) q^{88} +(-0.923880 - 0.382683i) q^{90} +(0.707107 - 0.292893i) q^{92} +(-0.541196 - 0.541196i) q^{93} +(-0.382683 - 0.923880i) q^{96} +1.00000i q^{98} +(0.541196 - 1.30656i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{16} + 8 q^{18} + 8 q^{23} + 8 q^{31} - 8 q^{34} + 8 q^{39} - 8 q^{50} + 8 q^{62} - 8 q^{66} - 8 q^{78} - 8 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2040\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1021\) \(1361\)
\(\chi(n)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(3\) 0.382683 0.923880i 0.382683 0.923880i
\(4\) 1.00000i 1.00000i
\(5\) −0.923880 0.382683i −0.923880 0.382683i
\(6\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(7\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(8\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(9\) −0.707107 0.707107i −0.707107 0.707107i
\(10\) 0.923880 0.382683i 0.923880 0.382683i
\(11\) 0.541196 + 1.30656i 0.541196 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(12\) −0.923880 0.382683i −0.923880 0.382683i
\(13\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(14\) 0 0
\(15\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(16\) −1.00000 −1.00000
\(17\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(18\) 1.00000 1.00000
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(21\) 0 0
\(22\) −1.30656 0.541196i −1.30656 0.541196i
\(23\) 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 \(0\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0.923880 0.382683i 0.923880 0.382683i
\(25\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(26\) −1.30656 1.30656i −1.30656 1.30656i
\(27\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(28\) 0 0
\(29\) −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(30\) 1.00000i 1.00000i
\(31\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(32\) 0.707107 0.707107i 0.707107 0.707107i
\(33\) 1.41421 1.41421
\(34\) −1.00000 −1.00000
\(35\) 0 0
\(36\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(37\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(38\) 0 0
\(39\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(40\) −0.382683 0.923880i −0.382683 0.923880i
\(41\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(42\) 0 0
\(43\) 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(44\) 1.30656 0.541196i 1.30656 0.541196i
\(45\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(46\) −0.707107 0.292893i −0.707107 0.292893i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(49\) 0.707107 0.707107i 0.707107 0.707107i
\(50\) −1.00000 −1.00000
\(51\) 0.923880 0.382683i 0.923880 0.382683i
\(52\) 1.84776 1.84776
\(53\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0.382683 0.923880i 0.382683 0.923880i
\(55\) 1.41421i 1.41421i
\(56\) 0 0
\(57\) 0 0
\(58\) 1.30656 0.541196i 1.30656 0.541196i
\(59\) −0.541196 0.541196i −0.541196 0.541196i 0.382683 0.923880i \(-0.375000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(60\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(61\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(62\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(63\) 0 0
\(64\) 1.00000i 1.00000i
\(65\) 0.707107 1.70711i 0.707107 1.70711i
\(66\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(67\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(68\) 0.707107 0.707107i 0.707107 0.707107i
\(69\) 0.765367 0.765367
\(70\) 0 0
\(71\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(72\) 1.00000i 1.00000i
\(73\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(74\) 0 0
\(75\) 0.923880 0.382683i 0.923880 0.382683i
\(76\) 0 0
\(77\) 0 0
\(78\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(79\) 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i \(0.250000\pi\)
1.00000i \(0.5\pi\)
\(80\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(81\) 1.00000i 1.00000i
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) −0.382683 0.923880i −0.382683 0.923880i
\(86\) −1.84776 −1.84776
\(87\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(88\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −0.923880 0.382683i −0.923880 0.382683i
\(91\) 0 0
\(92\) 0.707107 0.292893i 0.707107 0.292893i
\(93\) −0.541196 0.541196i −0.541196 0.541196i
\(94\) 0 0
\(95\) 0 0
\(96\) −0.382683 0.923880i −0.382683 0.923880i
\(97\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(98\) 1.00000i 1.00000i
\(99\) 0.541196 1.30656i 0.541196 1.30656i
\(100\) 0.707107 0.707107i 0.707107 0.707107i
