Properties

Label 2025.4.a.bi.1.12
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,0,48,0,0,-6,45,0,0,29,0,-24,-69] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 64 x^{10} + 241 x^{9} + 1452 x^{8} - 5130 x^{7} - 13834 x^{6} + 45247 x^{5} + \cdots + 73008 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 225)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(5.54419\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.54419 q^{2} +22.7380 q^{4} -25.7127 q^{7} +81.7101 q^{8} +6.25584 q^{11} +15.2600 q^{13} -142.556 q^{14} +271.112 q^{16} +36.0074 q^{17} -52.7512 q^{19} +34.6835 q^{22} +83.7341 q^{23} +84.6040 q^{26} -584.654 q^{28} +119.091 q^{29} +276.661 q^{31} +849.415 q^{32} +199.631 q^{34} +117.553 q^{37} -292.462 q^{38} -159.322 q^{41} +294.963 q^{43} +142.245 q^{44} +464.237 q^{46} -83.2917 q^{47} +318.141 q^{49} +346.981 q^{52} -149.018 q^{53} -2100.98 q^{56} +660.265 q^{58} +635.461 q^{59} +597.151 q^{61} +1533.86 q^{62} +2540.42 q^{64} +330.015 q^{67} +818.735 q^{68} -1149.79 q^{71} +130.284 q^{73} +651.738 q^{74} -1199.46 q^{76} -160.854 q^{77} -737.835 q^{79} -883.309 q^{82} +369.902 q^{83} +1635.33 q^{86} +511.165 q^{88} -225.638 q^{89} -392.374 q^{91} +1903.94 q^{92} -461.784 q^{94} +11.9134 q^{97} +1763.83 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 48 q^{4} - 6 q^{7} + 45 q^{8} + 29 q^{11} - 24 q^{13} - 69 q^{14} + 192 q^{16} + 79 q^{17} - 75 q^{19} + 18 q^{22} + 318 q^{23} - 154 q^{26} - 96 q^{28} + 106 q^{29} + 60 q^{31} + 914 q^{32}+ \cdots + 7511 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.54419 1.96017 0.980083 0.198590i \(-0.0636361\pi\)
0.980083 + 0.198590i \(0.0636361\pi\)
\(3\) 0 0
\(4\) 22.7380 2.84225
\(5\) 0 0
\(6\) 0 0
\(7\) −25.7127 −1.38835 −0.694177 0.719805i \(-0.744231\pi\)
−0.694177 + 0.719805i \(0.744231\pi\)
\(8\) 81.7101 3.61111
\(9\) 0 0
\(10\) 0 0
\(11\) 6.25584 0.171473 0.0857366 0.996318i \(-0.472676\pi\)
0.0857366 + 0.996318i \(0.472676\pi\)
\(12\) 0 0
\(13\) 15.2600 0.325565 0.162783 0.986662i \(-0.447953\pi\)
0.162783 + 0.986662i \(0.447953\pi\)
\(14\) −142.556 −2.72140
\(15\) 0 0
\(16\) 271.112 4.23613
\(17\) 36.0074 0.513710 0.256855 0.966450i \(-0.417314\pi\)
0.256855 + 0.966450i \(0.417314\pi\)
\(18\) 0 0
\(19\) −52.7512 −0.636945 −0.318472 0.947932i \(-0.603170\pi\)
−0.318472 + 0.947932i \(0.603170\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 34.6835 0.336116
\(23\) 83.7341 0.759120 0.379560 0.925167i \(-0.376075\pi\)
0.379560 + 0.925167i \(0.376075\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 84.6040 0.638162
\(27\) 0 0
\(28\) −584.654 −3.94604
\(29\) 119.091 0.762576 0.381288 0.924456i \(-0.375481\pi\)
0.381288 + 0.924456i \(0.375481\pi\)
\(30\) 0 0
\(31\) 276.661 1.60290 0.801449 0.598064i \(-0.204063\pi\)
0.801449 + 0.598064i \(0.204063\pi\)
\(32\) 849.415 4.69240
\(33\) 0 0
\(34\) 199.631 1.00696
\(35\) 0 0
\(36\) 0 0
\(37\) 117.553 0.522315 0.261158 0.965296i \(-0.415896\pi\)
0.261158 + 0.965296i \(0.415896\pi\)
\(38\) −292.462 −1.24852
\(39\) 0 0
\(40\) 0 0
\(41\) −159.322 −0.606875 −0.303437 0.952851i \(-0.598134\pi\)
−0.303437 + 0.952851i \(0.598134\pi\)
\(42\) 0 0
\(43\) 294.963 1.04608 0.523040 0.852308i \(-0.324798\pi\)
0.523040 + 0.852308i \(0.324798\pi\)
\(44\) 142.245 0.487370
\(45\) 0 0
\(46\) 464.237 1.48800
\(47\) −83.2917 −0.258497 −0.129248 0.991612i \(-0.541256\pi\)
−0.129248 + 0.991612i \(0.541256\pi\)
\(48\) 0 0
\(49\) 318.141 0.927524
\(50\) 0 0
\(51\) 0 0
\(52\) 346.981 0.925338
\(53\) −149.018 −0.386212 −0.193106 0.981178i \(-0.561856\pi\)
−0.193106 + 0.981178i \(0.561856\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2100.98 −5.01350
\(57\) 0 0
\(58\) 660.265 1.49478
\(59\) 635.461 1.40220 0.701102 0.713061i \(-0.252692\pi\)
0.701102 + 0.713061i \(0.252692\pi\)
\(60\) 0 0
\(61\) 597.151 1.25340 0.626699 0.779261i \(-0.284405\pi\)
0.626699 + 0.779261i \(0.284405\pi\)
\(62\) 1533.86 3.14194
\(63\) 0 0
\(64\) 2540.42 4.96175
\(65\) 0 0
\(66\) 0 0
\(67\) 330.015 0.601758 0.300879 0.953662i \(-0.402720\pi\)
0.300879 + 0.953662i \(0.402720\pi\)
\(68\) 818.735 1.46009
\(69\) 0 0
\(70\) 0 0
\(71\) −1149.79 −1.92189 −0.960947 0.276732i \(-0.910749\pi\)
−0.960947 + 0.276732i \(0.910749\pi\)
\(72\) 0 0
\(73\) 130.284 0.208885 0.104442 0.994531i \(-0.466694\pi\)
0.104442 + 0.994531i \(0.466694\pi\)
