Properties

Label 2040.1.cj.c.1109.2
Level $2040$
Weight $1$
Character 2040.1109
Analytic conductor $1.018$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2040,1,Mod(149,2040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 2, 2, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2040.149"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2040.cj (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,-4,0,0,0,-4,0,0,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.01809262577\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.23582400.4

Embedding invariants

Embedding label 1109.2
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2040.1109
Dual form 2040.1.cj.c.149.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +(-0.707107 - 0.707107i) q^{5} -1.00000 q^{6} +(-0.707107 - 0.707107i) q^{8} +1.00000i q^{9} -1.00000 q^{10} +(-0.707107 + 0.707107i) q^{12} +1.00000i q^{15} -1.00000 q^{16} +(-0.707107 - 0.707107i) q^{17} +(0.707107 + 0.707107i) q^{18} -2.00000 q^{19} +(-0.707107 + 0.707107i) q^{20} +1.00000i q^{24} +1.00000i q^{25} +(0.707107 - 0.707107i) q^{27} +(0.707107 + 0.707107i) q^{30} +(1.00000 - 1.00000i) q^{31} +(-0.707107 + 0.707107i) q^{32} -1.00000 q^{34} +1.00000 q^{36} +(-1.41421 + 1.41421i) q^{38} +1.00000i q^{40} +(0.707107 - 0.707107i) q^{45} -1.41421 q^{47} +(0.707107 + 0.707107i) q^{48} +1.00000i q^{49} +(0.707107 + 0.707107i) q^{50} +1.00000i q^{51} +1.41421 q^{53} -1.00000i q^{54} +(1.41421 + 1.41421i) q^{57} +1.00000 q^{60} +(1.00000 - 1.00000i) q^{61} -1.41421i q^{62} +1.00000i q^{64} +(-0.707107 + 0.707107i) q^{68} +(0.707107 - 0.707107i) q^{72} +(0.707107 - 0.707107i) q^{75} +2.00000i q^{76} +(-1.00000 - 1.00000i) q^{79} +(0.707107 + 0.707107i) q^{80} -1.00000 q^{81} -1.41421 q^{83} +1.00000i q^{85} -1.00000i q^{90} -1.41421 q^{93} +(-1.00000 + 1.00000i) q^{94} +(1.41421 + 1.41421i) q^{95} +1.00000 q^{96} +(0.707107 + 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{6} - 4 q^{10} - 4 q^{16} - 8 q^{19} + 4 q^{31} - 4 q^{34} + 4 q^{36} + 4 q^{60} + 4 q^{61} - 4 q^{79} - 4 q^{81} - 4 q^{94} + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2040\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1021\) \(1361\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.707107 0.707107i
\(3\) −0.707107 0.707107i −0.707107 0.707107i
\(4\) 1.00000i 1.00000i
\(5\) −0.707107 0.707107i −0.707107 0.707107i
\(6\) −1.00000 −1.00000
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −0.707107 0.707107i −0.707107 0.707107i
\(9\) 1.00000i 1.00000i
\(10\) −1.00000 −1.00000
\(11\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(12\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.00000i 1.00000i
\(16\) −1.00000 −1.00000
\(17\) −0.707107 0.707107i −0.707107 0.707107i
\(18\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(19\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(20\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 1.00000i 1.00000i
\(25\) 1.00000i 1.00000i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.707107 0.707107i
\(28\) 0 0
\(29\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(30\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(31\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(32\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(33\) 0 0
\(34\) −1.00000 −1.00000
\(35\) 0 0
\(36\) 1.00000 1.00000
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(39\) 0 0
\(40\) 1.00000i 1.00000i
\(41\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0.707107 0.707107i 0.707107 0.707107i
\(46\) 0 0
\(47\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(49\) 1.00000i 1.00000i
\(50\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(51\) 1.00000i 1.00000i
\(52\) 0 0
\(53\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 1.00000i 1.00000i
\(55\) 0 0
\(56\) 0 0
\(57\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 1.00000 1.00000
\(61\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(62\) 1.41421i 1.41421i
\(63\) 0 0
\(64\) 1.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(72\) 0.707107 0.707107i 0.707107 0.707107i
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) 0.707107 0.707107i 0.707107 0.707107i
\(76\) 2.00000i 2.00000i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(80\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(81\) −1.00000 −1.00000
\(82\) 0 0
\(83\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) 1.00000i 1.00000i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 1.00000i 1.00000i
