Properties

Label 2025.4.a.y.1.3
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-4,0,34,0,0,-40,-66,0,0,88,0,-20,180] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 38x^{4} + 42x^{3} + 393x^{2} - 72x - 432 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 405)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.07326\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.07326 q^{2} -3.70159 q^{4} +4.66112 q^{7} +24.2604 q^{8} +8.89410 q^{11} -34.6172 q^{13} -9.66372 q^{14} -20.6855 q^{16} -2.66659 q^{17} +125.599 q^{19} -18.4398 q^{22} -131.975 q^{23} +71.7704 q^{26} -17.2535 q^{28} -71.2106 q^{29} +13.4250 q^{31} -151.197 q^{32} +5.52853 q^{34} -283.849 q^{37} -260.400 q^{38} +383.452 q^{41} +339.175 q^{43} -32.9223 q^{44} +273.618 q^{46} -78.2867 q^{47} -321.274 q^{49} +128.138 q^{52} -254.626 q^{53} +113.081 q^{56} +147.638 q^{58} -32.8196 q^{59} +186.983 q^{61} -27.8336 q^{62} +478.955 q^{64} -406.614 q^{67} +9.87060 q^{68} +966.124 q^{71} -276.177 q^{73} +588.492 q^{74} -464.916 q^{76} +41.4565 q^{77} -1146.85 q^{79} -794.996 q^{82} -178.045 q^{83} -703.198 q^{86} +215.775 q^{88} +806.486 q^{89} -161.355 q^{91} +488.516 q^{92} +162.309 q^{94} +1238.05 q^{97} +666.085 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{2} + 34 q^{4} - 40 q^{7} - 66 q^{8} + 88 q^{11} - 20 q^{13} + 180 q^{14} + 58 q^{16} - 124 q^{17} - 46 q^{19} + 74 q^{22} - 210 q^{23} + 4 q^{26} - 352 q^{28} + 296 q^{29} - 104 q^{31} - 722 q^{32}+ \cdots - 1982 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.07326 −0.733009 −0.366504 0.930416i \(-0.619445\pi\)
−0.366504 + 0.930416i \(0.619445\pi\)
\(3\) 0 0
\(4\) −3.70159 −0.462698
\(5\) 0 0
\(6\) 0 0
\(7\) 4.66112 0.251677 0.125838 0.992051i \(-0.459838\pi\)
0.125838 + 0.992051i \(0.459838\pi\)
\(8\) 24.2604 1.07217
\(9\) 0 0
\(10\) 0 0
\(11\) 8.89410 0.243788 0.121894 0.992543i \(-0.461103\pi\)
0.121894 + 0.992543i \(0.461103\pi\)
\(12\) 0 0
\(13\) −34.6172 −0.738544 −0.369272 0.929321i \(-0.620393\pi\)
−0.369272 + 0.929321i \(0.620393\pi\)
\(14\) −9.66372 −0.184481
\(15\) 0 0
\(16\) −20.6855 −0.323212
\(17\) −2.66659 −0.0380437 −0.0190218 0.999819i \(-0.506055\pi\)
−0.0190218 + 0.999819i \(0.506055\pi\)
\(18\) 0 0
\(19\) 125.599 1.51655 0.758273 0.651937i \(-0.226043\pi\)
0.758273 + 0.651937i \(0.226043\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −18.4398 −0.178699
\(23\) −131.975 −1.19646 −0.598231 0.801323i \(-0.704130\pi\)
−0.598231 + 0.801323i \(0.704130\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 71.7704 0.541359
\(27\) 0 0
\(28\) −17.2535 −0.116451
\(29\) −71.2106 −0.455982 −0.227991 0.973663i \(-0.573216\pi\)
−0.227991 + 0.973663i \(0.573216\pi\)
\(30\) 0 0
\(31\) 13.4250 0.0777810 0.0388905 0.999243i \(-0.487618\pi\)
0.0388905 + 0.999243i \(0.487618\pi\)
\(32\) −151.197 −0.835254
\(33\) 0 0
\(34\) 5.52853 0.0278863
\(35\) 0 0
\(36\) 0 0
\(37\) −283.849 −1.26120 −0.630600 0.776108i \(-0.717191\pi\)
−0.630600 + 0.776108i \(0.717191\pi\)
\(38\) −260.400 −1.11164
\(39\) 0 0
\(40\) 0 0
\(41\) 383.452 1.46061 0.730307 0.683119i \(-0.239377\pi\)
0.730307 + 0.683119i \(0.239377\pi\)
\(42\) 0 0
\(43\) 339.175 1.20288 0.601438 0.798919i \(-0.294595\pi\)
0.601438 + 0.798919i \(0.294595\pi\)
\(44\) −32.9223 −0.112801
\(45\) 0 0
\(46\) 273.618 0.877018
\(47\) −78.2867 −0.242964 −0.121482 0.992594i \(-0.538765\pi\)
−0.121482 + 0.992594i \(0.538765\pi\)
\(48\) 0 0
\(49\) −321.274 −0.936659
\(50\) 0 0
\(51\) 0 0
\(52\) 128.138 0.341723
\(53\) −254.626 −0.659915 −0.329958 0.943996i \(-0.607034\pi\)
−0.329958 + 0.943996i \(0.607034\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 113.081 0.269841
\(57\) 0 0
\(58\) 147.638 0.334239
\(59\) −32.8196 −0.0724194 −0.0362097 0.999344i \(-0.511528\pi\)
−0.0362097 + 0.999344i \(0.511528\pi\)
\(60\) 0 0
\(61\) 186.983 0.392470 0.196235 0.980557i \(-0.437128\pi\)
0.196235 + 0.980557i \(0.437128\pi\)
\(62\) −27.8336 −0.0570141
\(63\) 0 0
\(64\) 478.955 0.935460
\(65\) 0 0
\(66\) 0 0
\(67\) −406.614 −0.741429 −0.370715 0.928747i \(-0.620887\pi\)
−0.370715 + 0.928747i \(0.620887\pi\)
\(68\) 9.87060 0.0176027
\(69\) 0 0
\(70\) 0 0
\(71\) 966.124 1.61490 0.807450 0.589936i \(-0.200847\pi\)
0.807450 + 0.589936i \(0.200847\pi\)
\(72\) 0 0
\(73\) −276.177 −0.442796 −0.221398 0.975184i \(-0.571062\pi\)
−0.221398 + 0.975184i \(0.571062\pi\)
