Properties

Label 2028.1.bm.a.101.1
Level $2028$
Weight $1$
Character 2028.101
Analytic conductor $1.012$
Analytic rank $0$
Dimension $24$
Projective image $D_{78}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,1,Mod(17,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(78)) chi = DirichletCharacter(H, H._module([0, 39, 73])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.17"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2028.bm (of order \(78\), degree \(24\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.01210384562\)
Analytic rank: \(0\)
Dimension: \(24\)
Coefficient field: \(\Q(\zeta_{39})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{21} - x^{20} + x^{18} - x^{17} + x^{15} - x^{14} + x^{12} - x^{10} + x^{9} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{78}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{78} - \cdots)\)

Embedding invariants

Embedding label 101.1
Root \(-0.200026 - 0.979791i\) of defining polynomial
Character \(\chi\) \(=\) 2028.101
Dual form 2028.1.bm.a.1265.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.428693 + 0.903450i) q^{3} +(-0.160803 - 0.00648012i) q^{7} +(-0.632445 - 0.774605i) q^{9} +(0.500000 - 0.866025i) q^{13} +(1.61950 + 0.935016i) q^{19} +(0.0747894 - 0.142499i) q^{21} +(0.970942 + 0.239316i) q^{25} +(0.970942 - 0.239316i) q^{27} +(0.468959 + 1.90264i) q^{31} +(-0.670319 + 0.643850i) q^{37} +(0.568065 + 0.822984i) q^{39} +(-0.0557864 + 0.0580798i) q^{43} +(-0.970942 - 0.0783825i) q^{49} +(-1.53901 + 1.06230i) q^{57} +(-0.338119 + 0.213814i) q^{61} +(0.0966793 + 0.128657i) q^{63} +(0.608331 - 1.82217i) q^{67} +(1.12341 - 0.426052i) q^{73} +(-0.632445 + 0.774605i) q^{75} +(-1.49217 + 1.32194i) q^{79} +(-0.200026 + 0.979791i) q^{81} +(-0.0860133 + 0.136019i) q^{91} +(-1.91998 - 0.391967i) q^{93} +(0.678906 - 1.59345i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - q^{3} + 3 q^{7} + q^{9} + 12 q^{13} + 2 q^{25} + 2 q^{27} - 2 q^{39} - q^{43} - 2 q^{49} + q^{61} - 3 q^{63} - 3 q^{67} + q^{75} - 2 q^{79} + q^{81} + 3 q^{91} - 23 q^{93} + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{35}{78}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.428693 + 0.903450i −0.428693 + 0.903450i
\(4\) 0 0
\(5\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(6\) 0 0
\(7\) −0.160803 0.00648012i −0.160803 0.00648012i −0.0402659 0.999189i \(-0.512821\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(8\) 0 0
\(9\) −0.632445 0.774605i −0.632445 0.774605i
\(10\) 0 0
\(11\) 0 0 −0.774605 0.632445i \(-0.782051\pi\)
0.774605 + 0.632445i \(0.217949\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.500000 0.866025i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(18\) 0 0
\(19\) 1.61950 + 0.935016i 1.61950 + 0.935016i 0.987050 + 0.160411i \(0.0512821\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(20\) 0 0
\(21\) 0.0747894 0.142499i 0.0747894 0.142499i
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) 0.970942 + 0.239316i 0.970942 + 0.239316i
\(26\) 0 0
\(27\) 0.970942 0.239316i 0.970942 0.239316i
\(28\) 0 0
\(29\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(30\) 0 0
\(31\) 0.468959 + 1.90264i 0.468959 + 1.90264i 0.428693 + 0.903450i \(0.358974\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.670319 + 0.643850i −0.670319 + 0.643850i −0.948536 0.316668i \(-0.897436\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(38\) 0 0
\(39\) 0.568065 + 0.822984i 0.568065 + 0.822984i
\(40\) 0 0
\(41\) 0 0 −0.903450 0.428693i \(-0.858974\pi\)
0.903450 + 0.428693i \(0.141026\pi\)
\(42\) 0 0
\(43\) −0.0557864 + 0.0580798i −0.0557864 + 0.0580798i −0.748511 0.663123i \(-0.769231\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.663123 0.748511i \(-0.730769\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(48\) 0 0
\(49\) −0.970942 0.0783825i −0.970942 0.0783825i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.53901 + 1.06230i −1.53901 + 1.06230i