\(101\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(102\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(108\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(109\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(110\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(111\) 0 0
\(112\) 0 0
\(113\) −0.707107 1.70711i −0.707107 1.70711i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(-0.5\pi\)
\(114\) 0 0
\(115\) 0.765367i 0.765367i
\(116\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(117\) 1.30656 1.30656i 1.30656 1.30656i
\(118\) 0.765367 0.765367
\(119\) 0 0
\(120\) −1.00000 −1.00000
\(121\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.707107 0.292893i −0.707107 0.292893i
\(125\) −0.382683 0.923880i −0.382683 0.923880i
\(126\) 0 0
\(127\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) −0.707107 0.707107i −0.707107 0.707107i
\(129\) 1.70711 0.707107i 1.70711 0.707107i
\(130\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(131\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(132\) 1.41421i 1.41421i
\(133\) 0 0
\(134\) 0.541196 0.541196i 0.541196 0.541196i
\(135\) 1.00000 1.00000
\(136\) 1.00000i 1.00000i
\(137\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(139\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.41421 + 1.00000i −2.41421 + 1.00000i
\(144\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(145\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(146\) 0 0
\(147\) −0.382683 0.923880i −0.382683 0.923880i
\(148\) 0 0
\(149\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(150\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(151\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 1.00000i 1.00000i
\(154\) 0 0
\(155\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(156\) 0.707107 1.70711i 0.707107 1.70711i
\(157\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(158\) −1.70711 0.707107i −1.70711 0.707107i
\(159\) 0 0
\(160\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(161\) 0 0
\(162\) −0.707107 0.707107i −0.707107 0.707107i
\(163\) −1.30656 + 0.541196i −1.30656 + 0.541196i −0.923880 0.382683i \(-0.875000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(164\) 0 0
\(165\) −1.30656 0.541196i −1.30656 0.541196i
\(166\) 0 0
\(167\) −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i \(0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) −2.41421 −2.41421
\(170\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(171\) 0 0
\(172\) 1.30656 1.30656i 1.30656 1.30656i
\(173\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(174\) 1.41421i 1.41421i
\(175\) 0 0
\(176\) −0.541196 1.30656i −0.541196 1.30656i
\(177\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(178\) 0 0
\(179\) 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(180\) 0.923880 0.382683i 0.923880 0.382683i
\(181\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(185\) 0 0
\(186\) 0.765367 0.765367
\(187\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(193\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(194\) 0 0
\(195\) −1.30656 1.30656i −1.30656 1.30656i
\(196\) −0.707107 0.707107i −0.707107 0.707107i
\(197\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(198\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(199\) −0.707107 0.292893i −0.707107 0.292893i 1.00000i \(-0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(200\) 1.00000i 1.00000i
\(201\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(202\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(203\) 0 0
\(204\) −0.382683 0.923880i −0.382683 0.923880i
\(205\) 0 0
\(206\) 0 0
\(207\) 0.292893 0.707107i 0.292893 0.707107i
\(208\) 1.84776i 1.84776i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.707107 1.70711i −0.707107 1.70711i
\(216\) −0.923880 0.382683i −0.923880 0.382683i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −1.41421 −1.41421
\(221\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 1.00000i 1.00000i
\(226\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(227\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(228\) 0 0
\(229\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(230\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(231\) 0 0
\(232\) −0.541196 1.30656i −0.541196 1.30656i
\(233\) 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i \(-0.250000\pi\)
1.00000i \(0.5\pi\)
\(234\) 1.84776i 1.84776i
\(235\) 0 0
\(236\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(237\) 1.84776 1.84776
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0.707107 0.707107i 0.707107 0.707107i
\(241\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(242\) 1.00000i 1.00000i
