Properties

Label 2025.4.a.bm.1.14
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,60,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 118 x^{14} + 5011 x^{12} - 99412 x^{10} + 979675 x^{8} - 4710982 x^{6} + 10937485 x^{4} + \cdots + 2788900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{16} \)
Twist minimal: no (minimal twist has level 405)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(5.08832\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.35627 q^{2} +3.26456 q^{4} +26.8077 q^{7} -15.8934 q^{8} +45.7770 q^{11} +8.87631 q^{13} +89.9741 q^{14} -79.4591 q^{16} +44.4832 q^{17} -150.217 q^{19} +153.640 q^{22} +202.896 q^{23} +29.7913 q^{26} +87.5154 q^{28} +184.288 q^{29} +88.9458 q^{31} -139.539 q^{32} +149.298 q^{34} +33.3201 q^{37} -504.169 q^{38} -236.995 q^{41} -273.681 q^{43} +149.441 q^{44} +680.973 q^{46} -115.339 q^{47} +375.655 q^{49} +28.9772 q^{52} +140.877 q^{53} -426.067 q^{56} +618.521 q^{58} +69.2493 q^{59} -56.4287 q^{61} +298.526 q^{62} +167.343 q^{64} +480.075 q^{67} +145.218 q^{68} -623.864 q^{71} +888.246 q^{73} +111.831 q^{74} -490.392 q^{76} +1227.18 q^{77} +776.512 q^{79} -795.421 q^{82} +1482.08 q^{83} -918.548 q^{86} -727.553 q^{88} -514.893 q^{89} +237.954 q^{91} +662.365 q^{92} -387.109 q^{94} -725.733 q^{97} +1260.80 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 60 q^{4} + 788 q^{16} - 356 q^{19} + 1520 q^{31} + 392 q^{34} + 724 q^{46} - 4 q^{49} + 1268 q^{61} + 9476 q^{64} + 228 q^{76} + 472 q^{79} + 1524 q^{91} + 10700 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.35627 1.18662 0.593311 0.804974i \(-0.297821\pi\)
0.593311 + 0.804974i \(0.297821\pi\)
\(3\) 0 0
\(4\) 3.26456 0.408070
\(5\) 0 0
\(6\) 0 0
\(7\) 26.8077 1.44748 0.723741 0.690072i \(-0.242421\pi\)
0.723741 + 0.690072i \(0.242421\pi\)
\(8\) −15.8934 −0.702397
\(9\) 0 0
\(10\) 0 0
\(11\) 45.7770 1.25475 0.627376 0.778716i \(-0.284129\pi\)
0.627376 + 0.778716i \(0.284129\pi\)
\(12\) 0 0
\(13\) 8.87631 0.189373 0.0946863 0.995507i \(-0.469815\pi\)
0.0946863 + 0.995507i \(0.469815\pi\)
\(14\) 89.9741 1.71761
\(15\) 0 0
\(16\) −79.4591 −1.24155
\(17\) 44.4832 0.634634 0.317317 0.948320i \(-0.397218\pi\)
0.317317 + 0.948320i \(0.397218\pi\)
\(18\) 0 0
\(19\) −150.217 −1.81380 −0.906899 0.421348i \(-0.861557\pi\)
−0.906899 + 0.421348i \(0.861557\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 153.640 1.48892
\(23\) 202.896 1.83942 0.919710 0.392597i \(-0.128423\pi\)
0.919710 + 0.392597i \(0.128423\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 29.7913 0.224714
\(27\) 0 0
\(28\) 87.5154 0.590673
\(29\) 184.288 1.18005 0.590025 0.807385i \(-0.299118\pi\)
0.590025 + 0.807385i \(0.299118\pi\)
\(30\) 0 0
\(31\) 88.9458 0.515327 0.257664 0.966235i \(-0.417047\pi\)
0.257664 + 0.966235i \(0.417047\pi\)
\(32\) −139.539 −0.770851
\(33\) 0 0
\(34\) 149.298 0.753070
\(35\) 0 0
\(36\) 0 0
\(37\) 33.3201 0.148048 0.0740242 0.997256i \(-0.476416\pi\)
0.0740242 + 0.997256i \(0.476416\pi\)
\(38\) −504.169 −2.15229
\(39\) 0 0
\(40\) 0 0
\(41\) −236.995 −0.902743 −0.451371 0.892336i \(-0.649065\pi\)
−0.451371 + 0.892336i \(0.649065\pi\)
\(42\) 0 0
\(43\) −273.681 −0.970604 −0.485302 0.874347i \(-0.661290\pi\)
−0.485302 + 0.874347i \(0.661290\pi\)
\(44\) 149.441 0.512026
\(45\) 0 0
\(46\) 680.973 2.18270
\(47\) −115.339 −0.357956 −0.178978 0.983853i \(-0.557279\pi\)
−0.178978 + 0.983853i \(0.557279\pi\)
\(48\) 0 0
\(49\) 375.655 1.09521
\(50\) 0 0
\(51\) 0 0
\(52\) 28.9772 0.0772772
\(53\) 140.877 0.365111 0.182556 0.983196i \(-0.441563\pi\)
0.182556 + 0.983196i \(0.441563\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −426.067 −1.01671
\(57\) 0 0
\(58\) 618.521 1.40027
\(59\) 69.2493 0.152805 0.0764025 0.997077i \(-0.475657\pi\)
0.0764025 + 0.997077i \(0.475657\pi\)
\(60\) 0 0
\(61\) −56.4287 −0.118442 −0.0592210 0.998245i \(-0.518862\pi\)
−0.0592210 + 0.998245i \(0.518862\pi\)
\(62\) 298.526 0.611498
\(63\) 0 0
\(64\) 167.343 0.326841
\(65\) 0 0
\(66\) 0 0
\(67\) 480.075 0.875381 0.437691 0.899126i \(-0.355797\pi\)
0.437691 + 0.899126i \(0.355797\pi\)
\(68\) 145.218 0.258975
\(69\) 0 0
\(70\) 0 0
\(71\) −623.864 −1.04280 −0.521402 0.853311i \(-0.674591\pi\)
−0.521402 + 0.853311i \(0.674591\pi\)
\(72\) 0 0
\(73\) 888.246 1.42413 0.712064 0.702114i \(-0.247761\pi\)
0.712064 + 0.702114i \(0.247761\pi\)