\(74\) 588.492 0.924471
\(75\) 0 0
\(76\) −464.916 −0.701704
\(77\) 41.4565 0.0613559
\(78\) 0 0
\(79\) −1146.85 −1.63330 −0.816652 0.577130i \(-0.804172\pi\)
−0.816652 + 0.577130i \(0.804172\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −794.996 −1.07064
\(83\) −178.045 −0.235457 −0.117729 0.993046i \(-0.537561\pi\)
−0.117729 + 0.993046i \(0.537561\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −703.198 −0.881719
\(87\) 0 0
\(88\) 215.775 0.261383
\(89\) 806.486 0.960532 0.480266 0.877123i \(-0.340540\pi\)
0.480266 + 0.877123i \(0.340540\pi\)
\(90\) 0 0
\(91\) −161.355 −0.185874
\(92\) 488.516 0.553602
\(93\) 0 0
\(94\) 162.309 0.178094
\(95\) 0 0
\(96\) 0 0
\(97\) 1238.05 1.29592 0.647961 0.761673i \(-0.275622\pi\)
0.647961 + 0.761673i \(0.275622\pi\)
\(98\) 666.085 0.686579
\(99\) 0 0
\(100\) 0 0
\(101\) 566.856 0.558458 0.279229 0.960225i \(-0.409921\pi\)
0.279229 + 0.960225i \(0.409921\pi\)
\(102\) 0 0
\(103\) 819.017 0.783497 0.391748 0.920072i \(-0.371870\pi\)
0.391748 + 0.920072i \(0.371870\pi\)
\(104\) −839.828 −0.791845
\(105\) 0 0
\(106\) 527.905 0.483724
\(107\) 543.772 0.491293 0.245647 0.969359i \(-0.421000\pi\)
0.245647 + 0.969359i \(0.421000\pi\)
\(108\) 0 0
\(109\) −1636.54 −1.43809 −0.719046 0.694963i \(-0.755421\pi\)
−0.719046 + 0.694963i \(0.755421\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −96.4178 −0.0813449
\(113\) 545.798 0.454375 0.227188 0.973851i \(-0.427047\pi\)
0.227188 + 0.973851i \(0.427047\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 263.592 0.210982
\(117\) 0 0
\(118\) 68.0436 0.0530841
\(119\) −12.4293 −0.00957471
\(120\) 0 0
\(121\) −1251.89 −0.940567
\(122\) −387.664 −0.287684
\(123\) 0 0
\(124\) −49.6940 −0.0359891
\(125\) 0 0
\(126\) 0 0
\(127\) −36.0480 −0.0251869 −0.0125935 0.999921i \(-0.504009\pi\)
−0.0125935 + 0.999921i \(0.504009\pi\)
\(128\) 216.577 0.149554
\(129\) 0 0
\(130\) 0 0
\(131\) 1310.15 0.873805 0.436902 0.899509i \(-0.356076\pi\)
0.436902 + 0.899509i \(0.356076\pi\)
\(132\) 0 0
\(133\) 585.432 0.381680
\(134\) 843.016 0.543474
\(135\) 0 0
\(136\) −64.6926 −0.0407893
\(137\) 2197.20 1.37022 0.685109 0.728441i \(-0.259755\pi\)
0.685109 + 0.728441i \(0.259755\pi\)
\(138\) 0 0
\(139\) 1726.01 1.05322 0.526612 0.850106i \(-0.323462\pi\)
0.526612 + 0.850106i \(0.323462\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2003.03 −1.18374
\(143\) −307.889 −0.180049
\(144\) 0 0
\(145\) 0 0
\(146\) 572.587 0.324573
\(147\) 0 0
\(148\) 1050.69 0.583556
\(149\) −1801.40 −0.990445 −0.495222 0.868766i \(-0.664913\pi\)
−0.495222 + 0.868766i \(0.664913\pi\)
\(150\) 0 0
\(151\) 3328.19 1.79367 0.896835 0.442365i \(-0.145860\pi\)
0.896835 + 0.442365i \(0.145860\pi\)
\(152\) 3047.09 1.62600
\(153\) 0 0
\(154\) −85.9501 −0.0449744
\(155\) 0 0
\(156\) 0 0
\(157\) −3830.19 −1.94702 −0.973510 0.228643i \(-0.926571\pi\)
−0.973510 + 0.228643i \(0.926571\pi\)
\(158\) 2377.73 1.19723
\(159\) 0 0
\(160\) 0 0
\(161\) −615.151 −0.301122
\(162\) 0 0
\(163\) 2404.51 1.15543 0.577717 0.816237i \(-0.303944\pi\)
0.577717 + 0.816237i \(0.303944\pi\)
\(164\) −1419.38 −0.675823
\(165\) 0 0
\(166\) 369.134 0.172592
\(167\) −3570.95 −1.65466 −0.827331 0.561715i \(-0.810142\pi\)
−0.827331 + 0.561715i \(0.810142\pi\)
\(168\) 0 0
\(169\) −998.653 −0.454553
\(170\) 0 0
\(171\) 0 0
\(172\) −1255.49 −0.556569
\(173\) 159.936 0.0702874 0.0351437 0.999382i \(-0.488811\pi\)
0.0351437 + 0.999382i \(0.488811\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −183.979 −0.0787953
\(177\) 0 0
\(178\) −1672.06 −0.704078
\(179\) −1120.87 −0.468030 −0.234015 0.972233i \(-0.575187\pi\)
−0.234015 + 0.972233i \(0.575187\pi\)
\(180\) 0 0
\(181\) −3856.65 −1.58377 −0.791886 0.610669i \(-0.790901\pi\)
−0.791886 + 0.610669i \(0.790901\pi\)
\(182\) 334.531 0.136248
\(183\) 0 0
\(184\) −3201.77 −1.28281
\(185\) 0 0
\(186\) 0 0
\(187\) −23.7169 −0.00927461
\(188\) 289.785 0.112419
\(189\) 0 0
\(190\) 0 0
\(191\) −79.0099 −0.0299317 −0.0149659 0.999888i \(-0.504764\pi\)
−0.0149659 + 0.999888i \(0.504764\pi\)
\(192\) 0 0
\(193\) −4571.49 −1.70499 −0.852496 0.522734i \(-0.824912\pi\)
−0.852496 + 0.522734i \(0.824912\pi\)
\(194\) −2566.79 −0.949922
\(195\) 0 0
\(196\) 1189.22 0.433391
\(197\) 4081.61 1.47615 0.738077 0.674717i \(-0.235734\pi\)
0.738077 + 0.674717i \(0.235734\pi\)