\(91\) 0 0
\(92\) 0 0
\(93\) −1.41421 −1.41421
\(94\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(95\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(96\) 1.00000 1.00000
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.00000 1.00000i 1.00000 1.00000i
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) −0.707107 0.707107i −0.707107 0.707107i
\(109\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(114\) 2.00000 2.00000
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0.707107 0.707107i 0.707107 0.707107i
\(121\) 1.00000i 1.00000i
\(122\) 1.41421i 1.41421i
\(123\) 0 0
\(124\) −1.00000 1.00000i −1.00000 1.00000i
\(125\) 0.707107 0.707107i 0.707107 0.707107i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −1.00000
\(136\) 1.00000i 1.00000i
\(137\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000i 1.00000i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.707107 0.707107i 0.707107 0.707107i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 1.00000i 1.00000i
\(151\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(152\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(153\) 0.707107 0.707107i 0.707107 0.707107i
\(154\) 0 0
\(155\) −1.41421 −1.41421
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) −1.41421 −1.41421
\(159\) −1.00000 1.00000i −1.00000 1.00000i
\(160\) 1.00000 1.00000
\(161\) 0 0
\(162\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(167\) 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i \(-0.250000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(168\) 0 0
\(169\) −1.00000 −1.00000
\(170\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(171\) 2.00000i 2.00000i
\(172\) 0 0
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.707107 0.707107i −0.707107 0.707107i
\(181\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −1.41421 −1.41421
\(184\) 0 0
\(185\) 0 0
\(186\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(187\) 0 0
\(188\) 1.41421i 1.41421i
\(189\) 0 0
\(190\) 2.00000 2.00000
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0.707107 0.707107i 0.707107 0.707107i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.00000 1.00000
\(197\) −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i \(0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(200\) 0.707107 0.707107i 0.707107 0.707107i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 1.00000 1.00000
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(212\) 1.41421i 1.41421i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) −1.00000 −1.00000
\(217\) 0 0
\(218\) 1.41421i 1.41421i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −1.00000 −1.00000
\(226\) −2.00000 −2.00000
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 1.41421 1.41421i 1.41421 1.41421i
\(229\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 0 0
\(235\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(236\) 0 0
\(237\) 1.41421i 1.41421i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 1.00000i 1.00000i
\(241\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(242\) −0.707107 0.707107i −0.707107 0.707107i
\(243\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(244\) −1.00000 1.00000i −1.00000 1.00000i
\(245\) 0.707107 0.707107i 0.707107 0.707107i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.41421 −1.41421
\(249\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(250\) 1.00000i 1.00000i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.707107 0.707107i 0.707107 0.707107i
\(256\) 1.00000 1.00000
\(257\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) −1.00000 1.00000i −1.00000 1.00000i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(270\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(273\) 0 0
\(274\) 1.00000 1.00000i 1.00000 1.00000i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) −1.41421 −1.41421
\(279\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 1.41421 1.41421
\(283\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) 0 0
\(285\) 2.00000i 2.00000i
\(286\) 0 0
\(287\) 0 0
\(288\) −0.707107 0.707107i −0.707107 0.707107i
\(289\) 1.00000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(294\) 1.00000i 1.00000i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.707107 0.707107i −0.707107 0.707107i
\(301\) 0 0
\(302\) −1.41421 1.41421i −1.41421 1.41421i
\(303\) 0 0
\(304\) 2.00000 2.00000
