Properties

Label 2025.4.a.w.1.3
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,36,0,0,49,-45,0,0,12,0,108,-78] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 38x^{3} - 15x^{2} + 304x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.196411\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.196411 q^{2} -7.96142 q^{4} +16.8177 q^{7} -3.13500 q^{8} +62.1569 q^{11} +60.5269 q^{13} +3.30317 q^{14} +63.0756 q^{16} +43.7901 q^{17} +85.8457 q^{19} +12.2083 q^{22} +215.038 q^{23} +11.8881 q^{26} -133.892 q^{28} -48.3855 q^{29} +257.340 q^{31} +37.4688 q^{32} +8.60087 q^{34} -236.321 q^{37} +16.8610 q^{38} -134.307 q^{41} +91.4691 q^{43} -494.857 q^{44} +42.2359 q^{46} -274.947 q^{47} -60.1666 q^{49} -481.880 q^{52} +44.3393 q^{53} -52.7233 q^{56} -9.50345 q^{58} +769.187 q^{59} +232.793 q^{61} +50.5444 q^{62} -497.246 q^{64} -844.628 q^{67} -348.632 q^{68} +120.076 q^{71} +767.243 q^{73} -46.4160 q^{74} -683.454 q^{76} +1045.33 q^{77} -174.405 q^{79} -26.3794 q^{82} -1336.51 q^{83} +17.9656 q^{86} -194.862 q^{88} +690.349 q^{89} +1017.92 q^{91} -1712.01 q^{92} -54.0026 q^{94} +416.030 q^{97} -11.8174 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 36 q^{4} + 49 q^{7} - 45 q^{8} + 12 q^{11} + 108 q^{13} - 78 q^{14} + 168 q^{16} + 57 q^{17} + 126 q^{19} + 200 q^{22} + 228 q^{23} - 225 q^{26} + 373 q^{28} + 336 q^{29} - 22 q^{31} - 1110 q^{32}+ \cdots + 3705 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.196411 0.0694418 0.0347209 0.999397i \(-0.488946\pi\)
0.0347209 + 0.999397i \(0.488946\pi\)
\(3\) 0 0
\(4\) −7.96142 −0.995178
\(5\) 0 0
\(6\) 0 0
\(7\) 16.8177 0.908068 0.454034 0.890984i \(-0.349984\pi\)
0.454034 + 0.890984i \(0.349984\pi\)
\(8\) −3.13500 −0.138549
\(9\) 0 0
\(10\) 0 0
\(11\) 62.1569 1.70373 0.851864 0.523764i \(-0.175472\pi\)
0.851864 + 0.523764i \(0.175472\pi\)
\(12\) 0 0
\(13\) 60.5269 1.29132 0.645659 0.763626i \(-0.276583\pi\)
0.645659 + 0.763626i \(0.276583\pi\)
\(14\) 3.30317 0.0630579
\(15\) 0 0
\(16\) 63.0756 0.985557
\(17\) 43.7901 0.624745 0.312373 0.949960i \(-0.398876\pi\)
0.312373 + 0.949960i \(0.398876\pi\)
\(18\) 0 0
\(19\) 85.8457 1.03654 0.518272 0.855216i \(-0.326575\pi\)
0.518272 + 0.855216i \(0.326575\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 12.2083 0.118310
\(23\) 215.038 1.94950 0.974751 0.223296i \(-0.0716818\pi\)
0.974751 + 0.223296i \(0.0716818\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 11.8881 0.0896714
\(27\) 0 0
\(28\) −133.892 −0.903689
\(29\) −48.3855 −0.309826 −0.154913 0.987928i \(-0.549510\pi\)
−0.154913 + 0.987928i \(0.549510\pi\)
\(30\) 0 0
\(31\) 257.340 1.49095 0.745477 0.666531i \(-0.232222\pi\)
0.745477 + 0.666531i \(0.232222\pi\)
\(32\) 37.4688 0.206988
\(33\) 0 0
\(34\) 8.60087 0.0433834
\(35\) 0 0
\(36\) 0 0
\(37\) −236.321 −1.05002 −0.525012 0.851095i \(-0.675939\pi\)
−0.525012 + 0.851095i \(0.675939\pi\)
\(38\) 16.8610 0.0719796
\(39\) 0 0
\(40\) 0 0
\(41\) −134.307 −0.511591 −0.255796 0.966731i \(-0.582337\pi\)
−0.255796 + 0.966731i \(0.582337\pi\)
\(42\) 0 0
\(43\) 91.4691 0.324393 0.162197 0.986758i \(-0.448142\pi\)
0.162197 + 0.986758i \(0.448142\pi\)
\(44\) −494.857 −1.69551
\(45\) 0 0
\(46\) 42.2359 0.135377
\(47\) −274.947 −0.853300 −0.426650 0.904417i \(-0.640306\pi\)
−0.426650 + 0.904417i \(0.640306\pi\)
\(48\) 0 0
\(49\) −60.1666 −0.175413
\(50\) 0 0
\(51\) 0 0
\(52\) −481.880 −1.28509
\(53\) 44.3393 0.114915 0.0574573 0.998348i \(-0.481701\pi\)
0.0574573 + 0.998348i \(0.481701\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −52.7233 −0.125812
\(57\) 0 0
\(58\) −9.50345 −0.0215149
\(59\) 769.187 1.69728 0.848641 0.528969i \(-0.177421\pi\)
0.848641 + 0.528969i \(0.177421\pi\)
\(60\) 0 0
\(61\) 232.793 0.488624 0.244312 0.969697i \(-0.421438\pi\)
0.244312 + 0.969697i \(0.421438\pi\)
\(62\) 50.5444 0.103535
\(63\) 0 0
\(64\) −497.246 −0.971183
\(65\) 0 0
\(66\) 0 0
\(67\) −844.628 −1.54012 −0.770058 0.637974i \(-0.779773\pi\)
−0.770058 + 0.637974i \(0.779773\pi\)
\(68\) −348.632 −0.621732
\(69\) 0 0
\(70\) 0 0
\(71\) 120.076 0.200710 0.100355 0.994952i \(-0.468002\pi\)
0.100355 + 0.994952i \(0.468002\pi\)
\(72\) 0 0
\(73\) 767.243 1.23012 0.615061 0.788479i \(-0.289131\pi\)
0.615061 + 0.788479i \(0.289131\pi\)
\(74\) −46.4160 −0.0729156
\(75\) 0 0