\(74\) 111.831 0.175677
\(75\) 0 0
\(76\) −490.392 −0.740156
\(77\) 1227.18 1.81623
\(78\) 0 0
\(79\) 776.512 1.10588 0.552939 0.833222i \(-0.313506\pi\)
0.552939 + 0.833222i \(0.313506\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −795.421 −1.07121
\(83\) 1482.08 1.95999 0.979997 0.199014i \(-0.0637739\pi\)
0.979997 + 0.199014i \(0.0637739\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −918.548 −1.15174
\(87\) 0 0
\(88\) −727.553 −0.881334
\(89\) −514.893 −0.613242 −0.306621 0.951832i \(-0.599198\pi\)
−0.306621 + 0.951832i \(0.599198\pi\)
\(90\) 0 0
\(91\) 237.954 0.274114
\(92\) 662.365 0.750612
\(93\) 0 0
\(94\) −387.109 −0.424758
\(95\) 0 0
\(96\) 0 0
\(97\) −725.733 −0.759660 −0.379830 0.925056i \(-0.624017\pi\)
−0.379830 + 0.925056i \(0.624017\pi\)
\(98\) 1260.80 1.29959
\(99\) 0 0
\(100\) 0 0
\(101\) 238.041 0.234515 0.117257 0.993102i \(-0.462590\pi\)
0.117257 + 0.993102i \(0.462590\pi\)
\(102\) 0 0
\(103\) 475.841 0.455203 0.227602 0.973754i \(-0.426912\pi\)
0.227602 + 0.973754i \(0.426912\pi\)
\(104\) −141.075 −0.133015
\(105\) 0 0
\(106\) 472.820 0.433249
\(107\) −631.856 −0.570877 −0.285438 0.958397i \(-0.592139\pi\)
−0.285438 + 0.958397i \(0.592139\pi\)
\(108\) 0 0
\(109\) −1345.08 −1.18197 −0.590986 0.806682i \(-0.701261\pi\)
−0.590986 + 0.806682i \(0.701261\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2130.12 −1.79712
\(113\) −556.695 −0.463447 −0.231723 0.972782i \(-0.574436\pi\)
−0.231723 + 0.972782i \(0.574436\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 601.619 0.481543
\(117\) 0 0
\(118\) 232.420 0.181322
\(119\) 1192.50 0.918621
\(120\) 0 0
\(121\) 764.530 0.574403
\(122\) −189.390 −0.140546
\(123\) 0 0
\(124\) 290.369 0.210289
\(125\) 0 0
\(126\) 0 0
\(127\) 2312.68 1.61588 0.807942 0.589263i \(-0.200582\pi\)
0.807942 + 0.589263i \(0.200582\pi\)
\(128\) 1677.96 1.15869
\(129\) 0 0
\(130\) 0 0
\(131\) −264.340 −0.176301 −0.0881507 0.996107i \(-0.528096\pi\)
−0.0881507 + 0.996107i \(0.528096\pi\)
\(132\) 0 0
\(133\) −4026.98 −2.62544
\(134\) 1611.26 1.03875
\(135\) 0 0
\(136\) −706.992 −0.445765
\(137\) 945.240 0.589469 0.294735 0.955579i \(-0.404769\pi\)
0.294735 + 0.955579i \(0.404769\pi\)
\(138\) 0 0
\(139\) 2287.05 1.39558 0.697789 0.716304i \(-0.254167\pi\)
0.697789 + 0.716304i \(0.254167\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2093.86 −1.23741
\(143\) 406.330 0.237616
\(144\) 0 0
\(145\) 0 0
\(146\) 2981.20 1.68990
\(147\) 0 0
\(148\) 108.775 0.0604141
\(149\) −1352.60 −0.743687 −0.371844 0.928295i \(-0.621274\pi\)
−0.371844 + 0.928295i \(0.621274\pi\)
\(150\) 0 0
\(151\) 2078.70 1.12028 0.560140 0.828398i \(-0.310747\pi\)
0.560140 + 0.828398i \(0.310747\pi\)
\(152\) 2387.47 1.27401
\(153\) 0 0
\(154\) 4118.74 2.15518
\(155\) 0 0
\(156\) 0 0
\(157\) 3774.45 1.91869 0.959343 0.282244i \(-0.0910789\pi\)
0.959343 + 0.282244i \(0.0910789\pi\)
\(158\) 2606.18 1.31226
\(159\) 0 0
\(160\) 0 0
\(161\) 5439.18 2.66253
\(162\) 0 0
\(163\) −1798.92 −0.864431 −0.432216 0.901770i \(-0.642268\pi\)
−0.432216 + 0.901770i \(0.642268\pi\)
\(164\) −773.685 −0.368382
\(165\) 0 0
\(166\) 4974.26 2.32577
\(167\) −1932.32 −0.895372 −0.447686 0.894191i \(-0.647752\pi\)
−0.447686 + 0.894191i \(0.647752\pi\)
\(168\) 0 0
\(169\) −2118.21 −0.964138
\(170\) 0 0
\(171\) 0 0
\(172\) −893.447 −0.396074
\(173\) 3620.91 1.59129 0.795643 0.605765i \(-0.207133\pi\)
0.795643 + 0.605765i \(0.207133\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3637.40 −1.55784
\(177\) 0 0
\(178\) −1728.12 −0.727686
\(179\) −287.724 −0.120143 −0.0600713 0.998194i \(-0.519133\pi\)
−0.0600713 + 0.998194i \(0.519133\pi\)
\(180\) 0 0
\(181\) 2382.17 0.978261 0.489130 0.872211i \(-0.337314\pi\)
0.489130 + 0.872211i \(0.337314\pi\)
\(182\) 798.638 0.325269
\(183\) 0 0
\(184\) −3224.71 −1.29200
\(185\) 0 0
\(186\) 0 0
\(187\) 2036.31 0.796308
\(188\) −376.531 −0.146071
\(189\) 0 0
\(190\) 0 0
\(191\) 177.777 0.0673479 0.0336740 0.999433i \(-0.489279\pi\)
0.0336740 + 0.999433i \(0.489279\pi\)
\(192\) 0 0
\(193\) 3526.92 1.31541 0.657703 0.753277i \(-0.271528\pi\)
0.657703 + 0.753277i \(0.271528\pi\)
\(194\) −2435.76 −0.901428
\(195\) 0 0
\(196\) 1226.35 0.446920
\(197\) −1835.81 −0.663941 −0.331970 0.943290i \(-0.607713\pi\)
−0.331970 + 0.943290i \(0.607713\pi\)
\(198\) 0 0