\(198\) 0 0
\(199\) −2518.98 −0.897316 −0.448658 0.893703i \(-0.648098\pi\)
−0.448658 + 0.893703i \(0.648098\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1175.24 −0.409355
\(203\) −331.921 −0.114760
\(204\) 0 0
\(205\) 0 0
\(206\) −1698.04 −0.574310
\(207\) 0 0
\(208\) 716.075 0.238706
\(209\) 1117.09 0.369717
\(210\) 0 0
\(211\) 227.244 0.0741428 0.0370714 0.999313i \(-0.488197\pi\)
0.0370714 + 0.999313i \(0.488197\pi\)
\(212\) 942.519 0.305342
\(213\) 0 0
\(214\) −1127.38 −0.360122
\(215\) 0 0
\(216\) 0 0
\(217\) 62.5758 0.0195757
\(218\) 3392.97 1.05413
\(219\) 0 0
\(220\) 0 0
\(221\) 92.3096 0.0280969
\(222\) 0 0
\(223\) 515.223 0.154717 0.0773585 0.997003i \(-0.475351\pi\)
0.0773585 + 0.997003i \(0.475351\pi\)
\(224\) −704.748 −0.210214
\(225\) 0 0
\(226\) −1131.58 −0.333061
\(227\) 3956.04 1.15670 0.578352 0.815787i \(-0.303696\pi\)
0.578352 + 0.815787i \(0.303696\pi\)
\(228\) 0 0
\(229\) −1676.57 −0.483803 −0.241901 0.970301i \(-0.577771\pi\)
−0.241901 + 0.970301i \(0.577771\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1727.60 −0.488890
\(233\) −4610.01 −1.29619 −0.648095 0.761560i \(-0.724434\pi\)
−0.648095 + 0.761560i \(0.724434\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 121.485 0.0335084
\(237\) 0 0
\(238\) 25.7692 0.00701834
\(239\) −6908.24 −1.86969 −0.934846 0.355052i \(-0.884463\pi\)
−0.934846 + 0.355052i \(0.884463\pi\)
\(240\) 0 0
\(241\) −2980.96 −0.796765 −0.398383 0.917219i \(-0.630428\pi\)
−0.398383 + 0.917219i \(0.630428\pi\)
\(242\) 2595.51 0.689444
\(243\) 0 0
\(244\) −692.133 −0.181595
\(245\) 0 0
\(246\) 0 0
\(247\) −4347.88 −1.12004
\(248\) 325.698 0.0833945
\(249\) 0 0
\(250\) 0 0
\(251\) 7132.90 1.79372 0.896862 0.442310i \(-0.145841\pi\)
0.896862 + 0.442310i \(0.145841\pi\)
\(252\) 0 0
\(253\) −1173.80 −0.291684
\(254\) 74.7369 0.0184622
\(255\) 0 0
\(256\) −4280.66 −1.04508
\(257\) −6562.56 −1.59285 −0.796423 0.604740i \(-0.793277\pi\)
−0.796423 + 0.604740i \(0.793277\pi\)
\(258\) 0 0
\(259\) −1323.05 −0.317415
\(260\) 0 0
\(261\) 0 0
\(262\) −2716.28 −0.640506
\(263\) −5663.50 −1.32786 −0.663928 0.747797i \(-0.731112\pi\)
−0.663928 + 0.747797i \(0.731112\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1213.75 −0.279775
\(267\) 0 0
\(268\) 1505.12 0.343058
\(269\) 4018.43 0.910811 0.455406 0.890284i \(-0.349494\pi\)
0.455406 + 0.890284i \(0.349494\pi\)
\(270\) 0 0
\(271\) −1518.33 −0.340340 −0.170170 0.985415i \(-0.554432\pi\)
−0.170170 + 0.985415i \(0.554432\pi\)
\(272\) 55.1598 0.0122962
\(273\) 0 0
\(274\) −4555.38 −1.00438
\(275\) 0 0
\(276\) 0 0
\(277\) −2182.44 −0.473393 −0.236697 0.971584i \(-0.576065\pi\)
−0.236697 + 0.971584i \(0.576065\pi\)
\(278\) −3578.47 −0.772022
\(279\) 0 0
\(280\) 0 0
\(281\) 5102.57 1.08325 0.541626 0.840620i \(-0.317809\pi\)
0.541626 + 0.840620i \(0.317809\pi\)
\(282\) 0 0
\(283\) 2577.94 0.541493 0.270747 0.962651i \(-0.412729\pi\)
0.270747 + 0.962651i \(0.412729\pi\)
\(284\) −3576.19 −0.747212
\(285\) 0 0
\(286\) 638.333 0.131977
\(287\) 1787.32 0.367603
\(288\) 0 0
\(289\) −4905.89 −0.998553
\(290\) 0 0
\(291\) 0 0
\(292\) 1022.29 0.204881
\(293\) 8339.85 1.66286 0.831432 0.555626i \(-0.187521\pi\)
0.831432 + 0.555626i \(0.187521\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6886.29 −1.35222
\(297\) 0 0
\(298\) 3734.77 0.726004
\(299\) 4568.59 0.883640
\(300\) 0 0
\(301\) 1580.94 0.302736
\(302\) −6900.21 −1.31478
\(303\) 0 0
\(304\) −2598.08 −0.490166
\(305\) 0 0
\(306\) 0 0
\(307\) −7042.31 −1.30921 −0.654603 0.755973i \(-0.727164\pi\)
−0.654603 + 0.755973i \(0.727164\pi\)
\(308\) −153.455 −0.0283893
\(309\) 0 0
\(310\) 0 0
\(311\) 2342.92 0.427186 0.213593 0.976923i \(-0.431483\pi\)
0.213593 + 0.976923i \(0.431483\pi\)
\(312\) 0 0
\(313\) 3833.47 0.692269 0.346135 0.938185i \(-0.387494\pi\)
0.346135 + 0.938185i \(0.387494\pi\)
\(314\) 7940.98 1.42718
\(315\) 0 0
\(316\) 4245.18 0.755727
\(317\) −5889.98 −1.04358 −0.521789 0.853075i \(-0.674735\pi\)
−0.521789 + 0.853075i \(0.674735\pi\)
\(318\) 0 0
\(319\) −633.355 −0.111163
\(320\) 0 0
\(321\) 0 0
\(322\) 1275.37 0.220725
\(323\) −334.921 −0.0576950
\(324\) 0 0
\(325\) 0 0
\(326\) −4985.18 −0.846943
\(327\) 0 0
\(328\) 9302.72 1.56603
\(329\) −364.904 −0.0611484
\(330\) 0 0
\(331\) −6338.95 −1.05263 −0.526315 0.850290i \(-0.676427\pi\)
−0.526315 + 0.850290i \(0.676427\pi\)