\(58\) 0 0
\(59\) 0 0 0.600742 0.799443i \(-0.294872\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(60\) 0 0
\(61\) −0.338119 + 0.213814i −0.338119 + 0.213814i −0.692724 0.721202i \(-0.743590\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(62\) 0 0
\(63\) 0.0966793 + 0.128657i 0.0966793 + 0.128657i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.608331 1.82217i 0.608331 1.82217i 0.0402659 0.999189i \(-0.487179\pi\)
0.568065 0.822984i \(-0.307692\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.0804666 0.996757i \(-0.525641\pi\)
0.0804666 + 0.996757i \(0.474359\pi\)
\(72\) 0 0
\(73\) 1.12341 0.426052i 1.12341 0.426052i 0.278217 0.960518i \(-0.410256\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(74\) 0 0
\(75\) −0.632445 + 0.774605i −0.632445 + 0.774605i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.49217 + 1.32194i −1.49217 + 1.32194i −0.692724 + 0.721202i \(0.743590\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(80\) 0 0
\(81\) −0.200026 + 0.979791i −0.200026 + 0.979791i
\(82\) 0 0
\(83\) 0 0 −0.822984 0.568065i \(-0.807692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) −0.0860133 + 0.136019i −0.0860133 + 0.136019i
\(92\) 0 0
\(93\) −1.91998 0.391967i −1.91998 0.391967i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.678906 1.59345i 0.678906 1.59345i −0.120537 0.992709i \(-0.538462\pi\)
0.799443 0.600742i \(-0.205128\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(102\) 0 0
\(103\) 0.908271 + 1.31586i 0.908271 + 1.31586i 0.948536 + 0.316668i \(0.102564\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(108\) 0 0
\(109\) 0.187607 0.761154i 0.187607 0.761154i −0.799443 0.600742i \(-0.794872\pi\)
0.987050 0.160411i \(-0.0512821\pi\)
\(110\) 0 0
\(111\) −0.294326 0.881614i −0.294326 0.881614i
\(112\) 0 0
\(113\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.987050 + 0.160411i −0.987050 + 0.160411i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.200026 + 0.979791i 0.200026 + 0.979791i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.74527 + 0.582656i 1.74527 + 0.582656i 0.996757 0.0804666i \(-0.0256410\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(128\) 0 0
\(129\) −0.0285570 0.0752986i −0.0285570 0.0752986i
\(130\) 0 0
\(131\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(132\) 0 0
\(133\) −0.254360 0.160848i −0.254360 0.160848i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.721202 0.692724i \(-0.756410\pi\)
0.721202 + 0.692724i \(0.243590\pi\)
\(138\) 0 0
\(139\) −1.27458 0.543050i −1.27458 0.543050i −0.354605 0.935016i \(-0.615385\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0.487050 0.843596i 0.487050 0.843596i
\(148\) 0 0
\(149\) 0 0 0.979791 0.200026i \(-0.0641026\pi\)
−0.979791 + 0.200026i \(0.935897\pi\)
\(150\) 0 0
\(151\) 0.317391 0.358261i 0.317391 0.358261i −0.568065 0.822984i \(-0.692308\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.228667 1.88324i 0.228667 1.88324i −0.200026 0.979791i \(-0.564103\pi\)
0.428693 0.903450i \(-0.358974\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.38546 + 0.401302i 1.38546 + 0.401302i 0.885456 0.464723i \(-0.153846\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.160411 0.987050i \(-0.551282\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.500000 0.866025i
\(170\) 0 0
\(171\) −0.299974 1.84582i −0.299974 1.84582i
\(172\) 0 0
\(173\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(174\) 0 0
\(175\) −0.154579 0.0447744i −0.154579 0.0447744i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(180\) 0 0
\(181\) −0.234068 + 1.92773i −0.234068 + 1.92773i 0.120537 + 0.992709i \(0.461538\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(182\) 0 0
