Properties

Label 2025.4.a.bd.1.7
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,24,0,0,0,0,0,0,0,0,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} + 567x^{4} - 2024x^{2} + 1900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 405)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(3.99806\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.99806 q^{2} +7.98447 q^{4} +7.79840 q^{7} -0.0620886 q^{8} +32.7050 q^{11} -65.9775 q^{13} +31.1784 q^{14} -64.1240 q^{16} +15.5853 q^{17} +51.6661 q^{19} +130.756 q^{22} -49.6796 q^{23} -263.782 q^{26} +62.2661 q^{28} -282.020 q^{29} -147.663 q^{31} -255.875 q^{32} +62.3111 q^{34} +122.498 q^{37} +206.564 q^{38} -109.032 q^{41} +191.493 q^{43} +261.132 q^{44} -198.622 q^{46} -414.420 q^{47} -282.185 q^{49} -526.796 q^{52} +236.381 q^{53} -0.484192 q^{56} -1127.53 q^{58} +784.024 q^{59} -535.138 q^{61} -590.363 q^{62} -510.010 q^{64} +121.069 q^{67} +124.441 q^{68} +590.432 q^{71} +986.078 q^{73} +489.753 q^{74} +412.526 q^{76} +255.046 q^{77} -607.025 q^{79} -435.915 q^{82} -1292.46 q^{83} +765.598 q^{86} -2.03061 q^{88} -1506.78 q^{89} -514.519 q^{91} -396.665 q^{92} -1656.87 q^{94} -610.887 q^{97} -1128.19 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{4} + 42 q^{14} + 4 q^{16} - 118 q^{19} - 36 q^{26} - 318 q^{29} - 416 q^{31} - 638 q^{34} + 486 q^{41} - 852 q^{44} - 598 q^{46} - 350 q^{49} + 1530 q^{56} + 1146 q^{59} - 398 q^{61} - 1640 q^{64}+ \cdots - 1238 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.99806 1.41353 0.706764 0.707450i \(-0.250154\pi\)
0.706764 + 0.707450i \(0.250154\pi\)
\(3\) 0 0
\(4\) 7.98447 0.998059
\(5\) 0 0
\(6\) 0 0
\(7\) 7.79840 0.421074 0.210537 0.977586i \(-0.432479\pi\)
0.210537 + 0.977586i \(0.432479\pi\)
\(8\) −0.0620886 −0.00274396
\(9\) 0 0
\(10\) 0 0
\(11\) 32.7050 0.896448 0.448224 0.893921i \(-0.352057\pi\)
0.448224 + 0.893921i \(0.352057\pi\)
\(12\) 0 0
\(13\) −65.9775 −1.40761 −0.703803 0.710395i \(-0.748516\pi\)
−0.703803 + 0.710395i \(0.748516\pi\)
\(14\) 31.1784 0.595199
\(15\) 0 0
\(16\) −64.1240 −1.00194
\(17\) 15.5853 0.222353 0.111176 0.993801i \(-0.464538\pi\)
0.111176 + 0.993801i \(0.464538\pi\)
\(18\) 0 0
\(19\) 51.6661 0.623843 0.311921 0.950108i \(-0.399027\pi\)
0.311921 + 0.950108i \(0.399027\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 130.756 1.26715
\(23\) −49.6796 −0.450387 −0.225194 0.974314i \(-0.572301\pi\)
−0.225194 + 0.974314i \(0.572301\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −263.782 −1.98969
\(27\) 0 0
\(28\) 62.2661 0.420256
\(29\) −282.020 −1.80586 −0.902929 0.429790i \(-0.858587\pi\)
−0.902929 + 0.429790i \(0.858587\pi\)