\(332\) 659.049 0.108946
\(333\) 0 0
\(334\) 7403.51 1.21288
\(335\) 0 0
\(336\) 0 0
\(337\) −968.342 −0.156525 −0.0782625 0.996933i \(-0.524937\pi\)
−0.0782625 + 0.996933i \(0.524937\pi\)
\(338\) 2070.47 0.333191
\(339\) 0 0
\(340\) 0 0
\(341\) 119.404 0.0189621
\(342\) 0 0
\(343\) −3096.26 −0.487412
\(344\) 8228.54 1.28969
\(345\) 0 0
\(346\) −331.590 −0.0515213
\(347\) −6457.71 −0.999043 −0.499521 0.866302i \(-0.666491\pi\)
−0.499521 + 0.866302i \(0.666491\pi\)
\(348\) 0 0
\(349\) −6155.18 −0.944066 −0.472033 0.881581i \(-0.656480\pi\)
−0.472033 + 0.881581i \(0.656480\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1344.76 −0.203625
\(353\) −3663.53 −0.552380 −0.276190 0.961103i \(-0.589072\pi\)
−0.276190 + 0.961103i \(0.589072\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2985.28 −0.444437
\(357\) 0 0
\(358\) 2323.85 0.343070
\(359\) 12112.6 1.78073 0.890364 0.455250i \(-0.150450\pi\)
0.890364 + 0.455250i \(0.150450\pi\)
\(360\) 0 0
\(361\) 8916.11 1.29991
\(362\) 7995.85 1.16092
\(363\) 0 0
\(364\) 597.269 0.0860038
\(365\) 0 0
\(366\) 0 0
\(367\) −11616.2 −1.65220 −0.826101 0.563522i \(-0.809446\pi\)
−0.826101 + 0.563522i \(0.809446\pi\)
\(368\) 2729.97 0.386711
\(369\) 0 0
\(370\) 0 0
\(371\) −1186.84 −0.166085
\(372\) 0 0
\(373\) 2215.72 0.307576 0.153788 0.988104i \(-0.450853\pi\)
0.153788 + 0.988104i \(0.450853\pi\)
\(374\) 49.1713 0.00679837
\(375\) 0 0
\(376\) −1899.27 −0.260499
\(377\) 2465.11 0.336763
\(378\) 0 0
\(379\) −6539.83 −0.886354 −0.443177 0.896434i \(-0.646149\pi\)
−0.443177 + 0.896434i \(0.646149\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 163.808 0.0219402
\(383\) −8495.26 −1.13339 −0.566694 0.823928i \(-0.691778\pi\)
−0.566694 + 0.823928i \(0.691778\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9477.90 1.24977
\(387\) 0 0
\(388\) −4582.74 −0.599621
\(389\) −3536.84 −0.460989 −0.230494 0.973074i \(-0.574034\pi\)
−0.230494 + 0.973074i \(0.574034\pi\)
\(390\) 0 0
\(391\) 351.922 0.0455178
\(392\) −7794.25 −1.00426
\(393\) 0 0
\(394\) −8462.23 −1.08203
\(395\) 0 0
\(396\) 0 0
\(397\) −8586.22 −1.08547 −0.542733 0.839905i \(-0.682610\pi\)
−0.542733 + 0.839905i \(0.682610\pi\)
\(398\) 5222.51 0.657740
\(399\) 0 0
\(400\) 0 0
\(401\) −7232.79 −0.900719 −0.450359 0.892847i \(-0.648704\pi\)
−0.450359 + 0.892847i \(0.648704\pi\)
\(402\) 0 0
\(403\) −464.737 −0.0574447
\(404\) −2098.27 −0.258398
\(405\) 0 0
\(406\) 688.160 0.0841202
\(407\) −2524.58 −0.307466
\(408\) 0 0
\(409\) 1230.96 0.148819 0.0744096 0.997228i \(-0.476293\pi\)
0.0744096 + 0.997228i \(0.476293\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3031.66 −0.362523
\(413\) −152.976 −0.0182263
\(414\) 0 0
\(415\) 0 0
\(416\) 5234.01 0.616871
\(417\) 0 0
\(418\) −2316.02 −0.271005
\(419\) −582.439 −0.0679093 −0.0339547 0.999423i \(-0.510810\pi\)
−0.0339547 + 0.999423i \(0.510810\pi\)
\(420\) 0 0
\(421\) −12562.3 −1.45427 −0.727135 0.686494i \(-0.759149\pi\)
−0.727135 + 0.686494i \(0.759149\pi\)
\(422\) −471.136 −0.0543473
\(423\) 0 0
\(424\) −6177.33 −0.707542
\(425\) 0 0
\(426\) 0 0
\(427\) 871.549 0.0987757
\(428\) −2012.82 −0.227321
\(429\) 0 0
\(430\) 0 0
\(431\) −9612.85 −1.07433 −0.537163 0.843478i \(-0.680504\pi\)
−0.537163 + 0.843478i \(0.680504\pi\)
\(432\) 0 0
\(433\) −8285.20 −0.919541 −0.459771 0.888038i \(-0.652068\pi\)
−0.459771 + 0.888038i \(0.652068\pi\)
\(434\) −129.736 −0.0143491
\(435\) 0 0
\(436\) 6057.79 0.665403
\(437\) −16575.9 −1.81449
\(438\) 0 0
\(439\) 10769.0 1.17079 0.585393 0.810750i \(-0.300940\pi\)
0.585393 + 0.810750i \(0.300940\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −191.382 −0.0205953
\(443\) −8809.93 −0.944858 −0.472429 0.881369i \(-0.656623\pi\)
−0.472429 + 0.881369i \(0.656623\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1068.19 −0.113409
\(447\) 0 0
\(448\) 2232.47 0.235434
\(449\) −9060.10 −0.952277 −0.476139 0.879370i \(-0.657964\pi\)
−0.476139 + 0.879370i \(0.657964\pi\)
\(450\) 0 0
\(451\) 3410.46 0.356081
\(452\) −2020.32 −0.210239
\(453\) 0 0
\(454\) −8201.91 −0.847874
\(455\) 0 0
\(456\) 0 0
\(457\) −2477.55 −0.253600 −0.126800 0.991928i \(-0.540471\pi\)
−0.126800 + 0.991928i \(0.540471\pi\)
\(458\) 3475.97 0.354631
\(459\) 0 0
\(460\) 0 0
\(461\) −15301.5 −1.54591 −0.772954 0.634462i \(-0.781222\pi\)
−0.772954 + 0.634462i \(0.781222\pi\)