\(243\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(244\) 0 0
\(245\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.707107 0.292893i 0.707107 0.292893i
\(249\) 0 0
\(250\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(251\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(252\) 0 0
\(253\) −0.765367 + 0.765367i −0.765367 + 0.765367i
\(254\) 0 0
\(255\) −1.00000 −1.00000
\(256\) 1.00000 1.00000
\(257\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(258\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(259\) 0 0
\(260\) −1.70711 0.707107i −1.70711 0.707107i
\(261\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(262\) 0 0
\(263\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(264\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0.765367i 0.765367i
\(269\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(270\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(271\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(272\) −0.707107 0.707107i −0.707107 0.707107i
\(273\) 0 0
\(274\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(275\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(276\) 0.765367i 0.765367i
\(277\) 1.30656 + 0.541196i 1.30656 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(278\) 0 0
\(279\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(280\) 0 0
\(281\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(282\) 0 0
\(283\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.00000 2.41421i 1.00000 2.41421i
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) 1.00000i 1.00000i
\(290\) −1.41421 −1.41421
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(295\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(296\) 0 0
\(297\) −1.00000 1.00000i −1.00000 1.00000i
\(298\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(299\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(300\) −0.382683 0.923880i −0.382683 0.923880i
\(301\) 0 0
\(302\) 1.41421i 1.41421i
\(303\) 0.707107 1.70711i 0.707107 1.70711i
\(304\) 0 0
\(305\) 0 0
\(306\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(307\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.765367i 0.765367i
\(311\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(312\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(313\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(314\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(315\) 0 0
\(316\) 1.70711 0.707107i 1.70711 0.707107i
\(317\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(318\) 0 0
\(319\) 2.00000i 2.00000i
\(320\) 0.382683 0.923880i 0.382683 0.923880i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(326\) 0.541196 1.30656i 0.541196 1.30656i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 1.30656 0.541196i 1.30656 0.541196i
\(331\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −0.707107 1.70711i −0.707107 1.70711i
\(335\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(336\) 0 0
\(337\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(338\) 1.70711 1.70711i 1.70711 1.70711i
\(339\) −1.84776 −1.84776
\(340\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(341\) 1.08239 1.08239
\(342\) 0 0
\(343\) 0 0
\(344\) 1.84776i 1.84776i
\(345\) −0.707107 0.292893i −0.707107 0.292893i
\(346\) 0 0
\(347\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(348\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(349\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(350\) 0 0
\(351\) −0.707107 1.70711i −0.707107 1.70711i
\(352\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0.292893 0.707107i 0.292893 0.707107i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −1.84776 −1.84776
\(359\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(360\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(361\) 1.00000i 1.00000i
\(362\) 0 0
\(363\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(368\) −0.292893 0.707107i −0.292893 0.707107i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(373\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(374\) −0.541196 1.30656i −0.541196 1.30656i
\(375\) −1.00000 −1.00000
\(376\) 0 0
\(377\) 1.00000 2.41421i 1.00000 2.41421i
\(378\) 0 0
\(379\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(384\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(385\) 0 0
\(386\) 0 0
\(387\) 1.84776i 1.84776i
\(388\) 0 0
\(389\) 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(390\) 1.84776 1.84776
\(391\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(392\) 1.00000 1.00000
\(393\) 0 0
\(394\) 0 0
\(395\) 1.84776i 1.84776i