\(199\) 2296.18 0.817948 0.408974 0.912546i \(-0.365887\pi\)
0.408974 + 0.912546i \(0.365887\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 798.930 0.278280
\(203\) 4940.35 1.70810
\(204\) 0 0
\(205\) 0 0
\(206\) 1597.05 0.540154
\(207\) 0 0
\(208\) −705.304 −0.235115
\(209\) −6876.48 −2.27587
\(210\) 0 0
\(211\) −1212.29 −0.395533 −0.197767 0.980249i \(-0.563369\pi\)
−0.197767 + 0.980249i \(0.563369\pi\)
\(212\) 459.900 0.148991
\(213\) 0 0
\(214\) −2120.68 −0.677414
\(215\) 0 0
\(216\) 0 0
\(217\) 2384.44 0.745927
\(218\) −4514.44 −1.40255
\(219\) 0 0
\(220\) 0 0
\(221\) 394.847 0.120182
\(222\) 0 0
\(223\) −319.218 −0.0958584 −0.0479292 0.998851i \(-0.515262\pi\)
−0.0479292 + 0.998851i \(0.515262\pi\)
\(224\) −3740.72 −1.11579
\(225\) 0 0
\(226\) −1868.42 −0.549936
\(227\) −2506.98 −0.733013 −0.366507 0.930415i \(-0.619446\pi\)
−0.366507 + 0.930415i \(0.619446\pi\)
\(228\) 0 0
\(229\) −1348.94 −0.389260 −0.194630 0.980877i \(-0.562351\pi\)
−0.194630 + 0.980877i \(0.562351\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2928.97 −0.828864
\(233\) 2591.55 0.728662 0.364331 0.931270i \(-0.381298\pi\)
0.364331 + 0.931270i \(0.381298\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 226.068 0.0623551
\(237\) 0 0
\(238\) 4002.34 1.09006
\(239\) −2870.08 −0.776780 −0.388390 0.921495i \(-0.626969\pi\)
−0.388390 + 0.921495i \(0.626969\pi\)
\(240\) 0 0
\(241\) 5672.20 1.51609 0.758047 0.652200i \(-0.226154\pi\)
0.758047 + 0.652200i \(0.226154\pi\)
\(242\) 2565.97 0.681598
\(243\) 0 0
\(244\) −184.215 −0.0483326
\(245\) 0 0
\(246\) 0 0
\(247\) −1333.37 −0.343484
\(248\) −1413.65 −0.361964
\(249\) 0 0
\(250\) 0 0
\(251\) 2728.73 0.686199 0.343099 0.939299i \(-0.388523\pi\)
0.343099 + 0.939299i \(0.388523\pi\)
\(252\) 0 0
\(253\) 9287.95 2.30802
\(254\) 7761.98 1.91744
\(255\) 0 0
\(256\) 4292.94 1.04808
\(257\) 571.884 0.138806 0.0694030 0.997589i \(-0.477891\pi\)
0.0694030 + 0.997589i \(0.477891\pi\)
\(258\) 0 0
\(259\) 893.237 0.214298
\(260\) 0 0
\(261\) 0 0
\(262\) −887.196 −0.209203
\(263\) −3712.10 −0.870335 −0.435168 0.900349i \(-0.643311\pi\)
−0.435168 + 0.900349i \(0.643311\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −13515.6 −3.11540
\(267\) 0 0
\(268\) 1567.23 0.357216
\(269\) 7883.48 1.78686 0.893428 0.449205i \(-0.148293\pi\)
0.893428 + 0.449205i \(0.148293\pi\)
\(270\) 0 0
\(271\) 3689.94 0.827115 0.413558 0.910478i \(-0.364286\pi\)
0.413558 + 0.910478i \(0.364286\pi\)
\(272\) −3534.60 −0.787929
\(273\) 0 0
\(274\) 3172.48 0.699477
\(275\) 0 0
\(276\) 0 0
\(277\) −6846.77 −1.48514 −0.742568 0.669771i \(-0.766392\pi\)
−0.742568 + 0.669771i \(0.766392\pi\)
\(278\) 7675.97 1.65602
\(279\) 0 0
\(280\) 0 0
\(281\) 5767.95 1.22451 0.612255 0.790660i \(-0.290263\pi\)
0.612255 + 0.790660i \(0.290263\pi\)
\(282\) 0 0
\(283\) −4376.30 −0.919238 −0.459619 0.888116i \(-0.652014\pi\)
−0.459619 + 0.888116i \(0.652014\pi\)
\(284\) −2036.64 −0.425536
\(285\) 0 0
\(286\) 1363.75 0.281960
\(287\) −6353.31 −1.30670
\(288\) 0 0
\(289\) −2934.24 −0.597240
\(290\) 0 0
\(291\) 0 0
\(292\) 2899.73 0.581143
\(293\) −2949.60 −0.588114 −0.294057 0.955788i \(-0.595006\pi\)
−0.294057 + 0.955788i \(0.595006\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −529.571 −0.103989
\(297\) 0 0
\(298\) −4539.70 −0.882475
\(299\) 1800.96 0.348336
\(300\) 0 0
\(301\) −7336.77 −1.40493
\(302\) 6976.68 1.32935
\(303\) 0 0
\(304\) 11936.1 2.25192
\(305\) 0 0
\(306\) 0 0
\(307\) −2812.48 −0.522855 −0.261427 0.965223i \(-0.584193\pi\)
−0.261427 + 0.965223i \(0.584193\pi\)
\(308\) 4006.19 0.741149
\(309\) 0 0
\(310\) 0 0
\(311\) −5345.68 −0.974680 −0.487340 0.873212i \(-0.662033\pi\)
−0.487340 + 0.873212i \(0.662033\pi\)
\(312\) 0 0
\(313\) 7674.90 1.38598 0.692989 0.720948i \(-0.256293\pi\)
0.692989 + 0.720948i \(0.256293\pi\)
\(314\) 12668.1 2.27675
\(315\) 0 0
\(316\) 2534.97 0.451275
\(317\) 1214.13 0.215118 0.107559 0.994199i \(-0.465696\pi\)
0.107559 + 0.994199i \(0.465696\pi\)
\(318\) 0 0
\(319\) 8436.16 1.48067
\(320\) 0 0
\(321\) 0 0
\(322\) 18255.4 3.15941
\(323\) −6682.14 −1.15110
\(324\) 0 0
\(325\) 0 0
\(326\) −6037.66 −1.02575
\(327\) 0 0
\(328\) 3766.67 0.634084
\(329\) −3091.98 −0.518135
\(330\) 0 0
\(331\) −830.157 −0.137854 −0.0689268 0.997622i \(-0.521957\pi\)
−0.0689268 + 0.997622i \(0.521957\pi\)
\(332\) 4838.33 0.799814