\(462\) 0 0
\(463\) 683.012 0.0685578 0.0342789 0.999412i \(-0.489087\pi\)
0.0342789 + 0.999412i \(0.489087\pi\)
\(464\) 1473.03 0.147379
\(465\) 0 0
\(466\) 9557.76 0.950118
\(467\) −6569.32 −0.650946 −0.325473 0.945551i \(-0.605523\pi\)
−0.325473 + 0.945551i \(0.605523\pi\)
\(468\) 0 0
\(469\) −1895.28 −0.186601
\(470\) 0 0
\(471\) 0 0
\(472\) −796.218 −0.0776460
\(473\) 3016.66 0.293248
\(474\) 0 0
\(475\) 0 0
\(476\) 46.0081 0.00443020
\(477\) 0 0
\(478\) 14322.6 1.37050
\(479\) 11288.7 1.07681 0.538405 0.842686i \(-0.319027\pi\)
0.538405 + 0.842686i \(0.319027\pi\)
\(480\) 0 0
\(481\) 9826.03 0.931452
\(482\) 6180.31 0.584036
\(483\) 0 0
\(484\) 4634.00 0.435199
\(485\) 0 0
\(486\) 0 0
\(487\) 8937.53 0.831618 0.415809 0.909452i \(-0.363498\pi\)
0.415809 + 0.909452i \(0.363498\pi\)
\(488\) 4536.28 0.420795
\(489\) 0 0
\(490\) 0 0
\(491\) 3693.14 0.339448 0.169724 0.985492i \(-0.445712\pi\)
0.169724 + 0.985492i \(0.445712\pi\)
\(492\) 0 0
\(493\) 189.889 0.0173472
\(494\) 9014.29 0.820996
\(495\) 0 0
\(496\) −277.705 −0.0251397
\(497\) 4503.22 0.406433
\(498\) 0 0
\(499\) −11186.4 −1.00355 −0.501777 0.864997i \(-0.667320\pi\)
−0.501777 + 0.864997i \(0.667320\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −14788.4 −1.31482
\(503\) −6553.81 −0.580954 −0.290477 0.956882i \(-0.593814\pi\)
−0.290477 + 0.956882i \(0.593814\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2433.59 0.213807
\(507\) 0 0
\(508\) 133.435 0.0116540
\(509\) −15027.7 −1.30863 −0.654314 0.756223i \(-0.727043\pi\)
−0.654314 + 0.756223i \(0.727043\pi\)
\(510\) 0 0
\(511\) −1287.29 −0.111441
\(512\) 7142.32 0.616502
\(513\) 0 0
\(514\) 13605.9 1.16757
\(515\) 0 0
\(516\) 0 0
\(517\) −696.290 −0.0592318
\(518\) 2743.03 0.232668
\(519\) 0 0
\(520\) 0 0
\(521\) −835.969 −0.0702965 −0.0351483 0.999382i \(-0.511190\pi\)
−0.0351483 + 0.999382i \(0.511190\pi\)
\(522\) 0 0
\(523\) 13032.4 1.08961 0.544805 0.838563i \(-0.316604\pi\)
0.544805 + 0.838563i \(0.316604\pi\)
\(524\) −4849.64 −0.404308
\(525\) 0 0
\(526\) 11741.9 0.973330
\(527\) −35.7991 −0.00295907
\(528\) 0 0
\(529\) 5250.35 0.431524
\(530\) 0 0
\(531\) 0 0
\(532\) −2167.03 −0.176603
\(533\) −13274.0 −1.07873
\(534\) 0 0
\(535\) 0 0
\(536\) −9864.63 −0.794939
\(537\) 0 0
\(538\) −8331.26 −0.667633
\(539\) −2857.44 −0.228347
\(540\) 0 0
\(541\) −4182.33 −0.332370 −0.166185 0.986095i \(-0.553145\pi\)
−0.166185 + 0.986095i \(0.553145\pi\)
\(542\) 3147.90 0.249472
\(543\) 0 0
\(544\) 403.180 0.0317761
\(545\) 0 0
\(546\) 0 0
\(547\) −5013.90 −0.391918 −0.195959 0.980612i \(-0.562782\pi\)
−0.195959 + 0.980612i \(0.562782\pi\)
\(548\) −8133.14 −0.633997
\(549\) 0 0
\(550\) 0 0
\(551\) −8943.98 −0.691518
\(552\) 0 0
\(553\) −5345.62 −0.411065
\(554\) 4524.76 0.347001
\(555\) 0 0
\(556\) −6388.97 −0.487325
\(557\) 2611.86 0.198686 0.0993430 0.995053i \(-0.468326\pi\)
0.0993430 + 0.995053i \(0.468326\pi\)
\(558\) 0 0
\(559\) −11741.3 −0.888377
\(560\) 0 0
\(561\) 0 0
\(562\) −10579.0 −0.794033
\(563\) 18674.0 1.39790 0.698948 0.715173i \(-0.253652\pi\)
0.698948 + 0.715173i \(0.253652\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −5344.74 −0.396919
\(567\) 0 0
\(568\) 23438.6 1.73145
\(569\) −23671.0 −1.74401 −0.872004 0.489498i \(-0.837180\pi\)
−0.872004 + 0.489498i \(0.837180\pi\)
\(570\) 0 0
\(571\) −9355.54 −0.685669 −0.342835 0.939396i \(-0.611387\pi\)
−0.342835 + 0.939396i \(0.611387\pi\)
\(572\) 1139.68 0.0833082
\(573\) 0 0
\(574\) −3705.57 −0.269456
\(575\) 0 0
\(576\) 0 0
\(577\) 21695.2 1.56531 0.782653 0.622459i \(-0.213866\pi\)
0.782653 + 0.622459i \(0.213866\pi\)
\(578\) 10171.2 0.731948
\(579\) 0 0
\(580\) 0 0
\(581\) −829.889 −0.0592592
\(582\) 0 0
\(583\) −2264.67 −0.160880
\(584\) −6700.18 −0.474752
\(585\) 0 0
\(586\) −17290.7 −1.21889
\(587\) −737.149 −0.0518320 −0.0259160 0.999664i \(-0.508250\pi\)
−0.0259160 + 0.999664i \(0.508250\pi\)
\(588\) 0 0
\(589\) 1686.17 0.117958
\(590\) 0 0
\(591\) 0 0
\(592\) 5871.56 0.407635
\(593\) 21908.1 1.51713 0.758565 0.651597i \(-0.225901\pi\)
0.758565 + 0.651597i \(0.225901\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6668.03 0.458277
\(597\) 0 0
\(598\) −9471.89 −0.647716
\(599\) −7595.84 −0.518126 −0.259063 0.965860i \(-0.583414\pi\)
−0.259063 + 0.965860i \(0.583414\pi\)
\(600\) 0 0