\(396\) −1.30656 0.541196i −1.30656 0.541196i
\(397\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(398\) 0.707107 0.292893i 0.707107 0.292893i
\(399\) 0 0
\(400\) −0.707107 0.707107i −0.707107 0.707107i
\(401\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(402\) −0.292893 0.707107i −0.292893 0.707107i
\(403\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(404\) 1.84776i 1.84776i
\(405\) 0.382683 0.923880i 0.382683 0.923880i
\(406\) 0 0
\(407\) 0 0
\(408\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(409\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0.541196 1.30656i 0.541196 1.30656i
\(412\) 0 0
\(413\) 0 0
\(414\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(415\) 0 0
\(416\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(417\) 0 0
\(418\) 0 0
\(419\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.00000i 1.00000i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.61313i 2.61313i
\(430\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(431\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(432\) 0.923880 0.382683i 0.923880 0.382683i
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 1.30656 0.541196i 1.30656 0.541196i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(440\) 1.00000 1.00000i 1.00000 1.00000i
\(441\) −1.00000 −1.00000
\(442\) 1.84776i 1.84776i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −0.707107 0.292893i −0.707107 0.292893i
\(448\) 0 0
\(449\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(450\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(451\) 0 0
\(452\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(453\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0 0
\(459\) −0.923880 0.382683i −0.923880 0.382683i
\(460\) −0.765367 −0.765367
\(461\) 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(465\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(466\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(467\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) −1.30656 1.30656i −1.30656 1.30656i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.707107 0.292893i −0.707107 0.292893i
\(472\) 0.765367i 0.765367i
\(473\) −1.00000 + 2.41421i −1.00000 + 2.41421i
\(474\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(480\) 1.00000i 1.00000i
\(481\) 0 0
\(482\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(483\) 0 0
\(484\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(485\) 0 0
\(486\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(487\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(488\) 0 0
\(489\) 1.41421i 1.41421i
\(490\) 0.382683 0.923880i 0.382683 0.923880i
\(491\) 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(492\) 0 0
\(493\) −0.541196 1.30656i −0.541196 1.30656i
\(494\) 0 0
\(495\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(496\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(500\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(501\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(502\) −0.541196 0.541196i −0.541196 0.541196i
\(503\) 1.70711 0.707107i 1.70711 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
1.00000 \(0\)
\(504\) 0 0
\(505\) −1.70711 0.707107i −1.70711 0.707107i
\(506\) 1.08239i 1.08239i
\(507\) −0.923880 + 2.23044i −0.923880 + 2.23044i
\(508\) 0 0
\(509\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(510\) 0.707107 0.707107i 0.707107 0.707107i
\(511\) 0 0
\(512\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(513\) 0 0
\(514\) 1.41421i 1.41421i
\(515\) 0 0
\(516\) −0.707107 1.70711i −0.707107 1.70711i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 1.70711 0.707107i 1.70711 0.707107i
\(521\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(522\) −1.30656 0.541196i −1.30656 0.541196i
\(523\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.41421 1.41421
\(527\) 0.707107 0.292893i 0.707107 0.292893i
\(528\) −1.41421 −1.41421
\(529\) 0.292893 0.292893i 0.292893 0.292893i
\(530\) 0 0
\(531\) 0.765367i 0.765367i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −0.541196 0.541196i −0.541196 0.541196i
\(537\) 1.70711 0.707107i 1.70711 0.707107i
\(538\) 0 0
\(539\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(540\) 1.00000i 1.00000i
\(541\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(542\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(543\) 0 0
\(544\) 1.00000 1.00000
\(545\) 0 0
\(546\) 0 0
\(547\) −0.541196 + 1.30656i −0.541196 + 1.30656i 0.382683 + 0.923880i \(0.375000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(548\) 1.41421i 1.41421i
\(549\) 0 0