\(305\) −1.41421 −1.41421
\(306\) 1.00000i 1.00000i
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(311\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) −1.41421 −1.41421
\(319\) 0 0
\(320\) 0.707107 0.707107i 0.707107 0.707107i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(324\) 1.00000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) −1.41421 −1.41421
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(332\) 1.41421i 1.41421i
\(333\) 0 0
\(334\) 2.00000i 2.00000i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(339\) 2.00000i 2.00000i
\(340\) 1.00000 1.00000
\(341\) 0 0
\(342\) −1.41421 1.41421i −1.41421 1.41421i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −1.00000 −1.00000
\(361\) 3.00000 3.00000
\(362\) 1.41421i 1.41421i
\(363\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(364\) 0 0
\(365\) 0 0
\(366\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.41421i 1.41421i
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) −1.00000 −1.00000
\(376\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(377\) 0 0
\(378\) 0 0
\(379\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(380\) 1.41421 1.41421i 1.41421 1.41421i
\(381\) 0 0
\(382\) 0 0
\(383\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(384\) 1.00000i 1.00000i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.707107 0.707107i 0.707107 0.707107i
\(393\) 0 0
\(394\) 2.00000i 2.00000i
\(395\) 1.41421i 1.41421i
\(396\) 0 0
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 1.41421i 1.41421i
\(399\) 0 0
\(400\) 1.00000i 1.00000i
\(401\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(406\) 0 0
\(407\) 0 0
\(408\) 0.707107 0.707107i 0.707107 0.707107i
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) −1.00000 1.00000i −1.00000 1.00000i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(416\) 0 0
\(417\) 1.41421i 1.41421i
\(418\) 0 0
\(419\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) 0 0
\(421\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(422\) 1.41421i 1.41421i
\(423\) 1.41421i 1.41421i
\(424\) −1.00000 1.00000i −1.00000 1.00000i
\(425\) 0.707107 0.707107i 0.707107 0.707107i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(432\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.00000 1.00000i −1.00000 1.00000i
\(437\) 0 0
\(438\) 0 0
\(439\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1.00000 −1.00000
\(442\) 0 0
\(443\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(450\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(451\) 0 0
\(452\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(453\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(454\) 0 0
\(455\) 0 0
\(456\) 2.00000i 2.00000i
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 1.41421 1.41421i 1.41421 1.41421i
\(459\) −1.00000 −1.00000
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(466\) 0 0
\(467\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.41421 1.41421
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(475\) 2.00000i 2.00000i
\(476\) 0 0
\(477\) 1.41421i 1.41421i
\(478\) 0 0
\(479\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(480\) −0.707107 0.707107i −0.707107 0.707107i
\(481\) 0 0
\(482\) 1.41421i 1.41421i
\(483\) 0 0
\(484\) −1.00000 −1.00000
\(485\) 0 0
\(486\) 1.00000 1.00000
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −1.41421 −1.41421
\(489\) 0 0
\(490\) 1.00000i 1.00000i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(497\) 0 0
\(498\) 1.41421 1.41421
\(499\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(500\) −0.707107 0.707107i −0.707107 0.707107i
\(501\) −2.00000 −2.00000
\(502\) 0 0
\(503\) 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 1.00000i 1.00000i
\(511\) 0 0
\(512\) 0.707107 0.707107i 0.707107 0.707107i
\(513\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(514\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(527\) −1.41421 −1.41421
\(528\) 0 0
\(529\) 1.00000i 1.00000i
\(530\) −1.41421 −1.41421
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 1.00000i 1.00000i
\(541\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 1.41421 1.41421
\(544\) 1.00000 1.00000
\(545\) −1.41421 −1.41421
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 1.41421i 1.41421i
\(549\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(557\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(558\) 1.41421 1.41421