\(601\) −6502.52 −0.441337 −0.220668 0.975349i \(-0.570824\pi\)
−0.220668 + 0.975349i \(0.570824\pi\)
\(602\) −3277.69 −0.221908
\(603\) 0 0
\(604\) −12319.6 −0.829929
\(605\) 0 0
\(606\) 0 0
\(607\) 26156.8 1.74905 0.874524 0.484981i \(-0.161174\pi\)
0.874524 + 0.484981i \(0.161174\pi\)
\(608\) −18990.2 −1.26670
\(609\) 0 0
\(610\) 0 0
\(611\) 2710.06 0.179439
\(612\) 0 0
\(613\) −18172.8 −1.19738 −0.598690 0.800981i \(-0.704312\pi\)
−0.598690 + 0.800981i \(0.704312\pi\)
\(614\) 14600.6 0.959659
\(615\) 0 0
\(616\) 1005.75 0.0657840
\(617\) 26584.8 1.73462 0.867312 0.497766i \(-0.165846\pi\)
0.867312 + 0.497766i \(0.165846\pi\)
\(618\) 0 0
\(619\) 21687.8 1.40825 0.704124 0.710077i \(-0.251340\pi\)
0.704124 + 0.710077i \(0.251340\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −4857.48 −0.313131
\(623\) 3759.13 0.241744
\(624\) 0 0
\(625\) 0 0
\(626\) −7947.78 −0.507439
\(627\) 0 0
\(628\) 14177.8 0.900883
\(629\) 756.907 0.0479807
\(630\) 0 0
\(631\) −7685.15 −0.484851 −0.242426 0.970170i \(-0.577943\pi\)
−0.242426 + 0.970170i \(0.577943\pi\)
\(632\) −27823.2 −1.75118
\(633\) 0 0
\(634\) 12211.5 0.764951
\(635\) 0 0
\(636\) 0 0
\(637\) 11121.6 0.691764
\(638\) 1313.11 0.0814835
\(639\) 0 0
\(640\) 0 0
\(641\) −8055.69 −0.496381 −0.248191 0.968711i \(-0.579836\pi\)
−0.248191 + 0.968711i \(0.579836\pi\)
\(642\) 0 0
\(643\) 7122.02 0.436804 0.218402 0.975859i \(-0.429916\pi\)
0.218402 + 0.975859i \(0.429916\pi\)
\(644\) 2277.03 0.139329
\(645\) 0 0
\(646\) 694.378 0.0422909
\(647\) −10280.7 −0.624692 −0.312346 0.949968i \(-0.601115\pi\)
−0.312346 + 0.949968i \(0.601115\pi\)
\(648\) 0 0
\(649\) −291.901 −0.0176550
\(650\) 0 0
\(651\) 0 0
\(652\) −8900.51 −0.534618
\(653\) −8985.03 −0.538456 −0.269228 0.963077i \(-0.586768\pi\)
−0.269228 + 0.963077i \(0.586768\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −7931.92 −0.472087
\(657\) 0 0
\(658\) 756.541 0.0448223
\(659\) −12538.7 −0.741183 −0.370591 0.928796i \(-0.620845\pi\)
−0.370591 + 0.928796i \(0.620845\pi\)
\(660\) 0 0
\(661\) −12479.9 −0.734360 −0.367180 0.930150i \(-0.619677\pi\)
−0.367180 + 0.930150i \(0.619677\pi\)
\(662\) 13142.3 0.771586
\(663\) 0 0
\(664\) −4319.45 −0.252451
\(665\) 0 0
\(666\) 0 0
\(667\) 9398.01 0.545566
\(668\) 13218.2 0.765609
\(669\) 0 0
\(670\) 0 0
\(671\) 1663.04 0.0956797
\(672\) 0 0
\(673\) −13185.6 −0.755228 −0.377614 0.925963i \(-0.623255\pi\)
−0.377614 + 0.925963i \(0.623255\pi\)
\(674\) 2007.63 0.114734
\(675\) 0 0
\(676\) 3696.60 0.210321
\(677\) 26568.3 1.50827 0.754136 0.656718i \(-0.228056\pi\)
0.754136 + 0.656718i \(0.228056\pi\)
\(678\) 0 0
\(679\) 5770.68 0.326154
\(680\) 0 0
\(681\) 0 0
\(682\) −247.555 −0.0138994
\(683\) −7602.40 −0.425912 −0.212956 0.977062i \(-0.568309\pi\)
−0.212956 + 0.977062i \(0.568309\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 6419.36 0.357277
\(687\) 0 0
\(688\) −7016.02 −0.388784
\(689\) 8814.41 0.487376
\(690\) 0 0
\(691\) 6257.31 0.344485 0.172243 0.985055i \(-0.444899\pi\)
0.172243 + 0.985055i \(0.444899\pi\)
\(692\) −592.018 −0.0325219
\(693\) 0 0
\(694\) 13388.5 0.732307
\(695\) 0 0
\(696\) 0 0
\(697\) −1022.51 −0.0555671
\(698\) 12761.3 0.692009
\(699\) 0 0
\(700\) 0 0
\(701\) −769.271 −0.0414479 −0.0207239 0.999785i \(-0.506597\pi\)
−0.0207239 + 0.999785i \(0.506597\pi\)
\(702\) 0 0
\(703\) −35651.1 −1.91267
\(704\) 4259.88 0.228054
\(705\) 0 0
\(706\) 7595.46 0.404900
\(707\) 2642.18 0.140551
\(708\) 0 0
\(709\) −8450.32 −0.447614 −0.223807 0.974633i \(-0.571849\pi\)
−0.223807 + 0.974633i \(0.571849\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 19565.7 1.02985
\(713\) −1771.77 −0.0930620
\(714\) 0 0
\(715\) 0 0
\(716\) 4148.98 0.216557
\(717\) 0 0
\(718\) −25112.7 −1.30529
\(719\) −25350.0 −1.31488 −0.657438 0.753508i \(-0.728360\pi\)
−0.657438 + 0.753508i \(0.728360\pi\)
\(720\) 0 0
\(721\) 3817.54 0.197188
\(722\) −18485.4 −0.952848
\(723\) 0 0
\(724\) 14275.7 0.732809
\(725\) 0 0
\(726\) 0 0
\(727\) 3825.15 0.195140 0.0975701 0.995229i \(-0.468893\pi\)
0.0975701 + 0.995229i \(0.468893\pi\)
\(728\) −3914.54 −0.199289
\(729\) 0 0
\(730\) 0 0
\(731\) −904.440 −0.0457618
\(732\) 0 0
\(733\) 3692.83 0.186081 0.0930407 0.995662i \(-0.470341\pi\)
0.0930407 + 0.995662i \(0.470341\pi\)
\(734\) 24083.3 1.21108
\(735\) 0 0
\(736\) 19954.2 0.999350
\(737\) −3616.46 −0.180752
\(738\) 0 0