\(76\) −683.454 −1.03155
\(77\) 1045.33 1.54710
\(78\) 0 0
\(79\) −174.405 −0.248381 −0.124190 0.992258i \(-0.539633\pi\)
−0.124190 + 0.992258i \(0.539633\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −26.3794 −0.0355258
\(83\) −1336.51 −1.76748 −0.883740 0.467978i \(-0.844983\pi\)
−0.883740 + 0.467978i \(0.844983\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 17.9656 0.0225265
\(87\) 0 0
\(88\) −194.862 −0.236049
\(89\) 690.349 0.822212 0.411106 0.911588i \(-0.365143\pi\)
0.411106 + 0.911588i \(0.365143\pi\)
\(90\) 0 0
\(91\) 1017.92 1.17260
\(92\) −1712.01 −1.94010
\(93\) 0 0
\(94\) −54.0026 −0.0592547
\(95\) 0 0
\(96\) 0 0
\(97\) 416.030 0.435479 0.217739 0.976007i \(-0.430132\pi\)
0.217739 + 0.976007i \(0.430132\pi\)
\(98\) −11.8174 −0.0121810
\(99\) 0 0
\(100\) 0 0
\(101\) −283.692 −0.279489 −0.139745 0.990188i \(-0.544628\pi\)
−0.139745 + 0.990188i \(0.544628\pi\)
\(102\) 0 0
\(103\) −333.701 −0.319229 −0.159614 0.987179i \(-0.551025\pi\)
−0.159614 + 0.987179i \(0.551025\pi\)
\(104\) −189.752 −0.178910
\(105\) 0 0
\(106\) 8.70873 0.00797987
\(107\) −307.906 −0.278191 −0.139095 0.990279i \(-0.544419\pi\)
−0.139095 + 0.990279i \(0.544419\pi\)
\(108\) 0 0
\(109\) −1042.84 −0.916383 −0.458192 0.888853i \(-0.651503\pi\)
−0.458192 + 0.888853i \(0.651503\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1060.78 0.894952
\(113\) 1173.89 0.977257 0.488629 0.872492i \(-0.337497\pi\)
0.488629 + 0.872492i \(0.337497\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 385.218 0.308332
\(117\) 0 0
\(118\) 151.077 0.117862
\(119\) 736.447 0.567311
\(120\) 0 0
\(121\) 2532.48 1.90269
\(122\) 45.7231 0.0339309
\(123\) 0 0
\(124\) −2048.79 −1.48377
\(125\) 0 0
\(126\) 0 0
\(127\) 1040.77 0.727189 0.363594 0.931557i \(-0.381549\pi\)
0.363594 + 0.931557i \(0.381549\pi\)
\(128\) −397.415 −0.274428
\(129\) 0 0
\(130\) 0 0
\(131\) −1919.76 −1.28038 −0.640192 0.768215i \(-0.721145\pi\)
−0.640192 + 0.768215i \(0.721145\pi\)
\(132\) 0 0
\(133\) 1443.72 0.941253
\(134\) −165.894 −0.106948
\(135\) 0 0
\(136\) −137.282 −0.0865577
\(137\) 1726.42 1.07663 0.538314 0.842744i \(-0.319061\pi\)
0.538314 + 0.842744i \(0.319061\pi\)
\(138\) 0 0
\(139\) −1891.22 −1.15404 −0.577018 0.816731i \(-0.695784\pi\)
−0.577018 + 0.816731i \(0.695784\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 23.5842 0.0139376
\(143\) 3762.16 2.20005
\(144\) 0 0
\(145\) 0 0
\(146\) 150.695 0.0854219
\(147\) 0 0
\(148\) 1881.45 1.04496
\(149\) −2550.80 −1.40248 −0.701239 0.712926i \(-0.747370\pi\)
−0.701239 + 0.712926i \(0.747370\pi\)
\(150\) 0 0
\(151\) 1390.39 0.749325 0.374663 0.927161i \(-0.377759\pi\)
0.374663 + 0.927161i \(0.377759\pi\)
\(152\) −269.126 −0.143612
\(153\) 0 0
\(154\) 205.315 0.107433
\(155\) 0 0
\(156\) 0 0
\(157\) 980.571 0.498459 0.249229 0.968444i \(-0.419823\pi\)
0.249229 + 0.968444i \(0.419823\pi\)
\(158\) −34.2550 −0.0172480
\(159\) 0 0
\(160\) 0 0
\(161\) 3616.43 1.77028
\(162\) 0 0
\(163\) −2201.31 −1.05779 −0.528896 0.848686i \(-0.677394\pi\)
−0.528896 + 0.848686i \(0.677394\pi\)
\(164\) 1069.28 0.509124
\(165\) 0 0
\(166\) −262.505 −0.122737
\(167\) −818.796 −0.379403 −0.189702 0.981842i \(-0.560752\pi\)
−0.189702 + 0.981842i \(0.560752\pi\)
\(168\) 0 0
\(169\) 1466.50 0.667501
\(170\) 0 0
\(171\) 0 0
\(172\) −728.225 −0.322829
\(173\) −3385.35 −1.48776 −0.743882 0.668311i \(-0.767017\pi\)
−0.743882 + 0.668311i \(0.767017\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3920.58 1.67912
\(177\) 0 0
\(178\) 135.592 0.0570959
\(179\) −3635.90 −1.51821 −0.759107 0.650966i \(-0.774364\pi\)
−0.759107 + 0.650966i \(0.774364\pi\)
\(180\) 0 0
\(181\) −1056.53 −0.433876 −0.216938 0.976185i \(-0.569607\pi\)
−0.216938 + 0.976185i \(0.569607\pi\)
\(182\) 199.931 0.0814278
\(183\) 0 0
\(184\) −674.144 −0.270101
\(185\) 0 0
\(186\) 0 0
\(187\) 2721.86 1.06440
\(188\) 2188.97 0.849186
\(189\) 0 0
\(190\) 0 0
\(191\) −4169.70 −1.57963 −0.789814 0.613346i \(-0.789823\pi\)
−0.789814 + 0.613346i \(0.789823\pi\)
\(192\) 0 0
\(193\) 4146.74 1.54658 0.773288 0.634055i \(-0.218611\pi\)
0.773288 + 0.634055i \(0.218611\pi\)
\(194\) 81.7129 0.0302404
\(195\) 0 0
\(196\) 479.012 0.174567
\(197\) 4708.33 1.70282 0.851409 0.524503i \(-0.175749\pi\)
0.851409 + 0.524503i \(0.175749\pi\)
\(198\) 0 0