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 1.00000 1.00000i 1.00000 1.00000i
\(565\) 2.00000i 2.00000i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) −1.41421 1.41421i −1.41421 1.41421i
\(571\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 −1.00000
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.00000 1.00000i −1.00000 1.00000i
\(587\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) −0.707107 0.707107i −0.707107 0.707107i
\(589\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(590\) 0 0
\(591\) 2.00000 2.00000
\(592\) 0 0
\(593\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.41421 −1.41421
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −1.00000 −1.00000
\(601\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2.00000 −2.00000
\(605\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 1.41421 1.41421i 1.41421 1.41421i
\(609\) 0 0
\(610\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(611\) 0 0
\(612\) −0.707107 0.707107i −0.707107 0.707107i
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i \(-0.250000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(618\) 0 0
\(619\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(620\) 1.41421i 1.41421i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.00000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 1.41421i 1.41421i
\(633\) 1.41421 1.41421
\(634\) 0 0
\(635\) 0 0
\(636\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000i 1.00000i
\(641\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.00000 2.00000
\(647\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(654\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(662\) 1.41421 1.41421i 1.41421 1.41421i
\(663\) 0 0
\(664\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1.41421 1.41421i −1.41421 1.41421i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(676\) 1.00000i 1.00000i
\(677\) 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(678\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(679\) 0 0
\(680\) 0.707107 0.707107i 0.707107 0.707107i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) −2.00000 −2.00000
\(685\) −1.00000 1.00000i −1.00000 1.00000i
\(686\) 0 0
\(687\) −1.41421 1.41421i −1.41421 1.41421i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.41421i 1.41421i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1.41421i 1.41421i
\(706\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(707\) 0 0
\(708\) 0 0
\(709\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 1.00000 1.00000i 1.00000 1.00000i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(720\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(721\) 0 0
\(722\) 2.12132 2.12132i 2.12132 2.12132i
\(723\) −1.41421 −1.41421
\(724\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(725\) 0 0
\(726\) 1.00000i 1.00000i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 1.41421i 1.41421i
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) −1.00000 −1.00000
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i \(-0.250000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(744\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(745\) 0 0
\(746\) 0 0
\(747\) 1.41421i 1.41421i
\(748\) 0 0
\(749\) 0 0
\(750\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(751\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(752\) 1.41421 1.41421
\(753\) 0 0
\(754\) 0 0
\(755\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 1.41421 1.41421
\(759\) 0 0
\(760\) 2.00000i 2.00000i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.00000 −1.00000
\(766\) −1.00000 1.00000i −1.00000 1.00000i
\(767\) 0 0
\(768\) −0.707107 0.707107i −0.707107 0.707107i
\(769\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 1.00000 1.00000i 1.00000 1.00000i
\(772\) 0 0
\(773\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 0 0
\(775\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000i 1.00000i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(789\) 1.00000 1.00000i 1.00000 1.00000i
\(790\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 1.41421i 1.41421i
\(796\) −1.00000 1.00000i −1.00000 1.00000i
\(797\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(800\) −0.707107 0.707107i −0.707107 0.707107i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(810\) 1.00000 1.00000
\(811\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 1.00000i 1.00000i
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(822\) −1.41421 −1.41421