\(183\) −0.0482209 0.397135i −0.0482209 0.397135i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.157681 + 0.0321908i −0.157681 + 0.0321908i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) −1.06806 + 0.0430415i −1.06806 + 0.0430415i −0.568065 0.822984i \(-0.692308\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 0.960518 0.278217i \(-0.0897436\pi\)
−0.960518 + 0.278217i \(0.910256\pi\)
\(198\) 0 0
\(199\) −1.16367 0.495795i −1.16367 0.495795i −0.278217 0.960518i \(-0.589744\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(200\) 0 0
\(201\) 1.38546 + 1.33075i 1.38546 + 1.33075i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.31415 0.438727i −1.31415 0.438727i −0.428693 0.903450i \(-0.641026\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.0630804 0.308988i −0.0630804 0.308988i
\(218\) 0 0
\(219\) −0.0966793 + 1.19759i −0.0966793 + 1.19759i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(224\) 0 0
\(225\) −0.428693 0.903450i −0.428693 0.903450i
\(226\) 0 0
\(227\) 0 0 −0.316668 0.948536i \(-0.602564\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(228\) 0 0
\(229\) 0.475142 1.92773i 0.475142 1.92773i 0.120537 0.992709i \(-0.461538\pi\)
0.354605 0.935016i \(-0.384615\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.554631 1.91481i −0.554631 1.91481i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0.519844 1.22012i 0.519844 1.22012i −0.428693 0.903450i \(-0.641026\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(242\) 0 0
\(243\) −0.799443 0.600742i −0.799443 0.600742i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.61950 0.935016i 1.61950 0.935016i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(258\) 0 0
\(259\) 0.111961 0.0991890i 0.111961 0.0991890i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.996757 0.0804666i \(-0.0256410\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(270\) 0 0
\(271\) −0.200557 + 0.600742i −0.200557 + 0.600742i 0.799443 + 0.600742i \(0.205128\pi\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) −0.0860133 0.136019i −0.0860133 0.136019i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.960245 + 0.607222i −0.960245 + 0.607222i −0.919979 0.391967i \(-0.871795\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(278\) 0 0
\(279\) 1.17720 1.56657i 1.17720 1.56657i
\(280\) 0 0
\(281\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(282\) 0 0
\(283\) −1.10759 1.15312i −1.10759 1.15312i −0.987050 0.160411i \(-0.948718\pi\)
−0.120537 0.992709i \(-0.538462\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.996757 0.0804666i −0.996757 0.0804666i
\(290\) 0 0
\(291\) 1.14856 + 1.29646i 1.14856 + 1.29646i
\(292\) 0 0
\(293\) 0 0 −0.534466 0.845190i \(-0.679487\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.00934696 0.00897788i 0.00934696 0.00897788i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −0.478243 1.94031i −0.478243 1.94031i −0.278217 0.960518i \(-0.589744\pi\)
−0.200026 0.979791i \(-0.564103\pi\)
\(308\) 0 0
\(309\) −1.57818 + 0.256479i −1.57818 + 0.256479i
\(310\) 0 0
\(311\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(312\) 0 0
\(313\) 0.832471 + 0.205186i 0.832471 + 0.205186i 0.632445 0.774605i \(-0.282051\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0.692724 0.721202i 0.692724 0.721202i
\(326\) 0 0
\(327\) 0.607239 + 0.495795i 0.607239 + 0.495795i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.44124 0.0580798i −1.44124 0.0580798i −0.692724 0.721202i \(-0.743590\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(332\) 0 0
\(333\) 0.922670 + 0.112032i 0.922670 + 0.112032i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.69038 1.69038 0.845190 0.534466i \(-0.179487\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.315382 + 0.0382943i 0.315382 + 0.0382943i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(348\) 0 0
\(349\) −1.34166 1.09543i −1.34166 1.09543i −0.987050 0.160411i \(-0.948718\pi\)
−0.354605 0.935016i \(-0.615385\pi\)