\(74\) 651.738 1.02382
\(75\) 0 0
\(76\) −1199.46 −1.81035
\(77\) −160.854 −0.238065
\(78\) 0 0
\(79\) −737.835 −1.05080 −0.525398 0.850856i \(-0.676084\pi\)
−0.525398 + 0.850856i \(0.676084\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −883.309 −1.18957
\(83\) 369.902 0.489182 0.244591 0.969626i \(-0.421346\pi\)
0.244591 + 0.969626i \(0.421346\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1635.33 2.05049
\(87\) 0 0
\(88\) 511.165 0.619209
\(89\) −225.638 −0.268737 −0.134369 0.990931i \(-0.542901\pi\)
−0.134369 + 0.990931i \(0.542901\pi\)
\(90\) 0 0
\(91\) −392.374 −0.452000
\(92\) 1903.94 2.15761
\(93\) 0 0
\(94\) −461.784 −0.506696
\(95\) 0 0
\(96\) 0 0
\(97\) 11.9134 0.0124704 0.00623518 0.999981i \(-0.498015\pi\)
0.00623518 + 0.999981i \(0.498015\pi\)
\(98\) 1763.83 1.81810
\(99\) 0 0
\(100\) 0 0
\(101\) 766.534 0.755178 0.377589 0.925973i \(-0.376753\pi\)
0.377589 + 0.925973i \(0.376753\pi\)
\(102\) 0 0
\(103\) 1549.47 1.48227 0.741137 0.671354i \(-0.234287\pi\)
0.741137 + 0.671354i \(0.234287\pi\)
\(104\) 1246.89 1.17565
\(105\) 0 0
\(106\) −826.185 −0.757040
\(107\) 1218.43 1.10084 0.550421 0.834887i \(-0.314467\pi\)
0.550421 + 0.834887i \(0.314467\pi\)
\(108\) 0 0
\(109\) −1327.27 −1.16633 −0.583163 0.812355i \(-0.698185\pi\)
−0.583163 + 0.812355i \(0.698185\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −6971.02 −5.88124
\(113\) 433.656 0.361017 0.180509 0.983573i \(-0.442226\pi\)
0.180509 + 0.983573i \(0.442226\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2707.90 2.16743
\(117\) 0 0
\(118\) 3523.11 2.74855
\(119\) −925.845 −0.713211
\(120\) 0 0
\(121\) −1291.86 −0.970597
\(122\) 3310.71 2.45687
\(123\) 0 0
\(124\) 6290.72 4.55583
\(125\) 0 0
\(126\) 0 0
\(127\) −1850.18 −1.29273 −0.646365 0.763028i \(-0.723712\pi\)
−0.646365 + 0.763028i \(0.723712\pi\)
\(128\) 7289.22 5.03346
\(129\) 0 0
\(130\) 0 0
\(131\) −1277.43 −0.851983 −0.425991 0.904727i \(-0.640075\pi\)
−0.425991 + 0.904727i \(0.640075\pi\)
\(132\) 0 0
\(133\) 1356.37 0.884304
\(134\) 1829.67 1.17954
\(135\) 0 0
\(136\) 2942.17 1.85506
\(137\) −1533.53 −0.956339 −0.478170 0.878268i \(-0.658700\pi\)
−0.478170 + 0.878268i \(0.658700\pi\)
\(138\) 0 0
\(139\) 1533.34 0.935655 0.467828 0.883820i \(-0.345037\pi\)
0.467828 + 0.883820i \(0.345037\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6374.63 −3.76723
\(143\) 95.4638 0.0558258
\(144\) 0 0
\(145\) 0 0
\(146\) 722.318 0.409448
\(147\) 0 0
\(148\) 2672.93 1.48455
\(149\) −2503.07 −1.37624 −0.688120 0.725597i \(-0.741564\pi\)
−0.688120 + 0.725597i \(0.741564\pi\)
\(150\) 0 0
\(151\) −1520.64 −0.819524 −0.409762 0.912192i \(-0.634388\pi\)
−0.409762 + 0.912192i \(0.634388\pi\)
\(152\) −4310.30 −2.30008
\(153\) 0 0
\(154\) −891.805 −0.466648
\(155\) 0 0
\(156\) 0 0
\(157\) 2592.88 1.31805 0.659026 0.752120i \(-0.270969\pi\)
0.659026 + 0.752120i \(0.270969\pi\)
\(158\) −4090.69 −2.05974
\(159\) 0 0
\(160\) 0 0
\(161\) −2153.03 −1.05393
\(162\) 0 0
\(163\) −675.580 −0.324635 −0.162318 0.986739i \(-0.551897\pi\)
−0.162318 + 0.986739i \(0.551897\pi\)
\(164\) −3622.65 −1.72489
\(165\) 0 0
\(166\) 2050.81 0.958877
\(167\) −3895.93 −1.80525 −0.902623 0.430432i \(-0.858361\pi\)
−0.902623 + 0.430432i \(0.858361\pi\)
\(168\) 0 0
\(169\) −1964.13 −0.894007
\(170\) 0 0
\(171\) 0 0
\(172\) 6706.87 2.97322
\(173\) −51.6609 −0.0227035 −0.0113517 0.999936i \(-0.503613\pi\)
−0.0113517 + 0.999936i \(0.503613\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1696.03 0.726383
\(177\) 0 0
\(178\) −1250.98 −0.526769
\(179\) 4553.37 1.90131 0.950656 0.310247i \(-0.100412\pi\)
0.950656 + 0.310247i \(0.100412\pi\)
\(180\) 0 0
\(181\) 2441.01 1.00243 0.501213 0.865324i \(-0.332887\pi\)
0.501213 + 0.865324i \(0.332887\pi\)
\(182\) −2175.39 −0.885994
\(183\) 0 0
\(184\) 6841.92 2.74127
\(185\) 0 0
\(186\) 0 0
\(187\) 225.256 0.0880875
\(188\) −1893.88 −0.734711
\(189\) 0 0
\(190\) 0 0
\(191\) 1326.11 0.502375 0.251188 0.967938i \(-0.419179\pi\)
0.251188 + 0.967938i \(0.419179\pi\)
\(192\) 0 0
\(193\) −1448.20 −0.540122 −0.270061 0.962843i \(-0.587044\pi\)
−0.270061 + 0.962843i \(0.587044\pi\)
\(194\) 66.0502 0.0244440
\(195\) 0 0
\(196\) 7233.88 2.63625
\(197\) 2398.84 0.867564 0.433782 0.901018i \(-0.357179\pi\)
0.433782 + 0.901018i \(0.357179\pi\)
\(198\) 0 0
\(199\) 3109.15 1.10755 0.553773 0.832667i \(-0.313187\pi\)
