Properties

Label 2028.4.bf
Level $2028$
Weight $4$
Character orbit 2028.bf
Rep. character $\chi_{2028}(25,\cdot)$
Character field $\Q(\zeta_{26})$
Dimension $1080$
Sturm bound $1456$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2028.bf (of order \(26\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{26})\)
Sturm bound: \(1456\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2028, [\chi])\).

Total New Old
Modular forms 13176 1080 12096
Cusp forms 13032 1080 11952
Eisenstein series 144 0 144

Trace form

\( 1080 q + 6 q^{3} - 810 q^{9} - 252 q^{13} + 88 q^{17} - 48 q^{23} + 1998 q^{25} + 54 q^{27} - 272 q^{29} - 1404 q^{31} + 112 q^{35} + 54 q^{39} + 480 q^{43} + 2970 q^{49} - 324 q^{51} - 4148 q^{53} - 2016 q^{55}+ \cdots - 7332 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1014, [\chi])\)\(^{\oplus 2}\)