\(333\) 0 0
\(334\) −6485.38 −1.06247
\(335\) 0 0
\(336\) 0 0
\(337\) −8322.52 −1.34527 −0.672636 0.739973i \(-0.734838\pi\)
−0.672636 + 0.739973i \(0.734838\pi\)
\(338\) −7109.29 −1.14407
\(339\) 0 0
\(340\) 0 0
\(341\) 4071.67 0.646608
\(342\) 0 0
\(343\) 875.416 0.137808
\(344\) 4349.73 0.681750
\(345\) 0 0
\(346\) 12152.8 1.88825
\(347\) 2390.92 0.369888 0.184944 0.982749i \(-0.440790\pi\)
0.184944 + 0.982749i \(0.440790\pi\)
\(348\) 0 0
\(349\) 4959.07 0.760610 0.380305 0.924861i \(-0.375819\pi\)
0.380305 + 0.924861i \(0.375819\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6387.67 −0.967227
\(353\) −5718.50 −0.862224 −0.431112 0.902299i \(-0.641879\pi\)
−0.431112 + 0.902299i \(0.641879\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1680.90 −0.250245
\(357\) 0 0
\(358\) −965.680 −0.142564
\(359\) −9065.08 −1.33269 −0.666346 0.745643i \(-0.732143\pi\)
−0.666346 + 0.745643i \(0.732143\pi\)
\(360\) 0 0
\(361\) 15706.2 2.28986
\(362\) 7995.20 1.16082
\(363\) 0 0
\(364\) 776.814 0.111857
\(365\) 0 0
\(366\) 0 0
\(367\) −5809.24 −0.826267 −0.413133 0.910670i \(-0.635566\pi\)
−0.413133 + 0.910670i \(0.635566\pi\)
\(368\) −16121.9 −2.28373
\(369\) 0 0
\(370\) 0 0
\(371\) 3776.59 0.528492
\(372\) 0 0
\(373\) −7788.72 −1.08119 −0.540596 0.841282i \(-0.681801\pi\)
−0.540596 + 0.841282i \(0.681801\pi\)
\(374\) 6834.40 0.944916
\(375\) 0 0
\(376\) 1833.13 0.251427
\(377\) 1635.80 0.223469
\(378\) 0 0
\(379\) 4678.18 0.634042 0.317021 0.948419i \(-0.397317\pi\)
0.317021 + 0.948419i \(0.397317\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 596.666 0.0799165
\(383\) 132.836 0.0177222 0.00886108 0.999961i \(-0.497179\pi\)
0.00886108 + 0.999961i \(0.497179\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11837.3 1.56089
\(387\) 0 0
\(388\) −2369.20 −0.309994
\(389\) −2705.00 −0.352568 −0.176284 0.984339i \(-0.556408\pi\)
−0.176284 + 0.984339i \(0.556408\pi\)
\(390\) 0 0
\(391\) 9025.46 1.16736
\(392\) −5970.45 −0.769269
\(393\) 0 0
\(394\) −6161.49 −0.787846
\(395\) 0 0
\(396\) 0 0
\(397\) 7194.44 0.909518 0.454759 0.890614i \(-0.349725\pi\)
0.454759 + 0.890614i \(0.349725\pi\)
\(398\) 7706.59 0.970594
\(399\) 0 0
\(400\) 0 0
\(401\) −9972.50 −1.24190 −0.620951 0.783849i \(-0.713254\pi\)
−0.620951 + 0.783849i \(0.713254\pi\)
\(402\) 0 0
\(403\) 789.510 0.0975889
\(404\) 777.099 0.0956983
\(405\) 0 0
\(406\) 16581.2 2.02687
\(407\) 1525.29 0.185764
\(408\) 0 0
\(409\) −1606.15 −0.194179 −0.0970893 0.995276i \(-0.530953\pi\)
−0.0970893 + 0.995276i \(0.530953\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1553.41 0.185755
\(413\) 1856.42 0.221183
\(414\) 0 0
\(415\) 0 0
\(416\) −1238.59 −0.145978
\(417\) 0 0
\(418\) −23079.3 −2.70059
\(419\) 6817.60 0.794896 0.397448 0.917625i \(-0.369896\pi\)
0.397448 + 0.917625i \(0.369896\pi\)
\(420\) 0 0
\(421\) −12131.3 −1.40437 −0.702187 0.711993i \(-0.747793\pi\)
−0.702187 + 0.711993i \(0.747793\pi\)
\(422\) −4068.78 −0.469348
\(423\) 0 0
\(424\) −2239.01 −0.256453
\(425\) 0 0
\(426\) 0 0
\(427\) −1512.73 −0.171443
\(428\) −2062.73 −0.232957
\(429\) 0 0
\(430\) 0 0
\(431\) −11446.1 −1.27921 −0.639603 0.768705i \(-0.720901\pi\)
−0.639603 + 0.768705i \(0.720901\pi\)
\(432\) 0 0
\(433\) −10673.5 −1.18460 −0.592302 0.805716i \(-0.701781\pi\)
−0.592302 + 0.805716i \(0.701781\pi\)
\(434\) 8002.82 0.885133
\(435\) 0 0
\(436\) −4391.08 −0.482327
\(437\) −30478.4 −3.33634
\(438\) 0 0
\(439\) −8406.03 −0.913890 −0.456945 0.889495i \(-0.651056\pi\)
−0.456945 + 0.889495i \(0.651056\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1325.21 0.142611
\(443\) −11772.7 −1.26261 −0.631307 0.775533i \(-0.717481\pi\)
−0.631307 + 0.775533i \(0.717481\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1071.38 −0.113748
\(447\) 0 0
\(448\) 4486.08 0.473097
\(449\) −7167.46 −0.753348 −0.376674 0.926346i \(-0.622932\pi\)
−0.376674 + 0.926346i \(0.622932\pi\)
\(450\) 0 0
\(451\) −10848.9 −1.13272
\(452\) −1817.36 −0.189119
\(453\) 0 0
\(454\) −8414.10 −0.869809
\(455\) 0 0
\(456\) 0 0
\(457\) 8218.86 0.841274 0.420637 0.907229i \(-0.361807\pi\)
0.420637 + 0.907229i \(0.361807\pi\)
\(458\) −4527.42 −0.461905
\(459\) 0 0
\(460\) 0 0
\(461\) 1005.57 0.101592 0.0507962 0.998709i \(-0.483824\pi\)
0.0507962 + 0.998709i \(0.483824\pi\)
\(462\) 0 0