\(350\) 0 0
\(351\) 0.278217 0.960518i 0.278217 0.960518i
\(352\) 0 0
\(353\) 0 0 0.534466 0.845190i \(-0.320513\pi\)
−0.534466 + 0.845190i \(0.679487\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(360\) 0 0
\(361\) 1.24851 + 2.16248i 1.24851 + 2.16248i
\(362\) 0 0
\(363\) −0.970942 0.239316i −0.970942 0.239316i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.96770 + 0.319782i −1.96770 + 0.319782i −0.970942 + 0.239316i \(0.923077\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.87251 0.304312i −1.87251 0.304312i −0.885456 0.464723i \(-0.846154\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.289847 0.137534i −0.289847 0.137534i 0.278217 0.960518i \(-0.410256\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(380\) 0 0
\(381\) −1.27458 + 1.32698i −1.27458 + 1.32698i
\(382\) 0 0
\(383\) 0 0 −0.534466 0.845190i \(-0.679487\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.0802707 + 0.00648012i 0.0802707 + 0.00648012i
\(388\) 0 0
\(389\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.380472 + 0.506316i −0.380472 + 0.506316i −0.948536 0.316668i \(-0.897436\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(398\) 0 0
\(399\) 0.254360 0.160848i 0.254360 0.160848i
\(400\) 0 0
\(401\) 0 0 −0.600742 0.799443i \(-0.705128\pi\)
0.600742 + 0.799443i \(0.294872\pi\)
\(402\) 0 0
\(403\) 1.88221 + 0.545190i 1.88221 + 0.545190i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.124660 + 1.54419i 0.124660 + 1.54419i 0.692724 + 0.721202i \(0.256410\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.03702 0.918722i 1.03702 0.918722i
\(418\) 0 0
\(419\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(420\) 0 0
\(421\) −0.645164 0.445325i −0.645164 0.445325i 0.200026 0.979791i \(-0.435897\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.0557560 0.0321908i 0.0557560 0.0321908i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.979791 0.200026i \(-0.935897\pi\)
0.979791 + 0.200026i \(0.0641026\pi\)
\(432\) 0 0
\(433\) 1.01121 + 0.759873i 1.01121 + 0.759873i 0.970942 0.239316i \(-0.0769231\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −0.351915 1.21495i −0.351915 1.21495i −0.919979 0.391967i \(-0.871795\pi\)
0.568065 0.822984i \(-0.307692\pi\)
\(440\) 0 0
\(441\) 0.553352 + 0.801669i 0.553352 + 0.801669i
\(442\) 0 0
\(443\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.316668 0.948536i \(-0.602564\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0.187607 + 0.440331i 0.187607 + 0.440331i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.0966793 1.19759i 0.0966793 1.19759i −0.748511 0.663123i \(-0.769231\pi\)
0.845190 0.534466i \(-0.179487\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.774605 0.632445i \(-0.217949\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(462\) 0 0
\(463\) −1.44854 0.549357i −1.44854 0.549357i −0.500000 0.866025i \(-0.666667\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(468\) 0 0
\(469\) −0.109629 + 0.289068i −0.109629 + 0.289068i
\(470\) 0 0
\(471\) 1.60339 + 1.01392i 1.60339 + 1.01392i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.34867 + 1.29542i 1.34867 + 1.29542i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.960518 0.278217i \(-0.0897436\pi\)
−0.960518 + 0.278217i \(0.910256\pi\)
\(480\) 0 0
\(481\) 0.222431 + 0.902438i 0.222431 + 0.902438i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1.29944 + 0.265283i −1.29944 + 0.265283i −0.799443 0.600742i \(-0.794872\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) −0.956491 + 1.07966i −0.956491 + 1.07966i
\(490\) 0 0
\(491\) 0 0 0.799443 0.600742i \(-0.205128\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.922670 + 1.75800i 0.922670 + 1.75800i 0.568065 + 0.822984i \(0.307692\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.996757 0.0804666i 0.996757 0.0804666i
\(508\) 0 0