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i \(-0.250000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 1.41421 1.41421
\(831\) 0 0
\(832\) 0 0
\(833\) 0.707107 0.707107i 0.707107 0.707107i
\(834\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(835\) −2.00000 −2.00000
\(836\) 0 0
\(837\) 1.41421i 1.41421i
\(838\) 0 0
\(839\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(840\) 0 0
\(841\) 1.00000i 1.00000i
\(842\) −1.41421 1.41421i −1.41421 1.41421i
\(843\) 0 0
\(844\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(845\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(846\) −1.00000 1.00000i −1.00000 1.00000i
\(847\) 0 0
\(848\) −1.41421 −1.41421
\(849\) 0 0
\(850\) 1.00000i 1.00000i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 1.00000i 1.00000i
\(865\) 0 0
\(866\) 0 0
\(867\) 0.707107 0.707107i 0.707107 0.707107i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −1.41421 −1.41421
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 1.41421i 1.41421i
\(879\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(880\) 0 0
\(881\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(882\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(887\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.82843 2.82843
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.00000i 1.00000i
\(901\) −1.00000 1.00000i −1.00000 1.00000i
\(902\) 0 0
\(903\) 0 0
\(904\) 2.00000i 2.00000i
\(905\) 1.41421 1.41421
\(906\) 2.00000i 2.00000i
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(912\) −1.41421 1.41421i −1.41421 1.41421i
\(913\) 0 0
\(914\) 0 0
\(915\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(916\) 2.00000i 2.00000i
\(917\) 0 0
\(918\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(930\) 1.41421 1.41421
\(931\) 2.00000i 2.00000i
\(932\) 0 0
\(933\) 0 0
\(934\) 1.00000 1.00000i 1.00000 1.00000i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.00000 1.00000i 1.00000 1.00000i
\(941\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(948\) 1.41421 1.41421
\(949\) 0 0
\(950\) −1.41421 1.41421i −1.41421 1.41421i
\(951\) 0 0
\(952\) 0 0
\(953\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −1.00000 −1.00000
\(961\) 1.00000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) −1.00000 1.00000i −1.00000 1.00000i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(969\) 2.00000i 2.00000i
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0.707107 0.707107i 0.707107 0.707107i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(977\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.707107 0.707107i −0.707107 0.707107i
\(981\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(982\) 0 0
\(983\) −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i \(0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 2.00000 2.00000
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(992\) 1.41421i 1.41421i
\(993\) −1.41421 1.41421i −1.41421 1.41421i
\(994\) 0 0
\(995\) −1.41421 −1.41421
\(996\) 1.00000 1.00000i 1.00000 1.00000i
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 1.41421i 1.41421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2040.1.cj.c.1109.2 yes 4
3.2 odd 2 inner 2040.1.cj.c.1109.1 yes 4
5.4 even 2 inner 2040.1.cj.c.1109.1 yes 4
8.5 even 2 2040.1.cj.d.1109.1 yes 4
15.14 odd 2 CM 2040.1.cj.c.1109.2 yes 4
17.13 even 4 2040.1.cj.d.149.1 yes 4
24.5 odd 2 2040.1.cj.d.1109.2 yes 4
40.29 even 2 2040.1.cj.d.1109.2 yes 4
51.47 odd 4 2040.1.cj.d.149.2 yes 4
85.64 even 4 2040.1.cj.d.149.2 yes 4
120.29 odd 2 2040.1.cj.d.1109.1 yes 4
136.13 even 4 inner 2040.1.cj.c.149.2 yes 4
255.149 odd 4 2040.1.cj.d.149.1 yes 4
408.149 odd 4 inner 2040.1.cj.c.149.1 4
680.149 even 4 inner 2040.1.cj.c.149.1 4
2040.149 odd 4 inner 2040.1.cj.c.149.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.1.cj.c.149.1 4 408.149 odd 4 inner
2040.1.cj.c.149.1 4 680.149 even 4 inner
2040.1.cj.c.149.2 yes 4 136.13 even 4 inner
2040.1.cj.c.149.2 yes 4 2040.149 odd 4 inner
2040.1.cj.c.1109.1 yes 4 3.2 odd 2 inner
2040.1.cj.c.1109.1 yes 4 5.4 even 2 inner
2040.1.cj.c.1109.2 yes 4 1.1 even 1 trivial
2040.1.cj.c.1109.2 yes 4 15.14 odd 2 CM
2040.1.cj.d.149.1 yes 4 17.13 even 4
2040.1.cj.d.149.1 yes 4 255.149 odd 4
2040.1.cj.d.149.2 yes 4 51.47 odd 4
2040.1.cj.d.149.2 yes 4 85.64 even 4
2040.1.cj.d.1109.1 yes 4 8.5 even 2
2040.1.cj.d.1109.1 yes 4 120.29 odd 2
2040.1.cj.d.1109.2 yes 4 24.5 odd 2
2040.1.cj.d.1109.2 yes 4 40.29 even 2