\(463\) −11967.8 −1.20128 −0.600640 0.799520i \(-0.705087\pi\)
−0.600640 + 0.799520i \(0.705087\pi\)
\(464\) −14643.4 −1.46509
\(465\) 0 0
\(466\) 8697.95 0.864646
\(467\) 3461.85 0.343031 0.171516 0.985181i \(-0.445134\pi\)
0.171516 + 0.985181i \(0.445134\pi\)
\(468\) 0 0
\(469\) 12869.7 1.26710
\(470\) 0 0
\(471\) 0 0
\(472\) −1100.61 −0.107330
\(473\) −12528.3 −1.21787
\(474\) 0 0
\(475\) 0 0
\(476\) 3892.97 0.374861
\(477\) 0 0
\(478\) −9632.78 −0.921743
\(479\) −7222.36 −0.688931 −0.344466 0.938799i \(-0.611940\pi\)
−0.344466 + 0.938799i \(0.611940\pi\)
\(480\) 0 0
\(481\) 295.760 0.0280363
\(482\) 19037.4 1.79903
\(483\) 0 0
\(484\) 2495.85 0.234396
\(485\) 0 0
\(486\) 0 0
\(487\) −3426.70 −0.318847 −0.159424 0.987210i \(-0.550964\pi\)
−0.159424 + 0.987210i \(0.550964\pi\)
\(488\) 896.846 0.0831933
\(489\) 0 0
\(490\) 0 0
\(491\) −12674.5 −1.16496 −0.582478 0.812846i \(-0.697917\pi\)
−0.582478 + 0.812846i \(0.697917\pi\)
\(492\) 0 0
\(493\) 8197.74 0.748900
\(494\) −4475.16 −0.407585
\(495\) 0 0
\(496\) −7067.56 −0.639804
\(497\) −16724.4 −1.50944
\(498\) 0 0
\(499\) 19261.3 1.72796 0.863981 0.503525i \(-0.167964\pi\)
0.863981 + 0.503525i \(0.167964\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 9158.35 0.814258
\(503\) −10348.4 −0.917318 −0.458659 0.888612i \(-0.651670\pi\)
−0.458659 + 0.888612i \(0.651670\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 31172.9 2.73874
\(507\) 0 0
\(508\) 7549.87 0.659393
\(509\) 4368.10 0.380379 0.190189 0.981747i \(-0.439090\pi\)
0.190189 + 0.981747i \(0.439090\pi\)
\(510\) 0 0
\(511\) 23811.9 2.06140
\(512\) 984.613 0.0849886
\(513\) 0 0
\(514\) 1919.40 0.164710
\(515\) 0 0
\(516\) 0 0
\(517\) −5279.87 −0.449146
\(518\) 2997.95 0.254290
\(519\) 0 0
\(520\) 0 0
\(521\) 14033.2 1.18005 0.590026 0.807384i \(-0.299117\pi\)
0.590026 + 0.807384i \(0.299117\pi\)
\(522\) 0 0
\(523\) −4491.29 −0.375507 −0.187754 0.982216i \(-0.560121\pi\)
−0.187754 + 0.982216i \(0.560121\pi\)
\(524\) −862.952 −0.0719432
\(525\) 0 0
\(526\) −12458.8 −1.03276
\(527\) 3956.60 0.327044
\(528\) 0 0
\(529\) 28999.7 2.38347
\(530\) 0 0
\(531\) 0 0
\(532\) −13146.3 −1.07136
\(533\) −2103.64 −0.170955
\(534\) 0 0
\(535\) 0 0
\(536\) −7630.05 −0.614865
\(537\) 0 0
\(538\) 26459.1 2.12032
\(539\) 17196.4 1.37421
\(540\) 0 0
\(541\) −15900.4 −1.26361 −0.631804 0.775128i \(-0.717685\pi\)
−0.631804 + 0.775128i \(0.717685\pi\)
\(542\) 12384.5 0.981472
\(543\) 0 0
\(544\) −6207.14 −0.489208
\(545\) 0 0
\(546\) 0 0
\(547\) −17433.9 −1.36274 −0.681371 0.731938i \(-0.738616\pi\)
−0.681371 + 0.731938i \(0.738616\pi\)
\(548\) 3085.79 0.240544
\(549\) 0 0
\(550\) 0 0
\(551\) −27683.3 −2.14037
\(552\) 0 0
\(553\) 20816.5 1.60074
\(554\) −22979.6 −1.76229
\(555\) 0 0
\(556\) 7466.21 0.569493
\(557\) −16296.2 −1.23966 −0.619830 0.784736i \(-0.712799\pi\)
−0.619830 + 0.784736i \(0.712799\pi\)
\(558\) 0 0
\(559\) −2429.28 −0.183806
\(560\) 0 0
\(561\) 0 0
\(562\) 19358.8 1.45303
\(563\) −8428.30 −0.630924 −0.315462 0.948938i \(-0.602160\pi\)
−0.315462 + 0.948938i \(0.602160\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −14688.1 −1.09079
\(567\) 0 0
\(568\) 9915.34 0.732462
\(569\) 10218.0 0.752833 0.376417 0.926450i \(-0.377156\pi\)
0.376417 + 0.926450i \(0.377156\pi\)
\(570\) 0 0
\(571\) 25235.0 1.84948 0.924739 0.380602i \(-0.124283\pi\)
0.924739 + 0.380602i \(0.124283\pi\)
\(572\) 1326.49 0.0969638
\(573\) 0 0
\(574\) −21323.4 −1.55056
\(575\) 0 0
\(576\) 0 0
\(577\) 12949.0 0.934272 0.467136 0.884186i \(-0.345286\pi\)
0.467136 + 0.884186i \(0.345286\pi\)
\(578\) −9848.11 −0.708698
\(579\) 0 0
\(580\) 0 0
\(581\) 39731.2 2.83706
\(582\) 0 0
\(583\) 6448.90 0.458124
\(584\) −14117.3 −1.00030
\(585\) 0 0
\(586\) −9899.66 −0.697869
\(587\) −16247.2 −1.14241 −0.571203 0.820809i \(-0.693523\pi\)
−0.571203 + 0.820809i \(0.693523\pi\)
\(588\) 0 0
\(589\) −13361.2 −0.934699
\(590\) 0 0
\(591\) 0 0
\(592\) −2647.59 −0.183809
\(593\) 6054.60 0.419279 0.209640 0.977779i \(-0.432771\pi\)
0.209640 + 0.977779i \(0.432771\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4415.64 −0.303476
\(597\) 0 0
\(598\) 6044.53 0.413343
\(599\) 7657.43 0.522327 0.261164 0.965295i \(-0.415894\pi\)
0.261164 + 0.965295i \(0.415894\pi\)
\(600\) 0 0
\(601\) −859.110 −0.0583092 −0.0291546 0.999575i \(-0.509282\pi\)
−0.0291546 + 0.999575i \(0.509282\pi\)