\(550\) −0.541196 1.30656i −0.541196 1.30656i
\(551\) 0 0
\(552\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(553\) 0 0
\(554\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0.292893 0.707107i 0.292893 0.707107i
\(559\) −2.41421 + 2.41421i −2.41421 + 2.41421i
\(560\) 0 0
\(561\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(562\) 0 0
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 1.84776i 1.84776i
\(566\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(570\) 0 0
\(571\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(572\) 1.00000 + 2.41421i 1.00000 + 2.41421i
\(573\) 0 0
\(574\) 0 0
\(575\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(576\) 0.707107 0.707107i 0.707107 0.707107i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.707107 0.707107i −0.707107 0.707107i
\(579\) 0 0
\(580\) 1.00000 1.00000i 1.00000 1.00000i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(586\) 0 0
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(589\) 0 0
\(590\) −0.707107 0.292893i −0.707107 0.292893i
\(591\) 0 0
\(592\) 0 0
\(593\) −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i \(0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 1.41421 1.41421
\(595\) 0 0
\(596\) −0.765367 −0.765367
\(597\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(598\) 0.541196 1.30656i 0.541196 1.30656i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(601\) −0.707107 1.70711i −0.707107 1.70711i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(-0.5\pi\)
\(602\) 0 0
\(603\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(604\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(605\) 0.923880 0.382683i 0.923880 0.382683i
\(606\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(607\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.00000 −1.00000
\(613\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(614\) 0.541196 0.541196i 0.541196 0.541196i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.707107 0.292893i −0.707107 0.292893i 1.00000i \(-0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(620\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(621\) −0.541196 0.541196i −0.541196 0.541196i
\(622\) 0 0
\(623\) 0 0
\(624\) −1.70711 0.707107i −1.70711 0.707107i
\(625\) 1.00000i 1.00000i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.765367 −0.765367
\(629\) 0 0
\(630\) 0 0
\(631\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(632\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(638\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(639\) 0 0
\(640\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(641\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(642\) 0 0
\(643\) 0.541196 1.30656i 0.541196 1.30656i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(644\) 0 0
\(645\) −1.84776 −1.84776
\(646\) 0 0
\(647\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(649\) 0.414214 1.00000i 0.414214 1.00000i
\(650\) 1.84776i 1.84776i
\(651\) 0 0
\(652\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(653\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(660\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(661\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(662\) 0 0
\(663\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.08239i 1.08239i
\(668\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(669\) 0 0
\(670\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(674\) 0 0
\(675\) −0.923880 0.382683i −0.923880 0.382683i
\(676\) 2.41421i 2.41421i
\(677\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(678\) 1.30656 1.30656i 1.30656 1.30656i
\(679\) 0 0
\(680\) 0.382683 0.923880i 0.382683 0.923880i
\(681\) 0 0
\(682\) −0.765367 + 0.765367i −0.765367 + 0.765367i
\(683\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(684\) 0 0
\(685\) −1.30656 0.541196i −1.30656 0.541196i
\(686\) 0 0
\(687\) 0 0
\(688\) −1.30656 1.30656i −1.30656 1.30656i
\(689\) 0 0
\(690\) 0.707107 0.292893i 0.707107 0.292893i
\(691\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) −1.41421 −1.41421
\(697\) 0 0
\(698\) 0 0
\(699\) 0.541196 0.541196i 0.541196 0.541196i
\(700\) 0 0
\(701\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(702\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(703\) 0 0
\(704\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(709\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(710\) 0 0
\(711\) 0.707107 1.70711i 0.707107 1.70711i
\(712\) 0 0
\(713\) 0.585786 0.585786
\(714\) 0 0
\(715\) 2.61313 2.61313
\(716\) 1.30656 1.30656i 1.30656 1.30656i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(720\) −0.382683 0.923880i −0.382683 0.923880i