\(199\) 167.199 0.0595598 0.0297799 0.999556i \(-0.490519\pi\)
0.0297799 + 0.999556i \(0.490519\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −55.7203 −0.0194082
\(203\) −813.731 −0.281343
\(204\) 0 0
\(205\) 0 0
\(206\) −65.5427 −0.0221678
\(207\) 0 0
\(208\) 3817.77 1.27267
\(209\) 5335.90 1.76599
\(210\) 0 0
\(211\) −2077.65 −0.677874 −0.338937 0.940809i \(-0.610067\pi\)
−0.338937 + 0.940809i \(0.610067\pi\)
\(212\) −353.004 −0.114360
\(213\) 0 0
\(214\) −60.4762 −0.0193181
\(215\) 0 0
\(216\) 0 0
\(217\) 4327.85 1.35389
\(218\) −204.825 −0.0636353
\(219\) 0 0
\(220\) 0 0
\(221\) 2650.48 0.806744
\(222\) 0 0
\(223\) 4494.10 1.34954 0.674770 0.738028i \(-0.264243\pi\)
0.674770 + 0.738028i \(0.264243\pi\)
\(224\) 630.137 0.187959
\(225\) 0 0
\(226\) 230.565 0.0678625
\(227\) −4874.68 −1.42530 −0.712652 0.701518i \(-0.752506\pi\)
−0.712652 + 0.701518i \(0.752506\pi\)
\(228\) 0 0
\(229\) 2677.36 0.772598 0.386299 0.922374i \(-0.373753\pi\)
0.386299 + 0.922374i \(0.373753\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 151.689 0.0429261
\(233\) 2621.78 0.737162 0.368581 0.929596i \(-0.379844\pi\)
0.368581 + 0.929596i \(0.379844\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6123.82 −1.68910
\(237\) 0 0
\(238\) 144.646 0.0393951
\(239\) 1636.80 0.442994 0.221497 0.975161i \(-0.428906\pi\)
0.221497 + 0.975161i \(0.428906\pi\)
\(240\) 0 0
\(241\) −1330.75 −0.355691 −0.177845 0.984058i \(-0.556913\pi\)
−0.177845 + 0.984058i \(0.556913\pi\)
\(242\) 497.407 0.132126
\(243\) 0 0
\(244\) −1853.36 −0.486268
\(245\) 0 0
\(246\) 0 0
\(247\) 5195.97 1.33851
\(248\) −806.761 −0.206570
\(249\) 0 0
\(250\) 0 0
\(251\) −2130.07 −0.535654 −0.267827 0.963467i \(-0.586305\pi\)
−0.267827 + 0.963467i \(0.586305\pi\)
\(252\) 0 0
\(253\) 13366.1 3.32142
\(254\) 204.418 0.0504973
\(255\) 0 0
\(256\) 3899.91 0.952126
\(257\) −7413.59 −1.79941 −0.899703 0.436503i \(-0.856217\pi\)
−0.899703 + 0.436503i \(0.856217\pi\)
\(258\) 0 0
\(259\) −3974.36 −0.953493
\(260\) 0 0
\(261\) 0 0
\(262\) −377.062 −0.0889121
\(263\) −6954.31 −1.63050 −0.815249 0.579110i \(-0.803400\pi\)
−0.815249 + 0.579110i \(0.803400\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 283.563 0.0653623
\(267\) 0 0
\(268\) 6724.44 1.53269
\(269\) −6456.20 −1.46335 −0.731675 0.681653i \(-0.761261\pi\)
−0.731675 + 0.681653i \(0.761261\pi\)
\(270\) 0 0
\(271\) 6907.22 1.54828 0.774140 0.633015i \(-0.218183\pi\)
0.774140 + 0.633015i \(0.218183\pi\)
\(272\) 2762.09 0.615722
\(273\) 0 0
\(274\) 339.088 0.0747630
\(275\) 0 0
\(276\) 0 0
\(277\) 2178.56 0.472553 0.236276 0.971686i \(-0.424073\pi\)
0.236276 + 0.971686i \(0.424073\pi\)
\(278\) −371.456 −0.0801384
\(279\) 0 0
\(280\) 0 0
\(281\) −3471.48 −0.736980 −0.368490 0.929632i \(-0.620125\pi\)
−0.368490 + 0.929632i \(0.620125\pi\)
\(282\) 0 0
\(283\) 3181.51 0.668272 0.334136 0.942525i \(-0.391555\pi\)
0.334136 + 0.942525i \(0.391555\pi\)
\(284\) −955.975 −0.199742
\(285\) 0 0
\(286\) 738.930 0.152776
\(287\) −2258.73 −0.464559
\(288\) 0 0
\(289\) −2995.42 −0.609694
\(290\) 0 0
\(291\) 0 0
\(292\) −6108.34 −1.22419
\(293\) 4955.18 0.988002 0.494001 0.869461i \(-0.335534\pi\)
0.494001 + 0.869461i \(0.335534\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 740.866 0.145480
\(297\) 0 0
\(298\) −501.005 −0.0973907
\(299\) 13015.6 2.51743
\(300\) 0 0
\(301\) 1538.30 0.294571
\(302\) 273.088 0.0520345
\(303\) 0 0
\(304\) 5414.77 1.02157
\(305\) 0 0
\(306\) 0 0
\(307\) 3151.77 0.585931 0.292966 0.956123i \(-0.405358\pi\)
0.292966 + 0.956123i \(0.405358\pi\)
\(308\) −8322.33 −1.53964
\(309\) 0 0
\(310\) 0 0
\(311\) 931.002 0.169750 0.0848750 0.996392i \(-0.472951\pi\)
0.0848750 + 0.996392i \(0.472951\pi\)
\(312\) 0 0
\(313\) −3460.09 −0.624843 −0.312422 0.949944i \(-0.601140\pi\)
−0.312422 + 0.949944i \(0.601140\pi\)
\(314\) 192.595 0.0346139
\(315\) 0 0
\(316\) 1388.51 0.247183
\(317\) −706.536 −0.125183 −0.0625915 0.998039i \(-0.519937\pi\)
−0.0625915 + 0.998039i \(0.519937\pi\)
\(318\) 0 0
\(319\) −3007.49 −0.527860
\(320\) 0 0
\(321\) 0 0
\(322\) 710.308 0.122931
\(323\) 3759.19 0.647576
\(324\) 0 0
\(325\) 0 0
\(326\) −432.363 −0.0734551
\(327\) 0 0
\(328\) 421.053 0.0708803
\(329\) −4623.96 −0.774855
\(330\) 0 0
\(331\) 11165.4 1.85410 0.927051 0.374936i \(-0.122335\pi\)