\(602\) −24624.2 −1.66712
\(603\) 0 0
\(604\) 6786.04 0.457152
\(605\) 0 0
\(606\) 0 0
\(607\) −15408.7 −1.03035 −0.515173 0.857086i \(-0.672272\pi\)
−0.515173 + 0.857086i \(0.672272\pi\)
\(608\) 20961.1 1.39817
\(609\) 0 0
\(610\) 0 0
\(611\) −1023.79 −0.0677871
\(612\) 0 0
\(613\) 18224.4 1.20078 0.600389 0.799708i \(-0.295012\pi\)
0.600389 + 0.799708i \(0.295012\pi\)
\(614\) −9439.43 −0.620431
\(615\) 0 0
\(616\) −19504.1 −1.27572
\(617\) 1623.92 0.105959 0.0529793 0.998596i \(-0.483128\pi\)
0.0529793 + 0.998596i \(0.483128\pi\)
\(618\) 0 0
\(619\) −10054.6 −0.652875 −0.326438 0.945219i \(-0.605848\pi\)
−0.326438 + 0.945219i \(0.605848\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −17941.5 −1.15658
\(623\) −13803.1 −0.887657
\(624\) 0 0
\(625\) 0 0
\(626\) 25759.1 1.64463
\(627\) 0 0
\(628\) 12321.9 0.782957
\(629\) 1482.19 0.0939565
\(630\) 0 0
\(631\) −4893.59 −0.308733 −0.154367 0.988014i \(-0.549334\pi\)
−0.154367 + 0.988014i \(0.549334\pi\)
\(632\) −12341.4 −0.776766
\(633\) 0 0
\(634\) 4074.96 0.255264
\(635\) 0 0
\(636\) 0 0
\(637\) 3334.43 0.207402
\(638\) 28314.0 1.75700
\(639\) 0 0
\(640\) 0 0
\(641\) 5255.04 0.323809 0.161905 0.986806i \(-0.448236\pi\)
0.161905 + 0.986806i \(0.448236\pi\)
\(642\) 0 0
\(643\) −9278.37 −0.569056 −0.284528 0.958668i \(-0.591837\pi\)
−0.284528 + 0.958668i \(0.591837\pi\)
\(644\) 17756.5 1.08650
\(645\) 0 0
\(646\) −22427.1 −1.36592
\(647\) 17660.2 1.07310 0.536549 0.843869i \(-0.319728\pi\)
0.536549 + 0.843869i \(0.319728\pi\)
\(648\) 0 0
\(649\) 3170.02 0.191732
\(650\) 0 0
\(651\) 0 0
\(652\) −5872.68 −0.352748
\(653\) −23852.1 −1.42941 −0.714704 0.699427i \(-0.753439\pi\)
−0.714704 + 0.699427i \(0.753439\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 18831.4 1.12080
\(657\) 0 0
\(658\) −10377.5 −0.614830
\(659\) −29672.3 −1.75398 −0.876988 0.480513i \(-0.840451\pi\)
−0.876988 + 0.480513i \(0.840451\pi\)
\(660\) 0 0
\(661\) 18219.2 1.07208 0.536039 0.844193i \(-0.319920\pi\)
0.536039 + 0.844193i \(0.319920\pi\)
\(662\) −2786.23 −0.163580
\(663\) 0 0
\(664\) −23555.3 −1.37669
\(665\) 0 0
\(666\) 0 0
\(667\) 37391.3 2.17061
\(668\) −6308.15 −0.365374
\(669\) 0 0
\(670\) 0 0
\(671\) −2583.14 −0.148615
\(672\) 0 0
\(673\) −8414.83 −0.481973 −0.240987 0.970528i \(-0.577471\pi\)
−0.240987 + 0.970528i \(0.577471\pi\)
\(674\) −27932.6 −1.59633
\(675\) 0 0
\(676\) −6915.02 −0.393435
\(677\) −16544.4 −0.939223 −0.469612 0.882873i \(-0.655606\pi\)
−0.469612 + 0.882873i \(0.655606\pi\)
\(678\) 0 0
\(679\) −19455.3 −1.09959
\(680\) 0 0
\(681\) 0 0
\(682\) 13665.6 0.767278
\(683\) −7515.53 −0.421045 −0.210522 0.977589i \(-0.567517\pi\)
−0.210522 + 0.977589i \(0.567517\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 2938.13 0.163525
\(687\) 0 0
\(688\) 21746.5 1.20505
\(689\) 1250.46 0.0691421
\(690\) 0 0
\(691\) −3854.43 −0.212199 −0.106099 0.994356i \(-0.533836\pi\)
−0.106099 + 0.994356i \(0.533836\pi\)
\(692\) 11820.7 0.649356
\(693\) 0 0
\(694\) 8024.57 0.438917
\(695\) 0 0
\(696\) 0 0
\(697\) −10542.3 −0.572911
\(698\) 16644.0 0.902555
\(699\) 0 0
\(700\) 0 0
\(701\) −11894.5 −0.640871 −0.320436 0.947270i \(-0.603829\pi\)
−0.320436 + 0.947270i \(0.603829\pi\)
\(702\) 0 0
\(703\) −5005.25 −0.268530
\(704\) 7660.44 0.410104
\(705\) 0 0
\(706\) −19192.8 −1.02313
\(707\) 6381.35 0.339456
\(708\) 0 0
\(709\) −488.396 −0.0258704 −0.0129352 0.999916i \(-0.504118\pi\)
−0.0129352 + 0.999916i \(0.504118\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 8183.42 0.430740
\(713\) 18046.7 0.947903
\(714\) 0 0
\(715\) 0 0
\(716\) −939.291 −0.0490265
\(717\) 0 0
\(718\) −30424.9 −1.58140
\(719\) 29408.3 1.52537 0.762687 0.646767i \(-0.223880\pi\)
0.762687 + 0.646767i \(0.223880\pi\)
\(720\) 0 0
\(721\) 12756.2 0.658899
\(722\) 52714.2 2.71720
\(723\) 0 0
\(724\) 7776.72 0.399198
\(725\) 0 0
\(726\) 0 0
\(727\) −29640.7 −1.51212 −0.756060 0.654502i \(-0.772878\pi\)
−0.756060 + 0.654502i \(0.772878\pi\)
\(728\) −3781.90 −0.192537
\(729\) 0 0
\(730\) 0 0
\(731\) −12174.2 −0.615978
\(732\) 0 0
\(733\) −27400.3 −1.38070 −0.690350 0.723475i \(-0.742544\pi\)
−0.690350 + 0.723475i \(0.742544\pi\)
\(734\) −19497.4 −0.980466
\(735\) 0 0
\(736\) −28311.8 −1.41792
\(737\) 21976.4 1.09839
\(738\) 0 0
\(739\) −2753.90 −0.137082 −0.0685412 0.997648i \(-0.521834\pi\)