\(721\) 0 0
\(722\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(723\) −1.30656 1.30656i −1.30656 1.30656i
\(724\) 0 0
\(725\) −0.541196 1.30656i −0.541196 1.30656i
\(726\) −0.923880 0.382683i −0.923880 0.382683i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0.707107 0.707107i 0.707107 0.707107i
\(730\) 0 0
\(731\) 1.84776i 1.84776i
\(732\) 0 0
\(733\) 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(734\) 0 0
\(735\) 1.00000i 1.00000i
\(736\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(737\) −0.414214 1.00000i −0.414214 1.00000i
\(738\) 0 0
\(739\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.70711 0.707107i −1.70711 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
−1.00000 \(\pi\)
\(744\) 0.765367i 0.765367i
\(745\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(746\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(747\) 0 0
\(748\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(749\) 0 0
\(750\) 0.707107 0.707107i 0.707107 0.707107i
\(751\) −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i \(0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(752\) 0 0
\(753\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(754\) 1.00000 + 2.41421i 1.00000 + 2.41421i
\(755\) 1.30656 0.541196i 1.30656 0.541196i
\(756\) 0 0
\(757\) 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(758\) 0 0
\(759\) 0.414214 + 1.00000i 0.414214 + 1.00000i
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(766\) −1.41421 −1.41421
\(767\) 1.00000 1.00000i 1.00000 1.00000i
\(768\) 0.382683 0.923880i 0.382683 0.923880i
\(769\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(772\) 0 0
\(773\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(775\) 0.707107 0.292893i 0.707107 0.292893i
\(776\) 0 0
\(777\) 0 0
\(778\) 1.84776i 1.84776i
\(779\) 0 0
\(780\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(781\) 0 0
\(782\) −0.292893 0.707107i −0.292893 0.707107i
\(783\) 1.41421 1.41421
\(784\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(785\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(786\) 0 0
\(787\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(788\) 0 0
\(789\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(790\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(791\) 0 0
\(792\) 1.30656 0.541196i 1.30656 0.541196i
\(793\) 0 0
\(794\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(795\) 0 0
\(796\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(797\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 1.00000
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(805\) 0 0
\(806\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(807\) 0 0
\(808\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(809\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(810\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(811\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(812\) 0 0
\(813\) 0.541196 1.30656i 0.541196 1.30656i
\(814\) 0 0
\(815\) 1.41421 1.41421
\(816\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(817\) 0 0
\(818\) 1.41421 1.41421i 1.41421 1.41421i
\(819\) 0 0
\(820\) 0 0
\(821\) −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(822\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(823\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(824\) 0 0
\(825\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(826\) 0 0
\(827\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(828\) −0.707107 0.292893i −0.707107 0.292893i
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 1.00000 1.00000i 1.00000 1.00000i
\(832\) −1.84776 −1.84776
\(833\) 1.00000 1.00000
\(834\) 0 0
\(835\) 1.30656 1.30656i 1.30656 1.30656i
\(836\) 0 0
\(837\) 0.765367i 0.765367i
\(838\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(839\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(840\) 0 0
\(841\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.23044 + 0.923880i 2.23044 + 0.923880i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.41421 −1.41421
\(850\) −0.707107 0.707107i −0.707107 0.707107i
\(851\) 0 0
\(852\) 0 0
\(853\) 0.541196 1.30656i 0.541196 1.30656i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(858\) −1.84776 1.84776i −1.84776 1.84776i
\(859\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(860\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(861\) 0 0
\(862\) 0 0
\(863\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(865\) 0 0
\(866\) 0 0
\(867\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(868\) 0 0