\(509\) 0 0 −0.160411 0.987050i \(-0.551282\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(510\) 0 0
\(511\) −0.183408 + 0.0612305i −0.183408 + 0.0612305i
\(512\) 0 0
\(513\) 1.79620 + 0.520276i 1.79620 + 0.520276i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(522\) 0 0
\(523\) −0.566973 + 0.426052i −0.566973 + 0.426052i −0.845190 0.534466i \(-0.820513\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(524\) 0 0
\(525\) 0.106718 0.120460i 0.106718 0.120460i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.43189 + 0.173863i −1.43189 + 0.173863i −0.799443 0.600742i \(-0.794872\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(542\) 0 0
\(543\) −1.64126 1.03787i −1.64126 1.03787i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.672711 1.77379i −0.672711 1.77379i −0.632445 0.774605i \(-0.717949\pi\)
−0.0402659 0.999189i \(-0.512821\pi\)
\(548\) 0 0
\(549\) 0.379463 + 0.126683i 0.379463 + 0.126683i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.248511 0.202903i 0.248511 0.202903i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.0804666 0.996757i \(-0.474359\pi\)
−0.0804666 + 0.996757i \(0.525641\pi\)
\(558\) 0 0
\(559\) 0.0224054 + 0.0773523i 0.0224054 + 0.0773523i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.0385138 0.156257i 0.0385138 0.156257i
\(568\) 0 0
\(569\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(570\) 0 0
\(571\) −0.645395 + 0.935016i −0.645395 + 0.935016i 0.354605 + 0.935016i \(0.384615\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0.478631i 0.478631i −0.970942 0.239316i \(-0.923077\pi\)
0.970942 0.239316i \(-0.0769231\pi\)
\(578\) 0 0
\(579\) 0.418986 0.983395i 0.418986 0.983395i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) −1.01952 + 3.51980i −1.01952 + 3.51980i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.822984 0.568065i \(-0.807692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.946784 0.838778i 0.946784 0.838778i
\(598\) 0 0
\(599\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(600\) 0 0
\(601\) 1.12001 1.37176i 1.12001 1.37176i 0.200026 0.979791i \(-0.435897\pi\)
0.919979 0.391967i \(-0.128205\pi\)
\(602\) 0 0
\(603\) −1.79620 + 0.681209i −1.79620 + 0.681209i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.76517 + 0.142499i −1.76517 + 0.142499i −0.919979 0.391967i \(-0.871795\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.20051 + 1.59759i 1.20051 + 1.59759i 0.632445 + 0.774605i \(0.282051\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.600742 0.799443i \(-0.294872\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(618\) 0 0
\(619\) 1.64463 1.13521i 1.64463 1.13521i 0.799443 0.600742i \(-0.205128\pi\)
0.845190 0.534466i \(-0.179487\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.885456 + 0.464723i 0.885456 + 0.464723i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.571307 + 0.903450i 0.571307 + 0.903450i 1.00000 \(0\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(632\) 0 0
\(633\) 0.959734 0.999189i 0.959734 0.999189i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.553352 + 0.801669i −0.553352 + 0.801669i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(642\) 0 0
\(643\) −0.965727 + 0.458243i −0.965727 + 0.458243i −0.845190 0.534466i \(-0.820513\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0.306198 + 0.0754710i 0.306198 + 0.0754710i
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.04052 0.600742i −1.04052 0.600742i
\(658\) 0 0
\(659\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(660\) 0 0
\(661\) 0.171469 0.271156i 0.171469 0.271156i −0.748511 0.663123i \(-0.769231\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.542249 + 1.14277i −0.542249 + 1.14277i 0.428693 + 0.903450i \(0.358974\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(674\) 0 0
\(675\) 1.00000 1.00000