−0.0685412 + 0.997648i \(0.521834\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 12675.2 0.627120
\(743\) 36997.6 1.82680 0.913400 0.407064i \(-0.133447\pi\)
0.913400 + 0.407064i \(0.133447\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −26141.0 −1.28296
\(747\) 0 0
\(748\) 6647.64 0.324949
\(749\) −16938.6 −0.826334
\(750\) 0 0
\(751\) −33238.3 −1.61503 −0.807513 0.589850i \(-0.799187\pi\)
−0.807513 + 0.589850i \(0.799187\pi\)
\(752\) 9164.74 0.444420
\(753\) 0 0
\(754\) 5490.19 0.265173
\(755\) 0 0
\(756\) 0 0
\(757\) −9552.62 −0.458647 −0.229324 0.973350i \(-0.573651\pi\)
−0.229324 + 0.973350i \(0.573651\pi\)
\(758\) 15701.2 0.752367
\(759\) 0 0
\(760\) 0 0
\(761\) 4931.73 0.234921 0.117461 0.993078i \(-0.462525\pi\)
0.117461 + 0.993078i \(0.462525\pi\)
\(762\) 0 0
\(763\) −36058.5 −1.71088
\(764\) 580.361 0.0274826
\(765\) 0 0
\(766\) 445.832 0.0210295
\(767\) 614.678 0.0289371
\(768\) 0 0
\(769\) −4719.32 −0.221305 −0.110652 0.993859i \(-0.535294\pi\)
−0.110652 + 0.993859i \(0.535294\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 11513.8 0.536777
\(773\) −4926.29 −0.229219 −0.114609 0.993411i \(-0.536562\pi\)
−0.114609 + 0.993411i \(0.536562\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 11534.4 0.533583
\(777\) 0 0
\(778\) −9078.71 −0.418364
\(779\) 35600.7 1.63739
\(780\) 0 0
\(781\) −28558.6 −1.30846
\(782\) 30291.9 1.38521
\(783\) 0 0
\(784\) −29849.2 −1.35975
\(785\) 0 0
\(786\) 0 0
\(787\) 24413.7 1.10579 0.552895 0.833251i \(-0.313523\pi\)
0.552895 + 0.833251i \(0.313523\pi\)
\(788\) −5993.12 −0.270934
\(789\) 0 0
\(790\) 0 0
\(791\) −14923.8 −0.670831
\(792\) 0 0
\(793\) −500.879 −0.0224297
\(794\) 24146.5 1.07925
\(795\) 0 0
\(796\) 7495.99 0.333779
\(797\) −7060.69 −0.313805 −0.156902 0.987614i \(-0.550151\pi\)
−0.156902 + 0.987614i \(0.550151\pi\)
\(798\) 0 0
\(799\) −5130.66 −0.227171
\(800\) 0 0
\(801\) 0 0
\(802\) −33470.4 −1.47367
\(803\) 40661.2 1.78693
\(804\) 0 0
\(805\) 0 0
\(806\) 2649.81 0.115801
\(807\) 0 0
\(808\) −3783.29 −0.164722
\(809\) 5807.08 0.252368 0.126184 0.992007i \(-0.459727\pi\)
0.126184 + 0.992007i \(0.459727\pi\)
\(810\) 0 0
\(811\) −12087.6 −0.523372 −0.261686 0.965153i \(-0.584278\pi\)
−0.261686 + 0.965153i \(0.584278\pi\)
\(812\) 16128.1 0.697025
\(813\) 0 0
\(814\) 5119.30 0.220432
\(815\) 0 0
\(816\) 0 0
\(817\) 41111.6 1.76048
\(818\) −5390.68 −0.230416
\(819\) 0 0
\(820\) 0 0
\(821\) −16998.7 −0.722605 −0.361303 0.932449i \(-0.617668\pi\)
−0.361303 + 0.932449i \(0.617668\pi\)
\(822\) 0 0
\(823\) 14070.5 0.595948 0.297974 0.954574i \(-0.403689\pi\)
0.297974 + 0.954574i \(0.403689\pi\)
\(824\) −7562.74 −0.319734
\(825\) 0 0
\(826\) 6230.64 0.262460
\(827\) −43037.6 −1.80963 −0.904815 0.425805i \(-0.859991\pi\)
−0.904815 + 0.425805i \(0.859991\pi\)
\(828\) 0 0
\(829\) −2897.22 −0.121381 −0.0606903 0.998157i \(-0.519330\pi\)
−0.0606903 + 0.998157i \(0.519330\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1485.38 0.0618948
\(833\) 16710.4 0.695054
\(834\) 0 0
\(835\) 0 0
\(836\) −22448.7 −0.928712
\(837\) 0 0
\(838\) 22881.7 0.943241
\(839\) 38561.1 1.58674 0.793371 0.608739i \(-0.208324\pi\)
0.793371 + 0.608739i \(0.208324\pi\)
\(840\) 0 0
\(841\) 9573.17 0.392520
\(842\) −40715.8 −1.66646
\(843\) 0 0
\(844\) −3957.59 −0.161405
\(845\) 0 0
\(846\) 0 0
\(847\) 20495.3 0.831438
\(848\) −11193.9 −0.453303
\(849\) 0 0
\(850\) 0 0
\(851\) 6760.51 0.272323
\(852\) 0 0
\(853\) −40858.5 −1.64006 −0.820028 0.572323i \(-0.806042\pi\)
−0.820028 + 0.572323i \(0.806042\pi\)
\(854\) −5077.12 −0.203437
\(855\) 0 0
\(856\) 10042.4 0.400982
\(857\) 32227.9 1.28458 0.642289 0.766462i \(-0.277985\pi\)
0.642289 + 0.766462i \(0.277985\pi\)
\(858\) 0 0
\(859\) −4540.27 −0.180340 −0.0901699 0.995926i \(-0.528741\pi\)
−0.0901699 + 0.995926i \(0.528741\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −38416.1 −1.51793
\(863\) −1552.00 −0.0612174 −0.0306087 0.999531i \(-0.509745\pi\)
−0.0306087 + 0.999531i \(0.509745\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −35823.0 −1.40568
\(867\) 0 0
\(868\) 7784.13 0.304390
\(869\) 35546.3 1.38760
\(870\) 0 0
\(871\) 4261.30 0.165773
\(872\) 21377.9 0.830214
\(873\) 0 0
\(874\) −102294. −3.95897
\(875\) 0 0
\(876\) 0 0
\(877\) −7704.91 −0.296666 −0.148333 0.988937i \(-0.547391\pi\)
−0.148333 + 0.988937i \(0.547391\pi\)