\(869\) −1.84776 + 1.84776i −1.84776 + 1.84776i
\(870\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(871\) 1.41421i 1.41421i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.84776 0.765367i 1.84776 0.765367i 0.923880 0.382683i \(-0.125000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(878\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(879\) 0 0
\(880\) 1.41421i 1.41421i
\(881\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(882\) 0.707107 0.707107i 0.707107 0.707107i
\(883\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(884\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(885\) 0.765367 0.765367
\(886\) 0 0
\(887\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(892\) 0 0
\(893\) 0 0
\(894\) 0.707107 0.292893i 0.707107 0.292893i
\(895\) −0.707107 1.70711i −0.707107 1.70711i
\(896\) 0 0
\(897\) 1.41421i 1.41421i
\(898\) 0 0
\(899\) −0.765367 + 0.765367i −0.765367 + 0.765367i
\(900\) −1.00000 −1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0.707107 1.70711i 0.707107 1.70711i
\(905\) 0 0
\(906\) −1.30656 0.541196i −1.30656 0.541196i
\(907\) −0.765367 1.84776i −0.765367 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 0.923880i \(-0.625000\pi\)
\(908\) 0 0
\(909\) −1.30656 1.30656i −1.30656 1.30656i
\(910\) 0 0
\(911\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0.923880 0.382683i 0.923880 0.382683i
\(919\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(920\) 0.541196 0.541196i 0.541196 0.541196i
\(921\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(922\) 1.84776i 1.84776i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(929\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(930\) −0.707107 0.292893i −0.707107 0.292893i
\(931\) 0 0
\(932\) 0.292893 0.707107i 0.292893 0.707107i
\(933\) 0 0
\(934\) 0 0
\(935\) 1.00000 1.00000i 1.00000 1.00000i
\(936\) 1.84776 1.84776
\(937\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(942\) 0.707107 0.292893i 0.707107 0.292893i
\(943\) 0 0
\(944\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(945\) 0 0
\(946\) −1.00000 2.41421i −1.00000 2.41421i
\(947\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(948\) 1.84776i 1.84776i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.84776 0.765367i −1.84776 0.765367i
\(958\) 0 0
\(959\) 0 0
\(960\) −0.707107 0.707107i −0.707107 0.707107i
\(961\) 0.292893 + 0.292893i 0.292893 + 0.292893i
\(962\) 0 0
\(963\) 0 0
\(964\) −1.70711 0.707107i −1.70711 0.707107i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) −1.00000 −1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(972\) 0.382683 0.923880i 0.382683 0.923880i
\(973\) 0 0
\(974\) 0 0
\(975\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) −1.00000 1.00000i −1.00000 1.00000i
\(979\) 0 0
\(980\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(981\) 0 0
\(982\) 1.84776i 1.84776i
\(983\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(987\) 0 0
\(988\) 0 0
\(989\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(990\) 1.41421i 1.41421i
\(991\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(992\) −0.292893 0.707107i −0.292893 0.707107i
\(993\) 0 0
\(994\) 0 0
\(995\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(996\) 0 0
\(997\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2040.1.df.b.1589.2 yes 8
3.2 odd 2 2040.1.df.a.1589.2 yes 8
5.4 even 2 2040.1.df.a.1589.1 yes 8
8.5 even 2 inner 2040.1.df.b.1589.1 yes 8
15.14 odd 2 inner 2040.1.df.b.1589.1 yes 8
17.15 even 8 inner 2040.1.df.b.389.2 yes 8
24.5 odd 2 2040.1.df.a.1589.1 yes 8
40.29 even 2 2040.1.df.a.1589.2 yes 8
51.32 odd 8 2040.1.df.a.389.2 yes 8
85.49 even 8 2040.1.df.a.389.1 8
120.29 odd 2 CM 2040.1.df.b.1589.2 yes 8
136.117 even 8 inner 2040.1.df.b.389.1 yes 8
255.134 odd 8 inner 2040.1.df.b.389.1 yes 8
408.389 odd 8 2040.1.df.a.389.1 8
680.389 even 8 2040.1.df.a.389.2 yes 8
2040.389 odd 8 inner 2040.1.df.b.389.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.1.df.a.389.1 8 85.49 even 8
2040.1.df.a.389.1 8 408.389 odd 8
2040.1.df.a.389.2 yes 8 51.32 odd 8
2040.1.df.a.389.2 yes 8 680.389 even 8
2040.1.df.a.1589.1 yes 8 5.4 even 2
2040.1.df.a.1589.1 yes 8 24.5 odd 2
2040.1.df.a.1589.2 yes 8 3.2 odd 2
2040.1.df.a.1589.2 yes 8 40.29 even 2
2040.1.df.b.389.1 yes 8 136.117 even 8 inner
2040.1.df.b.389.1 yes 8 255.134 odd 8 inner
2040.1.df.b.389.2 yes 8 17.15 even 8 inner
2040.1.df.b.389.2 yes 8 2040.389 odd 8 inner
2040.1.df.b.1589.1 yes 8 8.5 even 2 inner
2040.1.df.b.1589.1 yes 8 15.14 odd 2 inner
2040.1.df.b.1589.2 yes 8 1.1 even 1 trivial
2040.1.df.b.1589.2 yes 8 120.29 odd 2 CM