0.553773 + 0.832667i \(0.313187\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4249.80 1.48027
\(203\) −3062.16 −1.05873
\(204\) 0 0
\(205\) 0 0
\(206\) 8590.57 2.90550
\(207\) 0 0
\(208\) 4137.16 1.37914
\(209\) −330.003 −0.109219
\(210\) 0 0
\(211\) −3309.59 −1.07982 −0.539910 0.841723i \(-0.681542\pi\)
−0.539910 + 0.841723i \(0.681542\pi\)
\(212\) −3388.38 −1.09771
\(213\) 0 0
\(214\) 6755.21 2.15783
\(215\) 0 0
\(216\) 0 0
\(217\) −7113.69 −2.22539
\(218\) −7358.63 −2.28619
\(219\) 0 0
\(220\) 0 0
\(221\) 549.471 0.167246
\(222\) 0 0
\(223\) −2798.84 −0.840467 −0.420233 0.907416i \(-0.638052\pi\)
−0.420233 + 0.907416i \(0.638052\pi\)
\(224\) −21840.7 −6.51471
\(225\) 0 0
\(226\) 2404.27 0.707653
\(227\) −3129.17 −0.914936 −0.457468 0.889226i \(-0.651244\pi\)
−0.457468 + 0.889226i \(0.651244\pi\)
\(228\) 0 0
\(229\) 2975.58 0.858654 0.429327 0.903149i \(-0.358751\pi\)
0.429327 + 0.903149i \(0.358751\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 9730.97 2.75375
\(233\) 925.895 0.260332 0.130166 0.991492i \(-0.458449\pi\)
0.130166 + 0.991492i \(0.458449\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 14449.1 3.98541
\(237\) 0 0
\(238\) −5133.06 −1.39801
\(239\) 2610.82 0.706610 0.353305 0.935508i \(-0.385058\pi\)
0.353305 + 0.935508i \(0.385058\pi\)
\(240\) 0 0
\(241\) −669.473 −0.178940 −0.0894700 0.995990i \(-0.528517\pi\)
−0.0894700 + 0.995990i \(0.528517\pi\)
\(242\) −7162.34 −1.90253
\(243\) 0 0
\(244\) 13578.0 3.56247
\(245\) 0 0
\(246\) 0 0
\(247\) −804.981 −0.207367
\(248\) 22606.0 5.78824
\(249\) 0 0
\(250\) 0 0
\(251\) −6463.00 −1.62526 −0.812631 0.582778i \(-0.801966\pi\)
−0.812631 + 0.582778i \(0.801966\pi\)
\(252\) 0 0
\(253\) 523.827 0.130169
\(254\) −10257.7 −2.53397
\(255\) 0 0
\(256\) 20089.5 4.90465
\(257\) 2835.33 0.688183 0.344091 0.938936i \(-0.388187\pi\)
0.344091 + 0.938936i \(0.388187\pi\)
\(258\) 0 0
\(259\) −3022.61 −0.725158
\(260\) 0 0
\(261\) 0 0
\(262\) −7082.32 −1.67003
\(263\) 1633.67 0.383029 0.191515 0.981490i \(-0.438660\pi\)
0.191515 + 0.981490i \(0.438660\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 7519.98 1.73338
\(267\) 0 0
\(268\) 7503.88 1.71035
\(269\) −4870.30 −1.10389 −0.551947 0.833880i \(-0.686115\pi\)
−0.551947 + 0.833880i \(0.686115\pi\)
\(270\) 0 0
\(271\) −3913.17 −0.877153 −0.438576 0.898694i \(-0.644517\pi\)
−0.438576 + 0.898694i \(0.644517\pi\)
\(272\) 9762.03 2.17614
\(273\) 0 0
\(274\) −8502.18 −1.87458
\(275\) 0 0
\(276\) 0 0
\(277\) −818.145 −0.177464 −0.0887320 0.996056i \(-0.528281\pi\)
−0.0887320 + 0.996056i \(0.528281\pi\)
\(278\) 8501.11 1.83404
\(279\) 0 0
\(280\) 0 0
\(281\) −5162.95 −1.09607 −0.548035 0.836455i \(-0.684624\pi\)
−0.548035 + 0.836455i \(0.684624\pi\)
\(282\) 0 0
\(283\) 7146.57 1.50113 0.750565 0.660797i \(-0.229782\pi\)
0.750565 + 0.660797i \(0.229782\pi\)
\(284\) −26143.8 −5.46250
\(285\) 0 0
\(286\) 529.269 0.109428
\(287\) 4096.58 0.842556
\(288\) 0 0
\(289\) −3616.47 −0.736102
\(290\) 0 0
\(291\) 0 0
\(292\) 2962.39 0.593702
\(293\) 1465.10 0.292122 0.146061 0.989276i \(-0.453340\pi\)
0.146061 + 0.989276i \(0.453340\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 9605.31 1.88614
\(297\) 0 0
\(298\) −13877.5 −2.69766
\(299\) 1277.78 0.247143
\(300\) 0 0
\(301\) −7584.29 −1.45233
\(302\) −8430.73 −1.60640
\(303\) 0 0
\(304\) −14301.5 −2.69818
\(305\) 0 0
\(306\) 0 0
\(307\) 790.554 0.146968 0.0734842 0.997296i \(-0.476588\pi\)
0.0734842 + 0.997296i \(0.476588\pi\)
\(308\) −3657.50 −0.676641
\(309\) 0 0
\(310\) 0 0
\(311\) 3925.31 0.715703 0.357852 0.933778i \(-0.383509\pi\)
0.357852 + 0.933778i \(0.383509\pi\)
\(312\) 0 0
\(313\) −5742.37 −1.03699 −0.518495 0.855080i \(-0.673508\pi\)
−0.518495 + 0.855080i \(0.673508\pi\)
\(314\) 14375.4 2.58360
\(315\) 0 0
\(316\) −16776.9 −2.98663
\(317\) −8136.70 −1.44165 −0.720824 0.693118i \(-0.756236\pi\)
−0.720824 + 0.693118i \(0.756236\pi\)
\(318\) 0 0
\(319\) 745.016 0.130761
\(320\) 0 0
\(321\) 0 0
\(322\) −11936.8 −2.06587
\(323\) −1899.43 −0.327205
\(324\) 0 0
\(325\) 0 0
\(326\) −3745.54 −0.636338
\(327\) 0 0
\(328\) −13018.2 −2.19149
\(329\) 2141.65 0.358884
\(330\) 0 0
\(331\) −6326.94 −1.05063 −0.525317 0.850906i \(-0.676053\pi\)
−0.525317 + 0.850906i \(0.676053\pi\)
\(332\) 8410.84 1.39038
\(333\) 0 0
\(334\) −21599.8 −3.53858
\(335\) 0 0