0.927051 + 0.374936i \(0.122335\pi\)
\(332\) 10640.5 1.75896
\(333\) 0 0
\(334\) −160.821 −0.0263465
\(335\) 0 0
\(336\) 0 0
\(337\) 7333.37 1.18538 0.592692 0.805430i \(-0.298065\pi\)
0.592692 + 0.805430i \(0.298065\pi\)
\(338\) 288.037 0.0463525
\(339\) 0 0
\(340\) 0 0
\(341\) 15995.4 2.54018
\(342\) 0 0
\(343\) −6780.32 −1.06735
\(344\) −286.756 −0.0449443
\(345\) 0 0
\(346\) −664.920 −0.103313
\(347\) 8646.97 1.33773 0.668867 0.743382i \(-0.266780\pi\)
0.668867 + 0.743382i \(0.266780\pi\)
\(348\) 0 0
\(349\) −9020.31 −1.38351 −0.691757 0.722130i \(-0.743163\pi\)
−0.691757 + 0.722130i \(0.743163\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2328.94 0.352650
\(353\) −7085.03 −1.06827 −0.534133 0.845400i \(-0.679362\pi\)
−0.534133 + 0.845400i \(0.679362\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −5496.16 −0.818247
\(357\) 0 0
\(358\) −714.132 −0.105427
\(359\) −7857.15 −1.15511 −0.577555 0.816352i \(-0.695993\pi\)
−0.577555 + 0.816352i \(0.695993\pi\)
\(360\) 0 0
\(361\) 510.483 0.0744252
\(362\) −207.515 −0.0301292
\(363\) 0 0
\(364\) −8104.09 −1.16695
\(365\) 0 0
\(366\) 0 0
\(367\) 491.735 0.0699411 0.0349705 0.999388i \(-0.488866\pi\)
0.0349705 + 0.999388i \(0.488866\pi\)
\(368\) 13563.7 1.92134
\(369\) 0 0
\(370\) 0 0
\(371\) 745.683 0.104350
\(372\) 0 0
\(373\) 8619.88 1.19657 0.598284 0.801284i \(-0.295849\pi\)
0.598284 + 0.801284i \(0.295849\pi\)
\(374\) 534.603 0.0739135
\(375\) 0 0
\(376\) 861.958 0.118224
\(377\) −2928.62 −0.400084
\(378\) 0 0
\(379\) −513.349 −0.0695751 −0.0347875 0.999395i \(-0.511075\pi\)
−0.0347875 + 0.999395i \(0.511075\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −818.976 −0.109692
\(383\) −430.848 −0.0574811 −0.0287406 0.999587i \(-0.509150\pi\)
−0.0287406 + 0.999587i \(0.509150\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 814.467 0.107397
\(387\) 0 0
\(388\) −3312.19 −0.433379
\(389\) −10014.6 −1.30530 −0.652651 0.757658i \(-0.726343\pi\)
−0.652651 + 0.757658i \(0.726343\pi\)
\(390\) 0 0
\(391\) 9416.54 1.21794
\(392\) 188.622 0.0243032
\(393\) 0 0
\(394\) 924.769 0.118247
\(395\) 0 0
\(396\) 0 0
\(397\) −8645.55 −1.09297 −0.546483 0.837470i \(-0.684034\pi\)
−0.546483 + 0.837470i \(0.684034\pi\)
\(398\) 32.8397 0.00413594
\(399\) 0 0
\(400\) 0 0
\(401\) −860.487 −0.107159 −0.0535794 0.998564i \(-0.517063\pi\)
−0.0535794 + 0.998564i \(0.517063\pi\)
\(402\) 0 0
\(403\) 15576.0 1.92530
\(404\) 2258.59 0.278141
\(405\) 0 0
\(406\) −159.826 −0.0195370
\(407\) −14689.0 −1.78895
\(408\) 0 0
\(409\) −7540.70 −0.911647 −0.455823 0.890070i \(-0.650655\pi\)
−0.455823 + 0.890070i \(0.650655\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2656.74 0.317690
\(413\) 12935.9 1.54125
\(414\) 0 0
\(415\) 0 0
\(416\) 2267.87 0.267287
\(417\) 0 0
\(418\) 1048.03 0.122634
\(419\) 1833.54 0.213781 0.106891 0.994271i \(-0.465911\pi\)
0.106891 + 0.994271i \(0.465911\pi\)
\(420\) 0 0
\(421\) −9319.22 −1.07884 −0.539419 0.842037i \(-0.681356\pi\)
−0.539419 + 0.842037i \(0.681356\pi\)
\(422\) −408.074 −0.0470728
\(423\) 0 0
\(424\) −139.004 −0.0159213
\(425\) 0 0
\(426\) 0 0
\(427\) 3915.03 0.443704
\(428\) 2451.37 0.276849
\(429\) 0 0
\(430\) 0 0
\(431\) 315.173 0.0352235 0.0176118 0.999845i \(-0.494394\pi\)
0.0176118 + 0.999845i \(0.494394\pi\)
\(432\) 0 0
\(433\) 8285.74 0.919602 0.459801 0.888022i \(-0.347921\pi\)
0.459801 + 0.888022i \(0.347921\pi\)
\(434\) 850.038 0.0940164
\(435\) 0 0
\(436\) 8302.48 0.911964
\(437\) 18460.1 2.02075
\(438\) 0 0
\(439\) −11980.5 −1.30250 −0.651251 0.758863i \(-0.725755\pi\)
−0.651251 + 0.758863i \(0.725755\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 520.584 0.0560218
\(443\) −8130.09 −0.871946 −0.435973 0.899960i \(-0.643596\pi\)
−0.435973 + 0.899960i \(0.643596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 882.692 0.0937145
\(447\) 0 0
\(448\) −8362.51 −0.881900
\(449\) 1686.35 0.177247 0.0886233 0.996065i \(-0.471753\pi\)
0.0886233 + 0.996065i \(0.471753\pi\)
\(450\) 0 0
\(451\) −8348.11 −0.871612
\(452\) −9345.82 −0.972545
\(453\) 0 0
\(454\) −957.441 −0.0989757
\(455\) 0 0
\(456\) 0 0
\(457\) −10804.5 −1.10594 −0.552971 0.833201i \(-0.686506\pi\)
−0.552971 + 0.833201i \(0.686506\pi\)
\(458\) 525.864 0.0536506
\(459\) 0 0
\(460\) 0 0
\(461\) −12593.1 −1.27227 −0.636136 0.771577i \(-0.719468\pi\)
