Defining parameters
| Level: | \( N \) | \(=\) | \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2028.bf (of order \(26\) and degree \(12\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 169 \) |
| Character field: | \(\Q(\zeta_{26})\) | ||
| Sturm bound: | \(1456\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2028, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 13176 | 1080 | 12096 |
| Cusp forms | 13032 | 1080 | 11952 |
| Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1014, [\chi])\)\(^{\oplus 2}\)