\(336\) 0 0
\(337\) −4774.02 −0.771683 −0.385842 0.922565i \(-0.626089\pi\)
−0.385842 + 0.922565i \(0.626089\pi\)
\(338\) −10889.5 −1.75240
\(339\) 0 0
\(340\) 0 0
\(341\) 1730.75 0.274854
\(342\) 0 0
\(343\) 639.195 0.100622
\(344\) 24101.5 3.77751
\(345\) 0 0
\(346\) −286.417 −0.0445026
\(347\) 1819.43 0.281477 0.140738 0.990047i \(-0.455052\pi\)
0.140738 + 0.990047i \(0.455052\pi\)
\(348\) 0 0
\(349\) −2977.37 −0.456663 −0.228331 0.973584i \(-0.573327\pi\)
−0.228331 + 0.973584i \(0.573327\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5313.80 0.804621
\(353\) −6947.77 −1.04757 −0.523786 0.851850i \(-0.675481\pi\)
−0.523786 + 0.851850i \(0.675481\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −5130.56 −0.763817
\(357\) 0 0
\(358\) 25244.7 3.72689
\(359\) −3665.56 −0.538887 −0.269444 0.963016i \(-0.586840\pi\)
−0.269444 + 0.963016i \(0.586840\pi\)
\(360\) 0 0
\(361\) −4076.31 −0.594302
\(362\) 13533.4 1.96492
\(363\) 0 0
\(364\) −8921.80 −1.28470
\(365\) 0 0
\(366\) 0 0
\(367\) −9663.09 −1.37441 −0.687206 0.726463i \(-0.741163\pi\)
−0.687206 + 0.726463i \(0.741163\pi\)
\(368\) 22701.3 3.21573
\(369\) 0 0
\(370\) 0 0
\(371\) 3831.66 0.536199
\(372\) 0 0
\(373\) 6023.73 0.836185 0.418092 0.908405i \(-0.362699\pi\)
0.418092 + 0.908405i \(0.362699\pi\)
\(374\) 1248.86 0.172666
\(375\) 0 0
\(376\) −6805.77 −0.933460
\(377\) 1817.33 0.248269
\(378\) 0 0
\(379\) −1229.32 −0.166613 −0.0833063 0.996524i \(-0.526548\pi\)
−0.0833063 + 0.996524i \(0.526548\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 7352.18 0.984739
\(383\) 2133.59 0.284651 0.142326 0.989820i \(-0.454542\pi\)
0.142326 + 0.989820i \(0.454542\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −8029.07 −1.05873
\(387\) 0 0
\(388\) 270.887 0.0354439
\(389\) 9841.52 1.28274 0.641369 0.767233i \(-0.278367\pi\)
0.641369 + 0.767233i \(0.278367\pi\)
\(390\) 0 0
\(391\) 3015.04 0.389967
\(392\) 25995.3 3.34939
\(393\) 0 0
\(394\) 13299.6 1.70057
\(395\) 0 0
\(396\) 0 0
\(397\) 2548.71 0.322207 0.161104 0.986938i \(-0.448495\pi\)
0.161104 + 0.986938i \(0.448495\pi\)
\(398\) 17237.7 2.17098
\(399\) 0 0
\(400\) 0 0
\(401\) −13105.0 −1.63200 −0.816001 0.578051i \(-0.803813\pi\)
−0.816001 + 0.578051i \(0.803813\pi\)
\(402\) 0 0
\(403\) 4221.84 0.521848
\(404\) 17429.4 2.14640
\(405\) 0 0
\(406\) −16977.2 −2.07528
\(407\) 735.395 0.0895631
\(408\) 0 0
\(409\) 6217.24 0.751645 0.375823 0.926692i \(-0.377360\pi\)
0.375823 + 0.926692i \(0.377360\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 35231.9 4.21299
\(413\) −16339.4 −1.94675
\(414\) 0 0
\(415\) 0 0
\(416\) 12962.0 1.52768
\(417\) 0 0
\(418\) −1829.60 −0.214087
\(419\) 8428.06 0.982667 0.491334 0.870971i \(-0.336510\pi\)
0.491334 + 0.870971i \(0.336510\pi\)
\(420\) 0 0
\(421\) −12779.4 −1.47940 −0.739702 0.672935i \(-0.765033\pi\)
−0.739702 + 0.672935i \(0.765033\pi\)
\(422\) −18349.0 −2.11662
\(423\) 0 0
\(424\) −12176.3 −1.39465
\(425\) 0 0
\(426\) 0 0
\(427\) −15354.3 −1.74016
\(428\) 27704.7 3.12887
\(429\) 0 0
\(430\) 0 0
\(431\) 3149.70 0.352009 0.176005 0.984389i \(-0.443683\pi\)
0.176005 + 0.984389i \(0.443683\pi\)
\(432\) 0 0
\(433\) 6999.89 0.776890 0.388445 0.921472i \(-0.373012\pi\)
0.388445 + 0.921472i \(0.373012\pi\)
\(434\) −39439.6 −4.36213
\(435\) 0 0
\(436\) −30179.5 −3.31499
\(437\) −4417.07 −0.483517
\(438\) 0 0
\(439\) −7722.30 −0.839557 −0.419778 0.907627i \(-0.637892\pi\)
−0.419778 + 0.907627i \(0.637892\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 3046.37 0.327830
\(443\) 6648.73 0.713072 0.356536 0.934282i \(-0.383958\pi\)
0.356536 + 0.934282i \(0.383958\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −15517.3 −1.64745
\(447\) 0 0
\(448\) −65320.9 −6.88866
\(449\) −11416.8 −1.19998 −0.599989 0.800008i \(-0.704829\pi\)
−0.599989 + 0.800008i \(0.704829\pi\)
\(450\) 0 0
\(451\) −996.690 −0.104063
\(452\) 9860.47 1.02610
\(453\) 0 0
\(454\) −17348.7 −1.79343
\(455\) 0 0
\(456\) 0 0
\(457\) 11191.5 1.14555 0.572773 0.819714i \(-0.305868\pi\)
0.572773 + 0.819714i \(0.305868\pi\)
\(458\) 16497.2 1.68310
\(459\) 0 0
\(460\) 0 0
\(461\) −4901.86 −0.495233 −0.247617 0.968858i \(-0.579647\pi\)
−0.247617 + 0.968858i \(0.579647\pi\)
\(462\) 0 0
\(463\) 2131.64 0.213965 0.106982 0.994261i \(-0.465881\pi\)
0.106982 + 0.994261i \(0.465881\pi\)
\(464\) 32287.1 3.23037
\(465\) 0 0