\(30\) 0 0
\(31\) −147.663 −0.855515 −0.427758 0.903893i \(-0.640696\pi\)
−0.427758 + 0.903893i \(0.640696\pi\)
\(32\) −255.875 −1.41352
\(33\) 0 0
\(34\) 62.3111 0.314302
\(35\) 0 0
\(36\) 0 0
\(37\) 122.498 0.544284 0.272142 0.962257i \(-0.412268\pi\)
0.272142 + 0.962257i \(0.412268\pi\)
\(38\) 206.564 0.881818
\(39\) 0 0
\(40\) 0 0
\(41\) −109.032 −0.415314 −0.207657 0.978202i \(-0.566584\pi\)
−0.207657 + 0.978202i \(0.566584\pi\)
\(42\) 0 0
\(43\) 191.493 0.679124 0.339562 0.940584i \(-0.389721\pi\)
0.339562 + 0.940584i \(0.389721\pi\)
\(44\) 261.132 0.894707
\(45\) 0 0
\(46\) −198.622 −0.636634
\(47\) −414.420 −1.28616 −0.643078 0.765800i \(-0.722343\pi\)
−0.643078 + 0.765800i \(0.722343\pi\)
\(48\) 0 0
\(49\) −282.185 −0.822697
\(50\) 0 0
\(51\) 0 0
\(52\) −526.796 −1.40487
\(53\) 236.381 0.612631 0.306315 0.951930i \(-0.400904\pi\)
0.306315 + 0.951930i \(0.400904\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.484192 −0.00115541
\(57\) 0 0
\(58\) −1127.53 −2.55263
\(59\) 784.024 1.73002 0.865011 0.501753i \(-0.167312\pi\)
0.865011 + 0.501753i \(0.167312\pi\)
\(60\) 0 0
\(61\) −535.138 −1.12324 −0.561618 0.827397i \(-0.689821\pi\)
−0.561618 + 0.827397i \(0.689821\pi\)
\(62\) −590.363 −1.20929
\(63\) 0 0
\(64\) −510.010 −0.996114
\(65\) 0 0
\(66\) 0 0
\(67\) 121.069 0.220761 0.110380 0.993889i \(-0.464793\pi\)
0.110380 + 0.993889i \(0.464793\pi\)
\(68\) 124.441 0.221921
\(69\) 0 0
\(70\) 0 0
\(71\) 590.432 0.986921 0.493460 0.869768i \(-0.335732\pi\)
0.493460 + 0.869768i \(0.335732\pi\)
\(72\) 0 0
\(73\) 986.078 1.58098 0.790491 0.612473i \(-0.209825\pi\)
0.790491 + 0.612473i \(0.209825\pi\)
\(74\) 489.753 0.769360
\(75\) 0 0
\(76\) 412.526 0.622632
\(77\) 255.046 0.377471
\(78\) 0 0
\(79\) −607.025 −0.864503 −0.432251 0.901753i \(-0.642281\pi\)
−0.432251 + 0.901753i \(0.642281\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −435.915 −0.587058
\(83\) −1292.46 −1.70923 −0.854616 0.519260i \(-0.826208\pi\)
−0.854616 + 0.519260i \(0.826208\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 765.598 0.959961
\(87\) 0 0
\(88\) −2.03061 −0.00245981
\(89\) −1506.78 −1.79459 −0.897296 0.441428i \(-0.854472\pi\)
−0.897296 + 0.441428i \(0.854472\pi\)
\(90\) 0 0
\(91\) −514.519 −0.592706
\(92\) −396.665 −0.449513
\(93\) 0 0
\(94\) −1656.87 −1.81802
\(95\) 0 0
\(96\) 0 0
\(97\) −610.887 −0.639445 −0.319723 0.947511i \(-0.603590\pi\)
−0.319723 + 0.947511i \(0.603590\pi\)
\(98\) −1128.19 −1.16290
\(99\) 0 0
\(100\) 0 0
\(101\) −584.247 −0.575592 −0.287796 0.957692i \(-0.592923\pi\)
−0.287796 + 0.957692i \(0.592923\pi\)
\(102\) 0 0
\(103\) −1452.09 −1.38912 −0.694558 0.719437i \(-0.744400\pi\)