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) −0.119496 + 0.251832i −0.119496 + 0.251832i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.999189 0.0402659i \(-0.987179\pi\)
0.999189 + 0.0402659i \(0.0128205\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.53791 + 1.25567i 1.53791 + 1.25567i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.338496 0.535289i 0.338496 0.535289i −0.632445 0.774605i \(-0.717949\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(702\) 0 0
\(703\) −1.68759 + 0.415953i −1.68759 + 0.415953i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.30314 0.618348i 1.30314 0.618348i 0.354605 0.935016i \(-0.384615\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(710\) 0 0
\(711\) 1.96770 + 0.319782i 1.96770 + 0.319782i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.692724 0.721202i \(-0.256410\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(720\) 0 0
\(721\) −0.137525 0.217479i −0.137525 0.217479i
\(722\) 0 0
\(723\) 0.879463 + 0.992709i 0.879463 + 0.992709i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0.0713074 + 0.0374250i 0.0713074 + 0.0374250i 0.500000 0.866025i \(-0.333333\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(728\) 0 0
\(729\) 0.885456 0.464723i 0.885456 0.464723i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0.879714 0.607222i 0.879714 0.607222i −0.0402659 0.999189i \(-0.512821\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.796732 + 1.06026i 0.796732 + 1.06026i 0.996757 + 0.0804666i \(0.0256410\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(740\) 0 0
\(741\) 0.150475 + 1.86397i 0.150475 + 1.86397i
\(742\) 0 0
\(743\) 0 0 0.316668 0.948536i \(-0.397436\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −0.152466 + 0.186737i −0.152466 + 0.186737i −0.845190 0.534466i \(-0.820513\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.354228 1.73512i 0.354228 1.73512i −0.278217 0.960518i \(-0.589744\pi\)
0.632445 0.774605i \(-0.282051\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.160411 0.987050i \(-0.448718\pi\)
−0.160411 + 0.987050i \(0.551282\pi\)
\(762\) 0 0
\(763\) −0.0351001 + 0.121180i −0.0351001 + 0.121180i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −0.468959 0.0957386i −0.468959 0.0957386i −0.0402659 0.999189i \(-0.512821\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.391967 0.919979i \(-0.371795\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(774\) 0 0
\(775\) 1.95958i 1.95958i
\(776\) 0 0
\(777\) 0.0416154 + 0.143673i 0.0416154 + 0.143673i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −0.248247 0.743589i −0.248247 0.743589i −0.996757 0.0804666i \(-0.974359\pi\)
0.748511 0.663123i \(-0.230769\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.0161084 + 0.399727i 0.0161084 + 0.399727i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(810\) 0 0
\(811\) 1.53791 0.186737i 1.53791 0.186737i 0.692724 0.721202i \(-0.256410\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(812\) 0 0
\(813\) −0.456763 0.438727i −0.456763 0.438727i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.144651 + 0.0418988i −0.144651 + 0.0418988i
\(818\) 0 0
\(819\) 0.159760 0.0193983i 0.159760 0.0193983i
\(820\) 0 0
\(821\) 0 0 0.999189 0.0402659i \(-0.0128205\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(822\) 0 0
\(823\) 0.354605 0.614194i 0.354605 0.614194i −0.632445 0.774605i \(-0.717949\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(828\) 0 0
\(829\) 1.47094 1.10534i 1.47094 1.10534i 0.500000 0.866025i \(-0.333333\pi\)
0.970942 0.239316i \(-0.0769231\pi\)
\(830\) 0 0
\(831\) −0.136945 1.12785i −0.136945 1.12785i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.910663 + 1.73512i 0.910663 + 1.73512i
\(838\) 0 0
\(839\) 0 0 −0.960518 0.278217i \(-0.910256\pi\)
0.960518 + 0.278217i \(0.0897436\pi\)
\(840\) 0 0
\(841\) 0.948536 0.316668i 0.948536 0.316668i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.0258155 0.158849i −0.0258155 0.158849i