\(466\) 5133.33 0.510294
\(467\) 17877.0 1.77141 0.885707 0.464246i \(-0.153675\pi\)
0.885707 + 0.464246i \(0.153675\pi\)
\(468\) 0 0
\(469\) −8485.57 −0.835452
\(470\) 0 0
\(471\) 0 0
\(472\) 51923.6 5.06351
\(473\) 1845.24 0.179375
\(474\) 0 0
\(475\) 0 0
\(476\) −21051.8 −2.02712
\(477\) 0 0
\(478\) 14474.9 1.38507
\(479\) 20417.8 1.94762 0.973811 0.227360i \(-0.0730093\pi\)
0.973811 + 0.227360i \(0.0730093\pi\)
\(480\) 0 0
\(481\) 1793.86 0.170048
\(482\) −3711.68 −0.350752
\(483\) 0 0
\(484\) −29374.4 −2.75868
\(485\) 0 0
\(486\) 0 0
\(487\) 8337.59 0.775795 0.387898 0.921702i \(-0.373201\pi\)
0.387898 + 0.921702i \(0.373201\pi\)
\(488\) 48793.3 4.52616
\(489\) 0 0
\(490\) 0 0
\(491\) 16264.7 1.49494 0.747469 0.664296i \(-0.231269\pi\)
0.747469 + 0.664296i \(0.231269\pi\)
\(492\) 0 0
\(493\) 4288.17 0.391743
\(494\) −4462.96 −0.406474
\(495\) 0 0
\(496\) 75006.2 6.79008
\(497\) 29564.1 2.66827
\(498\) 0 0
\(499\) −16111.7 −1.44540 −0.722702 0.691159i \(-0.757100\pi\)
−0.722702 + 0.691159i \(0.757100\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −35832.1 −3.18578
\(503\) 9219.89 0.817285 0.408643 0.912695i \(-0.366002\pi\)
0.408643 + 0.912695i \(0.366002\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2904.19 0.255152
\(507\) 0 0
\(508\) −42069.3 −3.67426
\(509\) 8566.85 0.746009 0.373005 0.927829i \(-0.378328\pi\)
0.373005 + 0.927829i \(0.378328\pi\)
\(510\) 0 0
\(511\) −3349.94 −0.290005
\(512\) 53065.9 4.58048
\(513\) 0 0
\(514\) 15719.6 1.34895
\(515\) 0 0
\(516\) 0 0
\(517\) −521.059 −0.0443252
\(518\) −16757.9 −1.42143
\(519\) 0 0
\(520\) 0 0
\(521\) −2450.94 −0.206099 −0.103050 0.994676i \(-0.532860\pi\)
−0.103050 + 0.994676i \(0.532860\pi\)
\(522\) 0 0
\(523\) 20897.8 1.74722 0.873609 0.486628i \(-0.161773\pi\)
0.873609 + 0.486628i \(0.161773\pi\)
\(524\) −29046.2 −2.42155
\(525\) 0 0
\(526\) 9057.40 0.750801
\(527\) 9961.84 0.823424
\(528\) 0 0
\(529\) −5155.61 −0.423737
\(530\) 0 0
\(531\) 0 0
\(532\) 30841.2 2.51341
\(533\) −2431.24 −0.197577
\(534\) 0 0
\(535\) 0 0
\(536\) 26965.6 2.17301
\(537\) 0 0
\(538\) −27001.8 −2.16381
\(539\) 1990.24 0.159046
\(540\) 0 0
\(541\) −9960.84 −0.791590 −0.395795 0.918339i \(-0.629531\pi\)
−0.395795 + 0.918339i \(0.629531\pi\)
\(542\) −21695.4 −1.71936
\(543\) 0 0
\(544\) 30585.2 2.41053
\(545\) 0 0
\(546\) 0 0
\(547\) 8594.35 0.671788 0.335894 0.941900i \(-0.390962\pi\)
0.335894 + 0.941900i \(0.390962\pi\)
\(548\) −34869.4 −2.71815
\(549\) 0 0
\(550\) 0 0
\(551\) −6282.21 −0.485719
\(552\) 0 0
\(553\) 18971.7 1.45888
\(554\) −4535.94 −0.347859
\(555\) 0 0
\(556\) 34865.0 2.65936
\(557\) −9469.85 −0.720378 −0.360189 0.932879i \(-0.617288\pi\)
−0.360189 + 0.932879i \(0.617288\pi\)
\(558\) 0 0
\(559\) 4501.13 0.340568
\(560\) 0 0
\(561\) 0 0
\(562\) −28624.4 −2.14848
\(563\) −8.77465 −0.000656852 0 −0.000328426 1.00000i \(-0.500105\pi\)
−0.000328426 1.00000i \(0.500105\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 39621.9 2.94246
\(567\) 0 0
\(568\) −93949.2 −6.94018
\(569\) −246.934 −0.0181933 −0.00909667 0.999959i \(-0.502896\pi\)
−0.00909667 + 0.999959i \(0.502896\pi\)
\(570\) 0 0
\(571\) 3447.19 0.252645 0.126323 0.991989i \(-0.459683\pi\)
0.126323 + 0.991989i \(0.459683\pi\)
\(572\) 2170.66 0.158671
\(573\) 0 0
\(574\) 22712.2 1.65155
\(575\) 0 0
\(576\) 0 0
\(577\) −21137.2 −1.52505 −0.762525 0.646959i \(-0.776040\pi\)
−0.762525 + 0.646959i \(0.776040\pi\)
\(578\) −20050.4 −1.44288
\(579\) 0 0
\(580\) 0 0
\(581\) −9511.18 −0.679157
\(582\) 0 0
\(583\) −932.234 −0.0662250
\(584\) 10645.5 0.754305
\(585\) 0 0
\(586\) 8122.77 0.572608
\(587\) −5311.01 −0.373439 −0.186720 0.982413i \(-0.559786\pi\)
−0.186720 + 0.982413i \(0.559786\pi\)
\(588\) 0 0
\(589\) −14594.2 −1.02096
\(590\) 0 0
\(591\) 0 0
\(592\) 31870.2 2.21259
\(593\) −11575.8 −0.801624 −0.400812 0.916160i \(-0.631272\pi\)
−0.400812 + 0.916160i \(0.631272\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −56914.9 −3.91162
\(597\) 0 0
\(598\) 7084.24 0.484442
\(599\) −7126.64 −0.486121 −0.243061 0.970011i \(-0.578151\pi\)
−0.243061 + 0.970011i \(0.578151\pi\)
\(600\) 0 0
\(601\) −7721.85 −0.524095 −0.262047 0.965055i \(-0.584398\pi\)
−0.262047 + 0.965055i \(0.584398\pi\)
\(602\) −42048.7 −2.84681
\(603\) 0 0
\(604\) −34576.4 −2.32929
\(605\) 0 0
\(606\) 0 0