−0.636136 + 0.771577i \(0.719468\pi\)
\(462\) 0 0
\(463\) 490.650 0.0492493 0.0246247 0.999697i \(-0.492161\pi\)
0.0246247 + 0.999697i \(0.492161\pi\)
\(464\) −3051.95 −0.305351
\(465\) 0 0
\(466\) 514.947 0.0511898
\(467\) −10112.0 −1.00198 −0.500992 0.865452i \(-0.667031\pi\)
−0.500992 + 0.865452i \(0.667031\pi\)
\(468\) 0 0
\(469\) −14204.7 −1.39853
\(470\) 0 0
\(471\) 0 0
\(472\) −2411.40 −0.235156
\(473\) 5685.44 0.552678
\(474\) 0 0
\(475\) 0 0
\(476\) −5863.17 −0.564575
\(477\) 0 0
\(478\) 321.485 0.0307623
\(479\) 675.778 0.0644615 0.0322308 0.999480i \(-0.489739\pi\)
0.0322308 + 0.999480i \(0.489739\pi\)
\(480\) 0 0
\(481\) −14303.8 −1.35591
\(482\) −261.375 −0.0246998
\(483\) 0 0
\(484\) −20162.1 −1.89351
\(485\) 0 0
\(486\) 0 0
\(487\) 1430.49 0.133104 0.0665518 0.997783i \(-0.478800\pi\)
0.0665518 + 0.997783i \(0.478800\pi\)
\(488\) −729.806 −0.0676983
\(489\) 0 0
\(490\) 0 0
\(491\) 1535.95 0.141174 0.0705870 0.997506i \(-0.477513\pi\)
0.0705870 + 0.997506i \(0.477513\pi\)
\(492\) 0 0
\(493\) −2118.81 −0.193563
\(494\) 1020.55 0.0929485
\(495\) 0 0
\(496\) 16231.9 1.46942
\(497\) 2019.39 0.182258
\(498\) 0 0
\(499\) −3618.46 −0.324618 −0.162309 0.986740i \(-0.551894\pi\)
−0.162309 + 0.986740i \(0.551894\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −418.370 −0.0371968
\(503\) −16435.1 −1.45687 −0.728436 0.685114i \(-0.759752\pi\)
−0.728436 + 0.685114i \(0.759752\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2625.25 0.230645
\(507\) 0 0
\(508\) −8285.97 −0.723682
\(509\) 9670.87 0.842149 0.421075 0.907026i \(-0.361653\pi\)
0.421075 + 0.907026i \(0.361653\pi\)
\(510\) 0 0
\(511\) 12903.2 1.11703
\(512\) 3945.30 0.340546
\(513\) 0 0
\(514\) −1456.11 −0.124954
\(515\) 0 0
\(516\) 0 0
\(517\) −17089.8 −1.45379
\(518\) −780.608 −0.0662123
\(519\) 0 0
\(520\) 0 0
\(521\) 7895.74 0.663951 0.331976 0.943288i \(-0.392285\pi\)
0.331976 + 0.943288i \(0.392285\pi\)
\(522\) 0 0
\(523\) 17372.5 1.45248 0.726240 0.687442i \(-0.241266\pi\)
0.726240 + 0.687442i \(0.241266\pi\)
\(524\) 15284.0 1.27421
\(525\) 0 0
\(526\) −1365.90 −0.113225
\(527\) 11268.9 0.931467
\(528\) 0 0
\(529\) 34074.4 2.80055
\(530\) 0 0
\(531\) 0 0
\(532\) −11494.1 −0.936714
\(533\) −8129.18 −0.660627
\(534\) 0 0
\(535\) 0 0
\(536\) 2647.91 0.213381
\(537\) 0 0
\(538\) −1268.07 −0.101618
\(539\) −3739.77 −0.298856
\(540\) 0 0
\(541\) 14758.6 1.17287 0.586433 0.809997i \(-0.300532\pi\)
0.586433 + 0.809997i \(0.300532\pi\)
\(542\) 1356.65 0.107515
\(543\) 0 0
\(544\) 1640.76 0.129314
\(545\) 0 0
\(546\) 0 0
\(547\) 14610.7 1.14206 0.571031 0.820929i \(-0.306544\pi\)
0.571031 + 0.820929i \(0.306544\pi\)
\(548\) −13744.8 −1.07144
\(549\) 0 0
\(550\) 0 0
\(551\) −4153.69 −0.321149
\(552\) 0 0
\(553\) −2933.08 −0.225546
\(554\) 427.894 0.0328149
\(555\) 0 0
\(556\) 15056.8 1.14847
\(557\) 5282.05 0.401809 0.200905 0.979611i \(-0.435612\pi\)
0.200905 + 0.979611i \(0.435612\pi\)
\(558\) 0 0
\(559\) 5536.34 0.418895
\(560\) 0 0
\(561\) 0 0
\(562\) −681.838 −0.0511772
\(563\) −14862.8 −1.11259 −0.556297 0.830983i \(-0.687778\pi\)
−0.556297 + 0.830983i \(0.687778\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 624.884 0.0464060
\(567\) 0 0
\(568\) −376.438 −0.0278081
\(569\) −14831.0 −1.09270 −0.546351 0.837556i \(-0.683984\pi\)
−0.546351 + 0.837556i \(0.683984\pi\)
\(570\) 0 0
\(571\) 5005.19 0.366832 0.183416 0.983035i \(-0.441285\pi\)
0.183416 + 0.983035i \(0.441285\pi\)
\(572\) −29952.1 −2.18944
\(573\) 0 0
\(574\) −443.639 −0.0322599
\(575\) 0 0
\(576\) 0 0
\(577\) 18453.4 1.33141 0.665705 0.746215i \(-0.268131\pi\)
0.665705 + 0.746215i \(0.268131\pi\)
\(578\) −588.335 −0.0423382
\(579\) 0 0
\(580\) 0 0
\(581\) −22476.9 −1.60499
\(582\) 0 0
\(583\) 2755.99 0.195783
\(584\) −2405.31 −0.170432
\(585\) 0 0
\(586\) 973.252 0.0686087
\(587\) 11462.9 0.806006 0.403003 0.915199i \(-0.367966\pi\)
0.403003 + 0.915199i \(0.367966\pi\)
\(588\) 0 0
\(589\) 22091.5 1.54544
\(590\) 0 0
\(591\) 0 0
\(592\) −14906.1 −1.03486
\(593\) 9937.56 0.688173 0.344086 0.938938i \(-0.388189\pi\)
0.344086 + 0.938938i \(0.388189\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20308.0 1.39572
\(597\) 0 0
\(598\) 2556.40 0.174815
\(599\) 17608.1 1.20108 0.600542 0.799593i \(-0.294952\pi\)