\(878\) −28212.9 −1.08444
\(879\) 0 0
\(880\) 0 0
\(881\) 5469.44 0.209160 0.104580 0.994516i \(-0.466650\pi\)
0.104580 + 0.994516i \(0.466650\pi\)
\(882\) 0 0
\(883\) −9303.70 −0.354580 −0.177290 0.984159i \(-0.556733\pi\)
−0.177290 + 0.984159i \(0.556733\pi\)
\(884\) 1289.00 0.0490427
\(885\) 0 0
\(886\) −39512.4 −1.49824
\(887\) 30162.4 1.14178 0.570888 0.821028i \(-0.306599\pi\)
0.570888 + 0.821028i \(0.306599\pi\)
\(888\) 0 0
\(889\) 61997.7 2.33896
\(890\) 0 0
\(891\) 0 0
\(892\) −1042.11 −0.0391169
\(893\) 17325.9 0.649260
\(894\) 0 0
\(895\) 0 0
\(896\) 44982.3 1.67718
\(897\) 0 0
\(898\) −24055.9 −0.893939
\(899\) 16391.7 0.608112
\(900\) 0 0
\(901\) 6266.65 0.231712
\(902\) −36411.9 −1.34411
\(903\) 0 0
\(904\) 8847.80 0.325524
\(905\) 0 0
\(906\) 0 0
\(907\) −33409.5 −1.22309 −0.611547 0.791208i \(-0.709452\pi\)
−0.611547 + 0.791208i \(0.709452\pi\)
\(908\) −8184.17 −0.299120
\(909\) 0 0
\(910\) 0 0
\(911\) −36399.1 −1.32377 −0.661885 0.749605i \(-0.730243\pi\)
−0.661885 + 0.749605i \(0.730243\pi\)
\(912\) 0 0
\(913\) 67845.1 2.45931
\(914\) 27584.7 0.998273
\(915\) 0 0
\(916\) −4403.70 −0.158845
\(917\) −7086.35 −0.255193
\(918\) 0 0
\(919\) 12102.6 0.434414 0.217207 0.976126i \(-0.430305\pi\)
0.217207 + 0.976126i \(0.430305\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 3374.97 0.120552
\(923\) −5537.61 −0.197478
\(924\) 0 0
\(925\) 0 0
\(926\) −40167.3 −1.42546
\(927\) 0 0
\(928\) −25715.4 −0.909643
\(929\) −51713.2 −1.82633 −0.913163 0.407595i \(-0.866367\pi\)
−0.913163 + 0.407595i \(0.866367\pi\)
\(930\) 0 0
\(931\) −56429.9 −1.98648
\(932\) 8460.27 0.297345
\(933\) 0 0
\(934\) 11618.9 0.407048
\(935\) 0 0
\(936\) 0 0
\(937\) 13806.9 0.481378 0.240689 0.970602i \(-0.422627\pi\)
0.240689 + 0.970602i \(0.422627\pi\)
\(938\) 43194.3 1.50357
\(939\) 0 0
\(940\) 0 0
\(941\) 33843.2 1.17243 0.586216 0.810155i \(-0.300617\pi\)
0.586216 + 0.810155i \(0.300617\pi\)
\(942\) 0 0
\(943\) −48085.3 −1.66052
\(944\) −5502.49 −0.189715
\(945\) 0 0
\(946\) −42048.3 −1.44515
\(947\) 2536.01 0.0870215 0.0435107 0.999053i \(-0.486146\pi\)
0.0435107 + 0.999053i \(0.486146\pi\)
\(948\) 0 0
\(949\) 7884.35 0.269691
\(950\) 0 0
\(951\) 0 0
\(952\) −18952.9 −0.645237
\(953\) 47593.7 1.61774 0.808872 0.587985i \(-0.200079\pi\)
0.808872 + 0.587985i \(0.200079\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −9369.55 −0.316980
\(957\) 0 0
\(958\) −24240.2 −0.817500
\(959\) 25339.7 0.853246
\(960\) 0 0
\(961\) −21879.6 −0.734438
\(962\) 992.649 0.0332685
\(963\) 0 0
\(964\) 18517.2 0.618672
\(965\) 0 0
\(966\) 0 0
\(967\) −3399.71 −0.113058 −0.0565291 0.998401i \(-0.518003\pi\)
−0.0565291 + 0.998401i \(0.518003\pi\)
\(968\) −12151.0 −0.403459
\(969\) 0 0
\(970\) 0 0
\(971\) −33995.3 −1.12354 −0.561771 0.827293i \(-0.689880\pi\)
−0.561771 + 0.827293i \(0.689880\pi\)
\(972\) 0 0
\(973\) 61310.7 2.02007
\(974\) −11500.9 −0.378351
\(975\) 0 0
\(976\) 4483.78 0.147051
\(977\) 10128.3 0.331660 0.165830 0.986154i \(-0.446970\pi\)
0.165830 + 0.986154i \(0.446970\pi\)
\(978\) 0 0
\(979\) −23570.2 −0.769467
\(980\) 0 0
\(981\) 0 0
\(982\) −42539.2 −1.38236
\(983\) −38181.1 −1.23885 −0.619424 0.785057i \(-0.712634\pi\)
−0.619424 + 0.785057i \(0.712634\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 27513.8 0.888661
\(987\) 0 0
\(988\) −4352.87 −0.140165
\(989\) −55528.7 −1.78535
\(990\) 0 0
\(991\) −4067.67 −0.130387 −0.0651936 0.997873i \(-0.520766\pi\)
−0.0651936 + 0.997873i \(0.520766\pi\)
\(992\) −12411.4 −0.397240
\(993\) 0 0
\(994\) −56131.6 −1.79113
\(995\) 0 0
\(996\) 0 0
\(997\) −33469.8 −1.06319 −0.531594 0.846999i \(-0.678407\pi\)
−0.531594 + 0.846999i \(0.678407\pi\)
\(998\) 64646.0 2.05044
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.bm.1.14 16
3.2 odd 2 inner 2025.4.a.bm.1.4 16
5.2 odd 4 405.4.b.d.244.14 yes 16
5.3 odd 4 405.4.b.d.244.4 yes 16
5.4 even 2 inner 2025.4.a.bm.1.3 16
15.2 even 4 405.4.b.d.244.3 16
15.8 even 4 405.4.b.d.244.13 yes 16
15.14 odd 2 inner 2025.4.a.bm.1.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.4.b.d.244.3 16 15.2 even 4
405.4.b.d.244.4 yes 16 5.3 odd 4
405.4.b.d.244.13 yes 16 15.8 even 4
405.4.b.d.244.14 yes 16 5.2 odd 4
2025.4.a.bm.1.3 16 5.4 even 2 inner
2025.4.a.bm.1.4 16 3.2 odd 2 inner
2025.4.a.bm.1.13 16 15.14 odd 2 inner
2025.4.a.bm.1.14 16 1.1 even 1 trivial