\(607\) −14361.4 −0.960317 −0.480159 0.877182i \(-0.659421\pi\)
−0.480159 + 0.877182i \(0.659421\pi\)
\(608\) −44807.6 −2.98880
\(609\) 0 0
\(610\) 0 0
\(611\) −1271.03 −0.0841575
\(612\) 0 0
\(613\) 12086.0 0.796330 0.398165 0.917314i \(-0.369647\pi\)
0.398165 + 0.917314i \(0.369647\pi\)
\(614\) 4382.98 0.288082
\(615\) 0 0
\(616\) −13143.4 −0.859681
\(617\) 25235.8 1.64660 0.823301 0.567604i \(-0.192130\pi\)
0.823301 + 0.567604i \(0.192130\pi\)
\(618\) 0 0
\(619\) −4905.44 −0.318524 −0.159262 0.987236i \(-0.550911\pi\)
−0.159262 + 0.987236i \(0.550911\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 21762.6 1.40290
\(623\) 5801.76 0.373102
\(624\) 0 0
\(625\) 0 0
\(626\) −31836.8 −2.03267
\(627\) 0 0
\(628\) 58956.8 3.74623
\(629\) 4232.79 0.268318
\(630\) 0 0
\(631\) −11240.9 −0.709181 −0.354590 0.935022i \(-0.615380\pi\)
−0.354590 + 0.935022i \(0.615380\pi\)
\(632\) −60288.6 −3.79454
\(633\) 0 0
\(634\) −45111.4 −2.82587
\(635\) 0 0
\(636\) 0 0
\(637\) 4854.82 0.301970
\(638\) 4130.51 0.256314
\(639\) 0 0
\(640\) 0 0
\(641\) 11159.0 0.687601 0.343800 0.939043i \(-0.388286\pi\)
0.343800 + 0.939043i \(0.388286\pi\)
\(642\) 0 0
\(643\) −27244.8 −1.67097 −0.835483 0.549516i \(-0.814812\pi\)
−0.835483 + 0.549516i \(0.814812\pi\)
\(644\) −48955.5 −2.99552
\(645\) 0 0
\(646\) −10530.8 −0.641375
\(647\) −31360.6 −1.90559 −0.952793 0.303620i \(-0.901805\pi\)
−0.952793 + 0.303620i \(0.901805\pi\)
\(648\) 0 0
\(649\) 3975.34 0.240440
\(650\) 0 0
\(651\) 0 0
\(652\) −15361.3 −0.922693
\(653\) −7074.47 −0.423959 −0.211980 0.977274i \(-0.567991\pi\)
−0.211980 + 0.977274i \(0.567991\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −43194.0 −2.57080
\(657\) 0 0
\(658\) 11873.7 0.703473
\(659\) 18498.6 1.09348 0.546740 0.837302i \(-0.315868\pi\)
0.546740 + 0.837302i \(0.315868\pi\)
\(660\) 0 0
\(661\) 6400.77 0.376643 0.188321 0.982107i \(-0.439695\pi\)
0.188321 + 0.982107i \(0.439695\pi\)
\(662\) −35077.7 −2.05942
\(663\) 0 0
\(664\) 30224.8 1.76649
\(665\) 0 0
\(666\) 0 0
\(667\) 9972.01 0.578887
\(668\) −88585.6 −5.13096
\(669\) 0 0
\(670\) 0 0
\(671\) 3735.68 0.214924
\(672\) 0 0
\(673\) 14231.4 0.815124 0.407562 0.913177i \(-0.366379\pi\)
0.407562 + 0.913177i \(0.366379\pi\)
\(674\) −26468.0 −1.51263
\(675\) 0 0
\(676\) −44660.4 −2.54099
\(677\) 19908.0 1.13017 0.565085 0.825032i \(-0.308843\pi\)
0.565085 + 0.825032i \(0.308843\pi\)
\(678\) 0 0
\(679\) −306.326 −0.0173133
\(680\) 0 0
\(681\) 0 0
\(682\) 9595.58 0.538759
\(683\) 26204.1 1.46804 0.734021 0.679126i \(-0.237641\pi\)
0.734021 + 0.679126i \(0.237641\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3543.81 0.197235
\(687\) 0 0
\(688\) 79968.1 4.43133
\(689\) −2274.01 −0.125737
\(690\) 0 0
\(691\) −26562.5 −1.46235 −0.731176 0.682189i \(-0.761028\pi\)
−0.731176 + 0.682189i \(0.761028\pi\)
\(692\) −1174.66 −0.0645289
\(693\) 0 0
\(694\) 10087.3 0.551741
\(695\) 0 0
\(696\) 0 0
\(697\) −5736.75 −0.311757
\(698\) −16507.1 −0.895134
\(699\) 0 0
\(700\) 0 0
\(701\) 35417.5 1.90827 0.954137 0.299372i \(-0.0967771\pi\)
0.954137 + 0.299372i \(0.0967771\pi\)
\(702\) 0 0
\(703\) −6201.08 −0.332686
\(704\) 15892.4 0.850808
\(705\) 0 0
\(706\) −38519.7 −2.05341
\(707\) −19709.6 −1.04845
\(708\) 0 0
\(709\) −16678.4 −0.883456 −0.441728 0.897149i \(-0.645634\pi\)
−0.441728 + 0.897149i \(0.645634\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −18436.9 −0.970439
\(713\) 23166.0 1.21679
\(714\) 0 0
\(715\) 0 0
\(716\) 103534. 5.40400
\(717\) 0 0
\(718\) −20322.5 −1.05631
\(719\) 3273.36 0.169786 0.0848928 0.996390i \(-0.472945\pi\)
0.0848928 + 0.996390i \(0.472945\pi\)
\(720\) 0 0
\(721\) −39841.1 −2.05792
\(722\) −22599.8 −1.16493
\(723\) 0 0
\(724\) 55503.7 2.84914
\(725\) 0 0
\(726\) 0 0
\(727\) −33940.5 −1.73148 −0.865738 0.500497i \(-0.833151\pi\)
−0.865738 + 0.500497i \(0.833151\pi\)
\(728\) −32060.9 −1.63222
\(729\) 0 0
\(730\) 0 0
\(731\) 10620.8 0.537382
\(732\) 0 0
\(733\) 1904.70 0.0959779 0.0479890 0.998848i \(-0.484719\pi\)
0.0479890 + 0.998848i \(0.484719\pi\)
\(734\) −53573.9 −2.69407
\(735\) 0 0
\(736\) 71125.0 3.56209
\(737\) 2064.52 0.103185
\(738\) 0 0
\(739\) 23159.4 1.15282 0.576408 0.817162i \(-0.304454\pi\)
0.576408 + 0.817162i \(0.304454\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 21243.4 1.05104
\(743\) 21886.8 1.08068 0.540342 0.841445i \(-0.318295\pi\)