0.600542 + 0.799593i \(0.294952\pi\)
\(600\) 0 0
\(601\) −20493.9 −1.39096 −0.695478 0.718547i \(-0.744807\pi\)
−0.695478 + 0.718547i \(0.744807\pi\)
\(602\) 302.138 0.0204556
\(603\) 0 0
\(604\) −11069.5 −0.745712
\(605\) 0 0
\(606\) 0 0
\(607\) 8917.27 0.596278 0.298139 0.954522i \(-0.403634\pi\)
0.298139 + 0.954522i \(0.403634\pi\)
\(608\) 3216.53 0.214552
\(609\) 0 0
\(610\) 0 0
\(611\) −16641.7 −1.10188
\(612\) 0 0
\(613\) −14907.7 −0.982247 −0.491124 0.871090i \(-0.663414\pi\)
−0.491124 + 0.871090i \(0.663414\pi\)
\(614\) 619.042 0.0406881
\(615\) 0 0
\(616\) −3277.12 −0.214349
\(617\) −13575.6 −0.885794 −0.442897 0.896573i \(-0.646049\pi\)
−0.442897 + 0.896573i \(0.646049\pi\)
\(618\) 0 0
\(619\) 5132.01 0.333236 0.166618 0.986022i \(-0.446715\pi\)
0.166618 + 0.986022i \(0.446715\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 182.859 0.0117878
\(623\) 11610.0 0.746624
\(624\) 0 0
\(625\) 0 0
\(626\) −679.600 −0.0433902
\(627\) 0 0
\(628\) −7806.74 −0.496055
\(629\) −10348.5 −0.655997
\(630\) 0 0
\(631\) −28063.9 −1.77054 −0.885268 0.465081i \(-0.846025\pi\)
−0.885268 + 0.465081i \(0.846025\pi\)
\(632\) 546.759 0.0344128
\(633\) 0 0
\(634\) −138.771 −0.00869293
\(635\) 0 0
\(636\) 0 0
\(637\) −3641.69 −0.226514
\(638\) −590.705 −0.0366555
\(639\) 0 0
\(640\) 0 0
\(641\) −694.011 −0.0427641 −0.0213820 0.999771i \(-0.506807\pi\)
−0.0213820 + 0.999771i \(0.506807\pi\)
\(642\) 0 0
\(643\) −14359.2 −0.880674 −0.440337 0.897833i \(-0.645141\pi\)
−0.440337 + 0.897833i \(0.645141\pi\)
\(644\) −28792.0 −1.76174
\(645\) 0 0
\(646\) 738.347 0.0449689
\(647\) 5808.50 0.352945 0.176473 0.984306i \(-0.443531\pi\)
0.176473 + 0.984306i \(0.443531\pi\)
\(648\) 0 0
\(649\) 47810.3 2.89171
\(650\) 0 0
\(651\) 0 0
\(652\) 17525.6 1.05269
\(653\) 20870.5 1.25073 0.625365 0.780332i \(-0.284950\pi\)
0.625365 + 0.780332i \(0.284950\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −8471.50 −0.504202
\(657\) 0 0
\(658\) −908.197 −0.0538073
\(659\) 16435.7 0.971541 0.485771 0.874086i \(-0.338539\pi\)
0.485771 + 0.874086i \(0.338539\pi\)
\(660\) 0 0
\(661\) 7547.42 0.444116 0.222058 0.975033i \(-0.428723\pi\)
0.222058 + 0.975033i \(0.428723\pi\)
\(662\) 2193.01 0.128752
\(663\) 0 0
\(664\) 4189.95 0.244882
\(665\) 0 0
\(666\) 0 0
\(667\) −10404.7 −0.604007
\(668\) 6518.78 0.377574
\(669\) 0 0
\(670\) 0 0
\(671\) 14469.7 0.832482
\(672\) 0 0
\(673\) 7812.92 0.447498 0.223749 0.974647i \(-0.428170\pi\)
0.223749 + 0.974647i \(0.428170\pi\)
\(674\) 1440.36 0.0823151
\(675\) 0 0
\(676\) −11675.4 −0.664283
\(677\) 10773.0 0.611579 0.305789 0.952099i \(-0.401080\pi\)
0.305789 + 0.952099i \(0.401080\pi\)
\(678\) 0 0
\(679\) 6996.64 0.395444
\(680\) 0 0
\(681\) 0 0
\(682\) 3141.68 0.176395
\(683\) −7346.43 −0.411572 −0.205786 0.978597i \(-0.565975\pi\)
−0.205786 + 0.978597i \(0.565975\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1331.73 −0.0741190
\(687\) 0 0
\(688\) 5769.47 0.319708
\(689\) 2683.72 0.148391
\(690\) 0 0
\(691\) −33029.1 −1.81836 −0.909179 0.416405i \(-0.863290\pi\)
−0.909179 + 0.416405i \(0.863290\pi\)
\(692\) 26952.2 1.48059
\(693\) 0 0
\(694\) 1698.36 0.0928947
\(695\) 0 0
\(696\) 0 0
\(697\) −5881.32 −0.319614
\(698\) −1771.69 −0.0960737
\(699\) 0 0
\(700\) 0 0
\(701\) −2881.41 −0.155249 −0.0776244 0.996983i \(-0.524733\pi\)
−0.0776244 + 0.996983i \(0.524733\pi\)
\(702\) 0 0
\(703\) −20287.1 −1.08840
\(704\) −30907.2 −1.65463
\(705\) 0 0
\(706\) −1391.58 −0.0741823
\(707\) −4771.03 −0.253795
\(708\) 0 0
\(709\) 6858.12 0.363275 0.181638 0.983366i \(-0.441860\pi\)
0.181638 + 0.983366i \(0.441860\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −2164.24 −0.113916
\(713\) 55337.8 2.90662
\(714\) 0 0
\(715\) 0 0
\(716\) 28947.0 1.51089
\(717\) 0 0
\(718\) −1543.23 −0.0802129
\(719\) 9827.84 0.509759 0.254879 0.966973i \(-0.417964\pi\)
0.254879 + 0.966973i \(0.417964\pi\)
\(720\) 0 0
\(721\) −5612.08 −0.289882
\(722\) 100.264 0.00516822
\(723\) 0 0
\(724\) 8411.52 0.431784
\(725\) 0 0
\(726\) 0 0
\(727\) 35550.2 1.81360 0.906798 0.421566i \(-0.138519\pi\)
0.906798 + 0.421566i \(0.138519\pi\)
\(728\) −3191.18 −0.162463
\(729\) 0 0
\(730\) 0 0
\(731\) 4005.45 0.202663
\(732\) 0 0
\(733\) 28654.1 1.44388 0.721940 0.691956i \(-0.243251\pi\)
0.721940 + 0.691956i \(0.243251\pi\)