\(739\) 4181.32 0.208136 0.104068 0.994570i \(-0.466814\pi\)
0.104068 + 0.994570i \(0.466814\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2460.63 0.121742
\(743\) 927.982 0.0458201 0.0229101 0.999738i \(-0.492707\pi\)
0.0229101 + 0.999738i \(0.492707\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −4593.78 −0.225456
\(747\) 0 0
\(748\) 87.7902 0.00429135
\(749\) 2534.59 0.123647
\(750\) 0 0
\(751\) −22369.5 −1.08692 −0.543458 0.839436i \(-0.682885\pi\)
−0.543458 + 0.839436i \(0.682885\pi\)
\(752\) 1619.40 0.0785287
\(753\) 0 0
\(754\) −5110.81 −0.246850
\(755\) 0 0
\(756\) 0 0
\(757\) −35390.0 −1.69917 −0.849586 0.527451i \(-0.823148\pi\)
−0.849586 + 0.527451i \(0.823148\pi\)
\(758\) 13558.8 0.649705
\(759\) 0 0
\(760\) 0 0
\(761\) 33434.6 1.59265 0.796323 0.604872i \(-0.206776\pi\)
0.796323 + 0.604872i \(0.206776\pi\)
\(762\) 0 0
\(763\) −7628.10 −0.361934
\(764\) 292.462 0.0138494
\(765\) 0 0
\(766\) 17612.9 0.830783
\(767\) 1136.12 0.0534849
\(768\) 0 0
\(769\) 25021.4 1.17334 0.586668 0.809828i \(-0.300440\pi\)
0.586668 + 0.809828i \(0.300440\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 16921.8 0.788897
\(773\) 3065.27 0.142626 0.0713132 0.997454i \(-0.477281\pi\)
0.0713132 + 0.997454i \(0.477281\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 30035.5 1.38945
\(777\) 0 0
\(778\) 7332.79 0.337909
\(779\) 48161.2 2.21509
\(780\) 0 0
\(781\) 8592.81 0.393694
\(782\) −729.627 −0.0333650
\(783\) 0 0
\(784\) 6645.73 0.302739
\(785\) 0 0
\(786\) 0 0
\(787\) 35683.1 1.61622 0.808111 0.589031i \(-0.200490\pi\)
0.808111 + 0.589031i \(0.200490\pi\)
\(788\) −15108.4 −0.683014
\(789\) 0 0
\(790\) 0 0
\(791\) 2544.03 0.114356
\(792\) 0 0
\(793\) −6472.81 −0.289856
\(794\) 17801.5 0.795656
\(795\) 0 0
\(796\) 9324.23 0.415187
\(797\) 4525.07 0.201112 0.100556 0.994931i \(-0.467938\pi\)
0.100556 + 0.994931i \(0.467938\pi\)
\(798\) 0 0
\(799\) 208.758 0.00924323
\(800\) 0 0
\(801\) 0 0
\(802\) 14995.5 0.660235
\(803\) −2456.35 −0.107948
\(804\) 0 0
\(805\) 0 0
\(806\) 963.521 0.0421074
\(807\) 0 0
\(808\) 13752.2 0.598762
\(809\) −16234.6 −0.705535 −0.352767 0.935711i \(-0.614759\pi\)
−0.352767 + 0.935711i \(0.614759\pi\)
\(810\) 0 0
\(811\) 2197.06 0.0951286 0.0475643 0.998868i \(-0.484854\pi\)
0.0475643 + 0.998868i \(0.484854\pi\)
\(812\) 1228.64 0.0530993
\(813\) 0 0
\(814\) 5234.11 0.225375
\(815\) 0 0
\(816\) 0 0
\(817\) 42600.0 1.82422
\(818\) −2552.10 −0.109086
\(819\) 0 0
\(820\) 0 0
\(821\) −20141.6 −0.856208 −0.428104 0.903729i \(-0.640818\pi\)
−0.428104 + 0.903729i \(0.640818\pi\)
\(822\) 0 0
\(823\) −15517.0 −0.657217 −0.328608 0.944466i \(-0.606580\pi\)
−0.328608 + 0.944466i \(0.606580\pi\)
\(824\) 19869.7 0.840042
\(825\) 0 0
\(826\) 317.159 0.0133600
\(827\) −5582.51 −0.234732 −0.117366 0.993089i \(-0.537445\pi\)
−0.117366 + 0.993089i \(0.537445\pi\)
\(828\) 0 0
\(829\) 26037.6 1.09086 0.545430 0.838157i \(-0.316367\pi\)
0.545430 + 0.838157i \(0.316367\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −16580.1 −0.690878
\(833\) 856.705 0.0356339
\(834\) 0 0
\(835\) 0 0
\(836\) −4135.01 −0.171067
\(837\) 0 0
\(838\) 1207.55 0.0497781
\(839\) −18088.0 −0.744298 −0.372149 0.928173i \(-0.621379\pi\)
−0.372149 + 0.928173i \(0.621379\pi\)
\(840\) 0 0
\(841\) −19318.0 −0.792080
\(842\) 26044.9 1.06599
\(843\) 0 0
\(844\) −841.164 −0.0343057
\(845\) 0 0
\(846\) 0 0
\(847\) −5835.23 −0.236719
\(848\) 5267.07 0.213292
\(849\) 0 0
\(850\) 0 0
\(851\) 37460.9 1.50898
\(852\) 0 0
\(853\) 25349.0 1.01751 0.508753 0.860912i \(-0.330107\pi\)
0.508753 + 0.860912i \(0.330107\pi\)
\(854\) −1806.95 −0.0724034
\(855\) 0 0
\(856\) 13192.1 0.526750
\(857\) 563.797 0.0224725 0.0112363 0.999937i \(-0.496423\pi\)
0.0112363 + 0.999937i \(0.496423\pi\)
\(858\) 0 0
\(859\) −20558.9 −0.816600 −0.408300 0.912848i \(-0.633878\pi\)
−0.408300 + 0.912848i \(0.633878\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 19929.9 0.787490
\(863\) 7056.31 0.278331 0.139166 0.990269i \(-0.455558\pi\)
0.139166 + 0.990269i \(0.455558\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 17177.4 0.674032
\(867\) 0 0
\(868\) −231.630 −0.00905763
\(869\) −10200.2 −0.398181
\(870\) 0 0
\(871\) 14075.8 0.547578
\(872\) −39703.2 −1.54188
\(873\) 0 0
\(874\) 34366.2 1.33004
\(875\) 0 0
\(876\) 0 0
\(877\) −2516.30 −0.0968864 −0.0484432 0.998826i \(-0.515426\pi\)