−0.694558 + 0.719437i \(0.744400\pi\)
\(104\) 4.09645 0.00386241
\(105\) 0 0
\(106\) 945.065 0.865970
\(107\) −361.964 −0.327032 −0.163516 0.986541i \(-0.552284\pi\)
−0.163516 + 0.986541i \(0.552284\pi\)
\(108\) 0 0
\(109\) −1073.79 −0.943582 −0.471791 0.881710i \(-0.656392\pi\)
−0.471791 + 0.881710i \(0.656392\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −500.064 −0.421890
\(113\) −1416.62 −1.17933 −0.589667 0.807646i \(-0.700741\pi\)
−0.589667 + 0.807646i \(0.700741\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2251.78 −1.80235
\(117\) 0 0
\(118\) 3134.57 2.44543
\(119\) 121.541 0.0936270
\(120\) 0 0
\(121\) −261.384 −0.196382
\(122\) −2139.51 −1.58772
\(123\) 0 0
\(124\) −1179.01 −0.853854
\(125\) 0 0
\(126\) 0 0
\(127\) 2709.85 1.89339 0.946694 0.322134i \(-0.104400\pi\)
0.946694 + 0.322134i \(0.104400\pi\)
\(128\) 7.94733 0.00548790
\(129\) 0 0
\(130\) 0 0
\(131\) −621.192 −0.414304 −0.207152 0.978309i \(-0.566419\pi\)
−0.207152 + 0.978309i \(0.566419\pi\)
\(132\) 0 0
\(133\) 402.912 0.262684
\(134\) 484.042 0.312051
\(135\) 0 0
\(136\) −0.967672 −0.000610127 0
\(137\) 1328.54 0.828502 0.414251 0.910163i \(-0.364044\pi\)
0.414251 + 0.910163i \(0.364044\pi\)
\(138\) 0 0
\(139\) 2536.79 1.54797 0.773986 0.633203i \(-0.218260\pi\)
0.773986 + 0.633203i \(0.218260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2360.58 1.39504
\(143\) −2157.79 −1.26184
\(144\) 0 0
\(145\) 0 0
\(146\) 3942.40 2.23476
\(147\) 0 0
\(148\) 978.079 0.543227
\(149\) −321.699 −0.176877 −0.0884384 0.996082i \(-0.528188\pi\)
−0.0884384 + 0.996082i \(0.528188\pi\)
\(150\) 0 0
\(151\) −3196.36 −1.72262 −0.861311 0.508078i \(-0.830356\pi\)
−0.861311 + 0.508078i \(0.830356\pi\)
\(152\) −3.20787 −0.00171180
\(153\) 0 0
\(154\) 1019.69 0.533565
\(155\) 0 0
\(156\) 0 0
\(157\) −2607.69 −1.32558 −0.662792 0.748804i \(-0.730628\pi\)
−0.662792 + 0.748804i \(0.730628\pi\)
\(158\) −2426.92 −1.22200
\(159\) 0 0
\(160\) 0 0
\(161\) −387.421 −0.189646
\(162\) 0 0
\(163\) 642.287 0.308637 0.154318 0.988021i \(-0.450682\pi\)
0.154318 + 0.988021i \(0.450682\pi\)
\(164\) −870.560 −0.414508
\(165\) 0 0
\(166\) −5167.34 −2.41605
\(167\) 1999.64 0.926569 0.463285 0.886209i \(-0.346671\pi\)
0.463285 + 0.886209i \(0.346671\pi\)
\(168\) 0 0
\(169\) 2156.03 0.981353
\(170\) 0 0
\(171\) 0 0
\(172\) 1528.97 0.677806
\(173\) −3070.57 −1.34943 −0.674714 0.738079i \(-0.735733\pi\)
−0.674714 + 0.738079i \(0.735733\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2097.17 −0.898184
\(177\) 0 0
\(178\) −6024.21 −2.53671
\(179\) 656.735 0.274227 0.137114 0.990555i \(-0.456217\pi\)
0.137114 + 0.990555i \(0.456217\pi\)