\(848\) 0 0
\(849\) 1.51660 0.506316i 1.51660 0.506316i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −0.558358 1.06386i −0.558358 1.06386i −0.987050 0.160411i \(-0.948718\pi\)
0.428693 0.903450i \(-0.358974\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(858\) 0 0
\(859\) −0.103346 0.851134i −0.103346 0.851134i −0.948536 0.316668i \(-0.897436\pi\)
0.845190 0.534466i \(-0.179487\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.500000 0.866025i 0.500000 0.866025i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −1.27388 1.43792i −1.27388 1.43792i
\(872\) 0 0
\(873\) −1.66367 + 0.481887i −1.66367 + 0.481887i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.670319 + 0.643850i 0.670319 + 0.643850i 0.948536 0.316668i \(-0.102564\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(882\) 0 0
\(883\) −0.0285570 + 0.0752986i −0.0285570 + 0.0752986i −0.948536 0.316668i \(-0.897436\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(888\) 0 0
\(889\) −0.276868 0.105002i −0.276868 0.105002i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0.00410410 + 0.0122933i 0.00410410 + 0.0122933i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.78649 + 0.761154i −1.78649 + 0.761154i −0.799443 + 0.600742i \(0.794872\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.55242 + 1.16657i 1.55242 + 1.16657i 0.919979 + 0.391967i \(0.128205\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(920\) 0 0
\(921\) 1.95799 + 0.399727i 1.95799 + 0.399727i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.804924 + 0.464723i −0.804924 + 0.464723i
\(926\) 0 0
\(927\) 0.444838 1.53576i 0.444838 1.53576i
\(928\) 0 0
\(929\) 0 0 0.160411 0.987050i \(-0.448718\pi\)
−0.160411 + 0.987050i \(0.551282\pi\)
\(930\) 0 0
\(931\) −1.49915 1.03479i −1.49915 1.03479i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.530851 0.470293i −0.530851 0.470293i 0.354605 0.935016i \(-0.384615\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(938\) 0 0
\(939\) −0.542249 + 0.664135i −0.542249 + 0.664135i
\(940\) 0 0
\(941\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.316668 0.948536i \(-0.397436\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(948\) 0 0
\(949\) 0.192732 1.18593i 0.192732 1.18593i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.845190 0.534466i \(-0.179487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.51466 + 1.31979i −2.51466 + 1.31979i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.879463 0.992709i −0.879463 0.992709i 0.120537 0.992709i \(-0.461538\pi\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.692724 0.721202i \(-0.256410\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(972\) 0 0
\(973\) 0.201437 + 0.0955833i 0.201437 + 0.0955833i
\(974\) 0 0
\(975\) 0.354605 + 0.935016i 0.354605 + 0.935016i
\(976\) 0 0
\(977\) 0 0 0.721202 0.692724i \(-0.243590\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.708245 + 0.336066i −0.708245 + 0.336066i
\(982\) 0 0
\(983\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.354605 + 0.614194i 0.354605 + 0.614194i 0.987050 0.160411i \(-0.0512821\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(992\) 0 0
\(993\) 0.670319 1.27719i 0.670319 1.27719i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.0557864 + 1.38433i −0.0557864 + 1.38433i 0.692724 + 0.721202i \(0.256410\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(998\) 0 0
\(999\) −0.496757 + 0.785559i −0.496757 + 0.785559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.1.bm.a.101.1 24
3.2 odd 2 CM 2028.1.bm.a.101.1 24
169.82 even 78 inner 2028.1.bm.a.1265.1 yes 24
507.251 odd 78 inner 2028.1.bm.a.1265.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2028.1.bm.a.101.1 24 1.1 even 1 trivial
2028.1.bm.a.101.1 24 3.2 odd 2 CM
2028.1.bm.a.1265.1 yes 24 169.82 even 78 inner
2028.1.bm.a.1265.1 yes 24 507.251 odd 78 inner