\(734\) 96.5823 0.00485683
\(735\) 0 0
\(736\) 8057.21 0.403523
\(737\) −52499.4 −2.62394
\(738\) 0 0
\(739\) 5183.64 0.258029 0.129014 0.991643i \(-0.458819\pi\)
0.129014 + 0.991643i \(0.458819\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 146.460 0.00724627
\(743\) −14138.1 −0.698085 −0.349043 0.937107i \(-0.613493\pi\)
−0.349043 + 0.937107i \(0.613493\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1693.04 0.0830919
\(747\) 0 0
\(748\) −21669.9 −1.05926
\(749\) −5178.26 −0.252616
\(750\) 0 0
\(751\) −31181.5 −1.51509 −0.757544 0.652784i \(-0.773601\pi\)
−0.757544 + 0.652784i \(0.773601\pi\)
\(752\) −17342.4 −0.840976
\(753\) 0 0
\(754\) −575.214 −0.0277826
\(755\) 0 0
\(756\) 0 0
\(757\) −3247.70 −0.155931 −0.0779655 0.996956i \(-0.524842\pi\)
−0.0779655 + 0.996956i \(0.524842\pi\)
\(758\) −100.827 −0.00483142
\(759\) 0 0
\(760\) 0 0
\(761\) 24531.8 1.16856 0.584282 0.811551i \(-0.301376\pi\)
0.584282 + 0.811551i \(0.301376\pi\)
\(762\) 0 0
\(763\) −17538.1 −0.832138
\(764\) 33196.8 1.57201
\(765\) 0 0
\(766\) −84.6232 −0.00399159
\(767\) 46556.5 2.19173
\(768\) 0 0
\(769\) −25554.8 −1.19835 −0.599174 0.800619i \(-0.704504\pi\)
−0.599174 + 0.800619i \(0.704504\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −33014.0 −1.53912
\(773\) −28912.2 −1.34528 −0.672639 0.739971i \(-0.734839\pi\)
−0.672639 + 0.739971i \(0.734839\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1304.25 −0.0603350
\(777\) 0 0
\(778\) −1966.99 −0.0906426
\(779\) −11529.7 −0.530287
\(780\) 0 0
\(781\) 7463.54 0.341955
\(782\) 1849.51 0.0845761
\(783\) 0 0
\(784\) −3795.05 −0.172879
\(785\) 0 0
\(786\) 0 0
\(787\) 5252.83 0.237920 0.118960 0.992899i \(-0.462044\pi\)
0.118960 + 0.992899i \(0.462044\pi\)
\(788\) −37485.0 −1.69461
\(789\) 0 0
\(790\) 0 0
\(791\) 19742.0 0.887416
\(792\) 0 0
\(793\) 14090.2 0.630969
\(794\) −1698.08 −0.0758976
\(795\) 0 0
\(796\) −1331.14 −0.0592726
\(797\) 27734.8 1.23264 0.616321 0.787495i \(-0.288622\pi\)
0.616321 + 0.787495i \(0.288622\pi\)
\(798\) 0 0
\(799\) −12040.0 −0.533095
\(800\) 0 0
\(801\) 0 0
\(802\) −169.009 −0.00744130
\(803\) 47689.4 2.09579
\(804\) 0 0
\(805\) 0 0
\(806\) 3059.29 0.133696
\(807\) 0 0
\(808\) 889.374 0.0387229
\(809\) 31620.9 1.37420 0.687102 0.726561i \(-0.258882\pi\)
0.687102 + 0.726561i \(0.258882\pi\)
\(810\) 0 0
\(811\) −21878.4 −0.947291 −0.473646 0.880716i \(-0.657062\pi\)
−0.473646 + 0.880716i \(0.657062\pi\)
\(812\) 6478.45 0.279987
\(813\) 0 0
\(814\) −2885.07 −0.124228
\(815\) 0 0
\(816\) 0 0
\(817\) 7852.23 0.336248
\(818\) −1481.08 −0.0633064
\(819\) 0 0
\(820\) 0 0
\(821\) 11725.2 0.498432 0.249216 0.968448i \(-0.419827\pi\)
0.249216 + 0.968448i \(0.419827\pi\)
\(822\) 0 0
\(823\) −24827.0 −1.05154 −0.525769 0.850627i \(-0.676222\pi\)
−0.525769 + 0.850627i \(0.676222\pi\)
\(824\) 1046.15 0.0442288
\(825\) 0 0
\(826\) 2540.76 0.107027
\(827\) −12490.3 −0.525187 −0.262594 0.964906i \(-0.584578\pi\)
−0.262594 + 0.964906i \(0.584578\pi\)
\(828\) 0 0
\(829\) −11539.8 −0.483466 −0.241733 0.970343i \(-0.577716\pi\)
−0.241733 + 0.970343i \(0.577716\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −30096.7 −1.25411
\(833\) −2634.70 −0.109588
\(834\) 0 0
\(835\) 0 0
\(836\) −42481.4 −1.75747
\(837\) 0 0
\(838\) 360.128 0.0148454
\(839\) 1808.81 0.0744303 0.0372152 0.999307i \(-0.488151\pi\)
0.0372152 + 0.999307i \(0.488151\pi\)
\(840\) 0 0
\(841\) −22047.8 −0.904008
\(842\) −1830.40 −0.0749165
\(843\) 0 0
\(844\) 16541.1 0.674605
\(845\) 0 0
\(846\) 0 0
\(847\) 42590.3 1.72777
\(848\) 2796.73 0.113255
\(849\) 0 0
\(850\) 0 0
\(851\) −50817.9 −2.04702
\(852\) 0 0
\(853\) −28693.1 −1.15174 −0.575869 0.817542i \(-0.695336\pi\)
−0.575869 + 0.817542i \(0.695336\pi\)
\(854\) 768.955 0.0308116
\(855\) 0 0
\(856\) 965.286 0.0385430
\(857\) −3588.57 −0.143038 −0.0715188 0.997439i \(-0.522785\pi\)
−0.0715188 + 0.997439i \(0.522785\pi\)
\(858\) 0 0
\(859\) 44877.4 1.78253 0.891267 0.453478i \(-0.149817\pi\)
0.891267 + 0.453478i \(0.149817\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 61.9034 0.00244598
\(863\) −48455.9 −1.91131 −0.955654 0.294492i \(-0.904850\pi\)
−0.955654 + 0.294492i \(0.904850\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1627.41 0.0638588
\(867\) 0 0
\(868\) −34455.9 −1.34736
\(869\) −10840.5 −0.423173