−0.0484432 + 0.998826i \(0.515426\pi\)
\(878\) −22326.9 −0.858196
\(879\) 0 0
\(880\) 0 0
\(881\) 31571.2 1.20733 0.603666 0.797237i \(-0.293706\pi\)
0.603666 + 0.797237i \(0.293706\pi\)
\(882\) 0 0
\(883\) −47743.5 −1.81959 −0.909794 0.415059i \(-0.863761\pi\)
−0.909794 + 0.415059i \(0.863761\pi\)
\(884\) −341.692 −0.0130004
\(885\) 0 0
\(886\) 18265.3 0.692589
\(887\) 33028.9 1.25028 0.625141 0.780512i \(-0.285041\pi\)
0.625141 + 0.780512i \(0.285041\pi\)
\(888\) 0 0
\(889\) −168.024 −0.00633897
\(890\) 0 0
\(891\) 0 0
\(892\) −1907.14 −0.0715873
\(893\) −9832.74 −0.368466
\(894\) 0 0
\(895\) 0 0
\(896\) 1009.49 0.0376392
\(897\) 0 0
\(898\) 18784.0 0.698028
\(899\) −956.006 −0.0354667
\(900\) 0 0
\(901\) 678.981 0.0251056
\(902\) −7070.78 −0.261010
\(903\) 0 0
\(904\) 13241.3 0.487168
\(905\) 0 0
\(906\) 0 0
\(907\) 43330.5 1.58629 0.793146 0.609032i \(-0.208442\pi\)
0.793146 + 0.609032i \(0.208442\pi\)
\(908\) −14643.6 −0.535205
\(909\) 0 0
\(910\) 0 0
\(911\) 22354.4 0.812992 0.406496 0.913653i \(-0.366751\pi\)
0.406496 + 0.913653i \(0.366751\pi\)
\(912\) 0 0
\(913\) −1583.55 −0.0574018
\(914\) 5136.62 0.185891
\(915\) 0 0
\(916\) 6205.97 0.223855
\(917\) 6106.77 0.219916
\(918\) 0 0
\(919\) 1306.08 0.0468811 0.0234406 0.999725i \(-0.492538\pi\)
0.0234406 + 0.999725i \(0.492538\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 31724.1 1.13316
\(923\) −33444.5 −1.19267
\(924\) 0 0
\(925\) 0 0
\(926\) −1416.06 −0.0502535
\(927\) 0 0
\(928\) 10766.8 0.380861
\(929\) −50663.9 −1.78927 −0.894633 0.446802i \(-0.852563\pi\)
−0.894633 + 0.446802i \(0.852563\pi\)
\(930\) 0 0
\(931\) −40351.7 −1.42049
\(932\) 17064.4 0.599745
\(933\) 0 0
\(934\) 13619.9 0.477149
\(935\) 0 0
\(936\) 0 0
\(937\) 12652.4 0.441126 0.220563 0.975373i \(-0.429211\pi\)
0.220563 + 0.975373i \(0.429211\pi\)
\(938\) 3929.40 0.136780
\(939\) 0 0
\(940\) 0 0
\(941\) −40677.4 −1.40919 −0.704594 0.709610i \(-0.748871\pi\)
−0.704594 + 0.709610i \(0.748871\pi\)
\(942\) 0 0
\(943\) −50606.0 −1.74757
\(944\) 678.891 0.0234068
\(945\) 0 0
\(946\) −6254.32 −0.214953
\(947\) −26916.8 −0.923631 −0.461816 0.886976i \(-0.652802\pi\)
−0.461816 + 0.886976i \(0.652802\pi\)
\(948\) 0 0
\(949\) 9560.46 0.327024
\(950\) 0 0
\(951\) 0 0
\(952\) −301.540 −0.0102657
\(953\) 29644.9 1.00765 0.503827 0.863805i \(-0.331925\pi\)
0.503827 + 0.863805i \(0.331925\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 25571.4 0.865104
\(957\) 0 0
\(958\) −23404.3 −0.789310
\(959\) 10241.4 0.344852
\(960\) 0 0
\(961\) −29610.8 −0.993950
\(962\) −20371.9 −0.682762
\(963\) 0 0
\(964\) 11034.3 0.368662
\(965\) 0 0
\(966\) 0 0
\(967\) −21452.1 −0.713395 −0.356697 0.934220i \(-0.616097\pi\)
−0.356697 + 0.934220i \(0.616097\pi\)
\(968\) −30371.5 −1.00845
\(969\) 0 0
\(970\) 0 0
\(971\) 42684.6 1.41073 0.705363 0.708846i \(-0.250784\pi\)
0.705363 + 0.708846i \(0.250784\pi\)
\(972\) 0 0
\(973\) 8045.14 0.265072
\(974\) −18529.8 −0.609583
\(975\) 0 0
\(976\) −3867.84 −0.126851
\(977\) 60386.2 1.97741 0.988704 0.149884i \(-0.0478901\pi\)
0.988704 + 0.149884i \(0.0478901\pi\)
\(978\) 0 0
\(979\) 7172.97 0.234167
\(980\) 0 0
\(981\) 0 0
\(982\) −7656.85 −0.248818
\(983\) −59009.2 −1.91465 −0.957325 0.289014i \(-0.906672\pi\)
−0.957325 + 0.289014i \(0.906672\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −393.690 −0.0127157
\(987\) 0 0
\(988\) 16094.1 0.518239
\(989\) −44762.6 −1.43920
\(990\) 0 0
\(991\) −30899.0 −0.990454 −0.495227 0.868764i \(-0.664915\pi\)
−0.495227 + 0.868764i \(0.664915\pi\)
\(992\) −2029.83 −0.0649668
\(993\) 0 0
\(994\) −9336.36 −0.297919
\(995\) 0 0
\(996\) 0 0
\(997\) 33866.8 1.07580 0.537901 0.843008i \(-0.319218\pi\)
0.537901 + 0.843008i \(0.319218\pi\)
\(998\) 23192.4 0.735614
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.y.1.3 6
3.2 odd 2 2025.4.a.z.1.4 6
5.4 even 2 405.4.a.l.1.4 yes 6
15.14 odd 2 405.4.a.k.1.3 6
45.4 even 6 405.4.e.w.136.3 12
45.14 odd 6 405.4.e.x.136.4 12
45.29 odd 6 405.4.e.x.271.4 12
45.34 even 6 405.4.e.w.271.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.4.a.k.1.3 6 15.14 odd 2
405.4.a.l.1.4 yes 6 5.4 even 2
405.4.e.w.136.3 12 45.4 even 6
405.4.e.w.271.3 12 45.34 even 6
405.4.e.x.136.4 12 45.14 odd 6
405.4.e.x.271.4 12 45.29 odd 6
2025.4.a.y.1.3 6 1.1 even 1 trivial
2025.4.a.z.1.4 6 3.2 odd 2