Properties

Label 2028.4
Level 2028
Weight 4
Dimension 146891
Nonzero newspaces 24
Sturm bound 908544
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(908544\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(2028))\).

Total New Old
Modular forms 342984 147711 195273
Cusp forms 338424 146891 191533
Eisenstein series 4560 820 3740

Trace form

\( 146891 q + 3 q^{3} - 140 q^{4} - 18 q^{5} - 90 q^{6} - 136 q^{7} - 135 q^{9} - 52 q^{10} + 276 q^{11} + 66 q^{12} + 90 q^{15} - 356 q^{16} + 390 q^{17} + 810 q^{18} - 244 q^{19} + 480 q^{20} - 468 q^{21}+ \cdots + 7164 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(2028))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2028.4.a \(\chi_{2028}(1, \cdot)\) 2028.4.a.a 1 1
2028.4.a.b 1
2028.4.a.c 1
2028.4.a.d 2
2028.4.a.e 2
2028.4.a.f 2
2028.4.a.g 2
2028.4.a.h 2
2028.4.a.i 2
2028.4.a.j 4
2028.4.a.k 4
2028.4.a.l 4
2028.4.a.m 4
2028.4.a.n 4
2028.4.a.o 6
2028.4.a.p 9
2028.4.a.q 9
2028.4.a.r 9
2028.4.a.s 9
2028.4.b \(\chi_{2028}(337, \cdot)\) 2028.4.b.a 2 1
2028.4.b.b 2
2028.4.b.c 2
2028.4.b.d 2
2028.4.b.e 4
2028.4.b.f 4
2028.4.b.g 4
2028.4.b.h 6
2028.4.b.i 8
2028.4.b.j 8
2028.4.b.k 18
2028.4.b.l 18
2028.4.c \(\chi_{2028}(1691, \cdot)\) n/a 908 1
2028.4.h \(\chi_{2028}(2027, \cdot)\) n/a 904 1
2028.4.i \(\chi_{2028}(529, \cdot)\) n/a 152 2
2028.4.k \(\chi_{2028}(775, \cdot)\) n/a 924 2
2028.4.m \(\chi_{2028}(437, \cdot)\) n/a 308 2
2028.4.p \(\chi_{2028}(191, \cdot)\) n/a 1808 2
2028.4.q \(\chi_{2028}(361, \cdot)\) n/a 156 2
2028.4.r \(\chi_{2028}(23, \cdot)\) n/a 1808 2
2028.4.u \(\chi_{2028}(89, \cdot)\) n/a 616 4
2028.4.w \(\chi_{2028}(19, \cdot)\) n/a 1848 4
2028.4.y \(\chi_{2028}(157, \cdot)\) n/a 1104 12
2028.4.z \(\chi_{2028}(155, \cdot)\) n/a 13056 12
2028.4.be \(\chi_{2028}(131, \cdot)\) n/a 13056 12
2028.4.bf \(\chi_{2028}(25, \cdot)\) n/a 1080 12
2028.4.bg \(\chi_{2028}(61, \cdot)\) n/a 2208 24
2028.4.bi \(\chi_{2028}(5, \cdot)\) n/a 4368 24
2028.4.bk \(\chi_{2028}(31, \cdot)\) n/a 13104 24
2028.4.bn \(\chi_{2028}(95, \cdot)\) n/a 26112 24
2028.4.bo \(\chi_{2028}(49, \cdot)\) n/a 2160 24
2028.4.bp \(\chi_{2028}(35, \cdot)\) n/a 26112 24
2028.4.bs \(\chi_{2028}(7, \cdot)\) n/a 26208 48
2028.4.bu \(\chi_{2028}(41, \cdot)\) n/a 8736 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(2028))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(2028)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(156))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(676))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1014))\)\(^{\oplus 2}\)