\(870\) 0 0
\(871\) −51122.7 −1.98878
\(872\) 3269.30 0.126964
\(873\) 0 0
\(874\) 3625.77 0.140324
\(875\) 0 0
\(876\) 0 0
\(877\) 9925.44 0.382164 0.191082 0.981574i \(-0.438800\pi\)
0.191082 + 0.981574i \(0.438800\pi\)
\(878\) −2353.10 −0.0904481
\(879\) 0 0
\(880\) 0 0
\(881\) −30842.9 −1.17948 −0.589741 0.807592i \(-0.700770\pi\)
−0.589741 + 0.807592i \(0.700770\pi\)
\(882\) 0 0
\(883\) −19132.7 −0.729180 −0.364590 0.931168i \(-0.618791\pi\)
−0.364590 + 0.931168i \(0.618791\pi\)
\(884\) −21101.6 −0.802854
\(885\) 0 0
\(886\) −1596.84 −0.0605495
\(887\) −20374.8 −0.771273 −0.385636 0.922651i \(-0.626018\pi\)
−0.385636 + 0.922651i \(0.626018\pi\)
\(888\) 0 0
\(889\) 17503.2 0.660337
\(890\) 0 0
\(891\) 0 0
\(892\) −35779.5 −1.34303
\(893\) −23603.0 −0.884484
\(894\) 0 0
\(895\) 0 0
\(896\) −6683.58 −0.249200
\(897\) 0 0
\(898\) 331.218 0.0123083
\(899\) −12451.5 −0.461937
\(900\) 0 0
\(901\) 1941.62 0.0717923
\(902\) −1639.66 −0.0605263
\(903\) 0 0
\(904\) −3680.14 −0.135398
\(905\) 0 0
\(906\) 0 0
\(907\) −18954.4 −0.693903 −0.346951 0.937883i \(-0.612783\pi\)
−0.346951 + 0.937883i \(0.612783\pi\)
\(908\) 38809.4 1.41843
\(909\) 0 0
\(910\) 0 0
\(911\) 41799.7 1.52018 0.760092 0.649816i \(-0.225154\pi\)
0.760092 + 0.649816i \(0.225154\pi\)
\(912\) 0 0
\(913\) −83073.2 −3.01130
\(914\) −2122.13 −0.0767986
\(915\) 0 0
\(916\) −21315.6 −0.768873
\(917\) −32285.9 −1.16268
\(918\) 0 0
\(919\) −26828.5 −0.962993 −0.481496 0.876448i \(-0.659907\pi\)
−0.481496 + 0.876448i \(0.659907\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2473.42 −0.0883489
\(923\) 7267.82 0.259180
\(924\) 0 0
\(925\) 0 0
\(926\) 96.3691 0.00341996
\(927\) 0 0
\(928\) −1812.95 −0.0641302
\(929\) −24737.6 −0.873643 −0.436821 0.899548i \(-0.643896\pi\)
−0.436821 + 0.899548i \(0.643896\pi\)
\(930\) 0 0
\(931\) −5165.04 −0.181823
\(932\) −20873.1 −0.733607
\(933\) 0 0
\(934\) −1986.10 −0.0695796
\(935\) 0 0
\(936\) 0 0
\(937\) 5084.38 0.177267 0.0886337 0.996064i \(-0.471750\pi\)
0.0886337 + 0.996064i \(0.471750\pi\)
\(938\) −2789.95 −0.0971164
\(939\) 0 0
\(940\) 0 0
\(941\) −47884.9 −1.65888 −0.829438 0.558599i \(-0.811339\pi\)
−0.829438 + 0.558599i \(0.811339\pi\)
\(942\) 0 0
\(943\) −28881.1 −0.997348
\(944\) 48517.0 1.67277
\(945\) 0 0
\(946\) 1116.68 0.0383789
\(947\) −25966.0 −0.891005 −0.445503 0.895281i \(-0.646975\pi\)
−0.445503 + 0.895281i \(0.646975\pi\)
\(948\) 0 0
\(949\) 46438.8 1.58848
\(950\) 0 0
\(951\) 0 0
\(952\) −2308.76 −0.0786002
\(953\) −45778.3 −1.55604 −0.778020 0.628240i \(-0.783776\pi\)
−0.778020 + 0.628240i \(0.783776\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −13031.2 −0.440857
\(957\) 0 0
\(958\) 132.730 0.00447633
\(959\) 29034.3 0.977652
\(960\) 0 0
\(961\) 36432.8 1.22295
\(962\) −2809.42 −0.0941572
\(963\) 0 0
\(964\) 10594.7 0.353975
\(965\) 0 0
\(966\) 0 0
\(967\) 40166.5 1.33575 0.667873 0.744275i \(-0.267205\pi\)
0.667873 + 0.744275i \(0.267205\pi\)
\(968\) −7939.32 −0.263615
\(969\) 0 0
\(970\) 0 0
\(971\) 8509.27 0.281231 0.140616 0.990064i \(-0.455092\pi\)
0.140616 + 0.990064i \(0.455092\pi\)
\(972\) 0 0
\(973\) −31805.8 −1.04794
\(974\) 280.963 0.00924296
\(975\) 0 0
\(976\) 14683.6 0.481567
\(977\) 36887.7 1.20792 0.603962 0.797013i \(-0.293588\pi\)
0.603962 + 0.797013i \(0.293588\pi\)
\(978\) 0 0
\(979\) 42909.9 1.40082
\(980\) 0 0
\(981\) 0 0
\(982\) 301.677 0.00980337
\(983\) 30685.4 0.995637 0.497818 0.867281i \(-0.334135\pi\)
0.497818 + 0.867281i \(0.334135\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −416.157 −0.0134413
\(987\) 0 0
\(988\) −41367.3 −1.33205
\(989\) 19669.3 0.632405
\(990\) 0 0
\(991\) 4019.80 0.128853 0.0644265 0.997922i \(-0.479478\pi\)
0.0644265 + 0.997922i \(0.479478\pi\)
\(992\) 9642.20 0.308609
\(993\) 0 0
\(994\) 396.632 0.0126563
\(995\) 0 0
\(996\) 0 0
\(997\) −6729.02 −0.213751 −0.106876 0.994272i \(-0.534085\pi\)
−0.106876 + 0.994272i \(0.534085\pi\)
\(998\) −710.706 −0.0225421
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.w.1.3 yes 5
3.2 odd 2 2025.4.a.x.1.3 yes 5
5.4 even 2 2025.4.a.v.1.3 yes 5
15.14 odd 2 2025.4.a.u.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2025.4.a.u.1.3 5 15.14 odd 2
2025.4.a.v.1.3 yes 5 5.4 even 2
2025.4.a.w.1.3 yes 5 1.1 even 1 trivial
2025.4.a.x.1.3 yes 5 3.2 odd 2