0.540342 + 0.841445i \(0.318295\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 33396.7 1.63906
\(747\) 0 0
\(748\) 5121.87 0.250367
\(749\) −31329.1 −1.52836
\(750\) 0 0
\(751\) −31661.3 −1.53840 −0.769200 0.639008i \(-0.779345\pi\)
−0.769200 + 0.639008i \(0.779345\pi\)
\(752\) −22581.4 −1.09502
\(753\) 0 0
\(754\) 10075.6 0.486647
\(755\) 0 0
\(756\) 0 0
\(757\) −29482.4 −1.41553 −0.707764 0.706449i \(-0.750296\pi\)
−0.707764 + 0.706449i \(0.750296\pi\)
\(758\) −6815.60 −0.326588
\(759\) 0 0
\(760\) 0 0
\(761\) −26024.0 −1.23964 −0.619822 0.784743i \(-0.712795\pi\)
−0.619822 + 0.784743i \(0.712795\pi\)
\(762\) 0 0
\(763\) 34127.7 1.61927
\(764\) 30153.0 1.42788
\(765\) 0 0
\(766\) 11829.0 0.557964
\(767\) 9697.11 0.456509
\(768\) 0 0
\(769\) 1678.40 0.0787054 0.0393527 0.999225i \(-0.487470\pi\)
0.0393527 + 0.999225i \(0.487470\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −32929.1 −1.53516
\(773\) −25777.0 −1.19940 −0.599698 0.800226i \(-0.704713\pi\)
−0.599698 + 0.800226i \(0.704713\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 973.447 0.0450319
\(777\) 0 0
\(778\) 54563.2 2.51438
\(779\) 8404.40 0.386546
\(780\) 0 0
\(781\) −7192.87 −0.329553
\(782\) 16716.0 0.764401
\(783\) 0 0
\(784\) 86251.9 3.92911
\(785\) 0 0
\(786\) 0 0
\(787\) −40816.6 −1.84874 −0.924368 0.381502i \(-0.875407\pi\)
−0.924368 + 0.381502i \(0.875407\pi\)
\(788\) 54544.7 2.46583
\(789\) 0 0
\(790\) 0 0
\(791\) −11150.4 −0.501219
\(792\) 0 0
\(793\) 9112.50 0.408063
\(794\) 14130.5 0.631579
\(795\) 0 0
\(796\) 70695.8 3.14792
\(797\) 9949.56 0.442198 0.221099 0.975251i \(-0.429036\pi\)
0.221099 + 0.975251i \(0.429036\pi\)
\(798\) 0 0
\(799\) −2999.11 −0.132792
\(800\) 0 0
\(801\) 0 0
\(802\) −72656.6 −3.19899
\(803\) 815.034 0.0358181
\(804\) 0 0
\(805\) 0 0
\(806\) 23406.7 1.02291
\(807\) 0 0
\(808\) 62633.6 2.72703
\(809\) −32596.2 −1.41659 −0.708295 0.705917i \(-0.750535\pi\)
−0.708295 + 0.705917i \(0.750535\pi\)
\(810\) 0 0
\(811\) −7399.23 −0.320373 −0.160186 0.987087i \(-0.551210\pi\)
−0.160186 + 0.987087i \(0.551210\pi\)
\(812\) −69627.3 −3.00916
\(813\) 0 0
\(814\) 4077.17 0.175558
\(815\) 0 0
\(816\) 0 0
\(817\) −15559.7 −0.666295
\(818\) 34469.6 1.47335
\(819\) 0 0
\(820\) 0 0
\(821\) −17398.1 −0.739583 −0.369791 0.929115i \(-0.620571\pi\)
−0.369791 + 0.929115i \(0.620571\pi\)
\(822\) 0 0
\(823\) 5269.64 0.223193 0.111597 0.993754i \(-0.464404\pi\)
0.111597 + 0.993754i \(0.464404\pi\)
\(824\) 126608. 5.35266
\(825\) 0 0
\(826\) −90588.6 −3.81596
\(827\) 9005.90 0.378677 0.189338 0.981912i \(-0.439366\pi\)
0.189338 + 0.981912i \(0.439366\pi\)
\(828\) 0 0
\(829\) 5545.90 0.232349 0.116174 0.993229i \(-0.462937\pi\)
0.116174 + 0.993229i \(0.462937\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 38766.7 1.61538
\(833\) 11455.4 0.476478
\(834\) 0 0
\(835\) 0 0
\(836\) −7503.60 −0.310427
\(837\) 0 0
\(838\) 46726.7 1.92619
\(839\) −4082.93 −0.168008 −0.0840038 0.996465i \(-0.526771\pi\)
−0.0840038 + 0.996465i \(0.526771\pi\)
\(840\) 0 0
\(841\) −10206.2 −0.418477
\(842\) −70851.3 −2.89988
\(843\) 0 0
\(844\) −75253.5 −3.06911
\(845\) 0 0
\(846\) 0 0
\(847\) 33217.3 1.34753
\(848\) −40400.7 −1.63604
\(849\) 0 0
\(850\) 0 0
\(851\) 9843.23 0.396500
\(852\) 0 0
\(853\) −23676.6 −0.950375 −0.475188 0.879885i \(-0.657620\pi\)
−0.475188 + 0.879885i \(0.657620\pi\)
\(854\) −85127.3 −3.41100
\(855\) 0 0
\(856\) 99558.1 3.97527
\(857\) 16551.7 0.659739 0.329869 0.944027i \(-0.392995\pi\)
0.329869 + 0.944027i \(0.392995\pi\)
\(858\) 0 0
\(859\) −100.576 −0.00399487 −0.00199744 0.999998i \(-0.500636\pi\)
−0.00199744 + 0.999998i \(0.500636\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 17462.5 0.689996
\(863\) −21496.8 −0.847924 −0.423962 0.905680i \(-0.639361\pi\)
−0.423962 + 0.905680i \(0.639361\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 38808.7 1.52283
\(867\) 0 0
\(868\) −161751. −6.32510
\(869\) −4615.78 −0.180184
\(870\) 0 0
\(871\) 5036.02 0.195912
\(872\) −108451. −4.21173
\(873\) 0 0
\(874\) −24489.1 −0.947774
\(875\) 0 0
\(876\) 0 0
\(877\) −15218.6 −0.585969 −0.292984 0.956117i \(-0.594648\pi\)
−0.292984 + 0.956117i \(0.594648\pi\)
\(878\) −42813.9 −1.64567
\(879\) 0 0
\(880\) 0 0
\(881\) −29944.2 −1.14511 −0.572557 0.819865i \(-0.694048\pi\)
−0.572557 + 0.819865i \(0.694048\pi\)
\(882\) 0 0
\(883\) −22598.4 −0.861265 −0.430633 0.902527i \(-0.641710\pi\)
−0.430633 + 0.902527i \(0.641710\pi\)
\(884\) 12493.9 0.475355
\(885\) 0 0
\(886\) 36861.8 1.39774
\(887\) 36206.4 1.37057 0.685283 0.728277i \(-0.259679\pi\)
0.685283 + 0.728277i \(0.259679\pi\)
\(888\) 0 0
\(889\) 47573.0 1.79477
\(890\) 0 0
\(891\) 0 0
\(892\) −63639.9 −2.38881
\(893\) 4393.73 0.164648
\(894\) 0 0
\(895\) 0 0
\(896\) −187425. −6.98821
\(897\) 0 0
\(898\) −63296.7 −2.35216
\(899\) 32948.0 1.22233
\(900\) 0 0
\(901\) −5365.76 −0.198401
\(902\) −5525.84 −0.203980
\(903\) 0 0
\(904\) 35434.1 1.30367
\(905\) 0 0
\(906\) 0 0
\(907\) 29439.8 1.07777 0.538883 0.842381i \(-0.318847\pi\)
0.538883 + 0.842381i \(0.318847\pi\)
\(908\) −71151.1 −2.60047
\(909\) 0 0
\(910\) 0 0
\(911\) −36128.0 −1.31391 −0.656956 0.753929i \(-0.728156\pi\)
−0.656956 + 0.753929i \(0.728156\pi\)
\(912\) 0 0
\(913\) 2314.05 0.0838815
\(914\) 62047.5 2.24546
\(915\) 0 0
\(916\) 67658.6 2.44051
\(917\) 32846.2 1.18285
\(918\) 0 0
\(919\) −9547.59 −0.342705 −0.171353 0.985210i \(-0.554814\pi\)
−0.171353 + 0.985210i \(0.554814\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −27176.8 −0.970739
\(923\) −17545.7 −0.625702
\(924\) 0 0
\(925\) 0 0
\(926\) 11818.2 0.419407
\(927\) 0 0
\(928\) 101158. 3.57831
\(929\) 18491.8 0.653064 0.326532 0.945186i \(-0.394120\pi\)
0.326532 + 0.945186i \(0.394120\pi\)
\(930\) 0 0
\(931\) −16782.3 −0.590782
\(932\) 21053.0 0.739929
\(933\) 0 0
\(934\) 99113.5 3.47226
\(935\) 0 0
\(936\) 0 0
\(937\) −268.075 −0.00934644 −0.00467322 0.999989i \(-0.501488\pi\)
−0.00467322 + 0.999989i \(0.501488\pi\)
\(938\) −47045.6 −1.63762
\(939\) 0 0
\(940\) 0 0
\(941\) −30432.5 −1.05427 −0.527137 0.849781i \(-0.676734\pi\)
−0.527137 + 0.849781i \(0.676734\pi\)
\(942\) 0 0
\(943\) −13340.7 −0.460691
\(944\) 172281. 5.93991
\(945\) 0 0
\(946\) 10230.4 0.351604
\(947\) −29821.1 −1.02329 −0.511645 0.859197i \(-0.670964\pi\)
−0.511645 + 0.859197i \(0.670964\pi\)
\(948\) 0 0
\(949\) 1988.13 0.0680056
\(950\) 0 0
\(951\) 0 0
\(952\) −75650.9 −2.57548
\(953\) 41109.5 1.39734 0.698671 0.715443i \(-0.253775\pi\)
0.698671 + 0.715443i \(0.253775\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 59364.8 2.00836
\(957\) 0 0
\(958\) 113200. 3.81766
\(959\) 39431.2 1.32774
\(960\) 0 0
\(961\) 46750.4 1.56928
\(962\) 9945.49 0.333322
\(963\) 0 0
\(964\) −15222.5 −0.508592
\(965\) 0 0
\(966\) 0 0
\(967\) 42606.0 1.41687 0.708437 0.705774i \(-0.249400\pi\)
0.708437 + 0.705774i \(0.249400\pi\)
\(968\) −105558. −3.50493
\(969\) 0 0
\(970\) 0 0
\(971\) −33410.2 −1.10421 −0.552103 0.833776i \(-0.686175\pi\)
−0.552103 + 0.833776i \(0.686175\pi\)
\(972\) 0 0
\(973\) −39426.2 −1.29902
\(974\) 46225.1 1.52069
\(975\) 0 0
\(976\) 161895. 5.30956
\(977\) −8384.74 −0.274567 −0.137283 0.990532i \(-0.543837\pi\)
−0.137283 + 0.990532i \(0.543837\pi\)
\(978\) 0 0
\(979\) −1411.56 −0.0460812
\(980\) 0 0
\(981\) 0 0
\(982\) 90174.4 2.93033
\(983\) 19554.2 0.634467 0.317234 0.948347i \(-0.397246\pi\)
0.317234 + 0.948347i \(0.397246\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 23774.4 0.767881
\(987\) 0 0
\(988\) −18303.6 −0.589389
\(989\) 24698.5 0.794101
\(990\) 0 0
\(991\) 32644.3 1.04640 0.523199 0.852210i \(-0.324738\pi\)
0.523199 + 0.852210i \(0.324738\pi\)
\(992\) 235000. 7.52144
\(993\) 0 0
\(994\) 163909. 5.23025
\(995\) 0 0
\(996\) 0 0
\(997\) −21391.2 −0.679505 −0.339752 0.940515i \(-0.610343\pi\)
−0.339752 + 0.940515i \(0.610343\pi\)
\(998\) −89326.0 −2.83323
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.bi.1.12 12
3.2 odd 2 2025.4.a.be.1.1 12
5.4 even 2 2025.4.a.bf.1.1 12
9.4 even 3 225.4.e.e.151.1 yes 24
9.7 even 3 225.4.e.e.76.1 24
15.14 odd 2 2025.4.a.bj.1.12 12
45.4 even 6 225.4.e.f.151.12 yes 24
45.7 odd 12 225.4.k.e.49.24 48
45.13 odd 12 225.4.k.e.124.24 48
45.22 odd 12 225.4.k.e.124.1 48
45.34 even 6 225.4.e.f.76.12 yes 24
45.43 odd 12 225.4.k.e.49.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.4.e.e.76.1 24 9.7 even 3
225.4.e.e.151.1 yes 24 9.4 even 3
225.4.e.f.76.12 yes 24 45.34 even 6
225.4.e.f.151.12 yes 24 45.4 even 6
225.4.k.e.49.1 48 45.43 odd 12
225.4.k.e.49.24 48 45.7 odd 12
225.4.k.e.124.1 48 45.22 odd 12
225.4.k.e.124.24 48 45.13 odd 12
2025.4.a.be.1.1 12 3.2 odd 2
2025.4.a.bf.1.1 12 5.4 even 2
2025.4.a.bi.1.12 12 1.1 even 1 trivial
2025.4.a.bj.1.12 12 15.14 odd 2