\(180\) 0 0
\(181\) −1504.70 −0.617919 −0.308960 0.951075i \(-0.599981\pi\)
−0.308960 + 0.951075i \(0.599981\pi\)
\(182\) −2057.08 −0.837806
\(183\) 0 0
\(184\) 3.08454 0.00123584
\(185\) 0 0
\(186\) 0 0
\(187\) 509.718 0.199328
\(188\) −3308.92 −1.28366
\(189\) 0 0
\(190\) 0 0
\(191\) 4819.27 1.82571 0.912853 0.408288i \(-0.133874\pi\)
0.912853 + 0.408288i \(0.133874\pi\)
\(192\) 0 0
\(193\) −4027.39 −1.50206 −0.751031 0.660267i \(-0.770443\pi\)
−0.751031 + 0.660267i \(0.770443\pi\)
\(194\) −2442.36 −0.903873
\(195\) 0 0
\(196\) −2253.10 −0.821100
\(197\) 2132.04 0.771075 0.385537 0.922692i \(-0.374016\pi\)
0.385537 + 0.922692i \(0.374016\pi\)
\(198\) 0 0
\(199\) 3024.96 1.07756 0.538779 0.842447i \(-0.318886\pi\)
0.538779 + 0.842447i \(0.318886\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2335.86 −0.813615
\(203\) −2199.31 −0.760399
\(204\) 0 0
\(205\) 0 0
\(206\) −5805.55 −1.96355
\(207\) 0 0
\(208\) 4230.74 1.41033
\(209\) 1689.74 0.559242
\(210\) 0 0
\(211\) −2191.00 −0.714856 −0.357428 0.933941i \(-0.616346\pi\)
−0.357428 + 0.933941i \(0.616346\pi\)
\(212\) 1887.38 0.611442
\(213\) 0 0
\(214\) −1447.15 −0.462268
\(215\) 0 0
\(216\) 0 0
\(217\) −1151.53 −0.360235
\(218\) −4293.08 −1.33378
\(219\) 0 0
\(220\) 0 0
\(221\) −1028.28 −0.312985
\(222\) 0 0
\(223\) 1159.78 0.348271 0.174136 0.984722i \(-0.444287\pi\)
0.174136 + 0.984722i \(0.444287\pi\)
\(224\) −1995.41 −0.595197
\(225\) 0 0
\(226\) −5663.75 −1.66702
\(227\) 408.227 0.119361 0.0596805 0.998218i \(-0.480992\pi\)
0.0596805 + 0.998218i \(0.480992\pi\)
\(228\) 0 0
\(229\) −1858.12 −0.536193 −0.268097 0.963392i \(-0.586395\pi\)
−0.268097 + 0.963392i \(0.586395\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 17.5103 0.00495519
\(233\) −2813.15 −0.790968 −0.395484 0.918473i \(-0.629423\pi\)
−0.395484 + 0.918473i \(0.629423\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6260.02 1.72666
\(237\) 0 0
\(238\) 485.927 0.132344
\(239\) −5756.48 −1.55797 −0.778987 0.627040i \(-0.784266\pi\)
−0.778987 + 0.627040i \(0.784266\pi\)
\(240\) 0 0
\(241\) 5740.04 1.53423 0.767114 0.641511i \(-0.221692\pi\)
0.767114 + 0.641511i \(0.221692\pi\)
\(242\) −1045.03 −0.277591
\(243\) 0 0
\(244\) −4272.79 −1.12105
\(245\) 0 0
\(246\) 0 0
\(247\) −3408.80 −0.878124
\(248\) 9.16816 0.00234750
\(249\) 0 0
\(250\) 0 0
\(251\) −1120.86 −0.281866 −0.140933 0.990019i \(-0.545010\pi\)
−0.140933 + 0.990019i \(0.545010\pi\)
\(252\) 0 0
\(253\) −1624.77 −0.403749
\(254\) 10834.1 2.67636
\(255\) 0 0
\(256\) 4111.86 1.00387
\(257\) 982.609 0.238496 0.119248 0.992864i \(-0.461952\pi\)
0.119248 + 0.992864i \(0.461952\pi\)
\(258\) 0 0
\(259\) 955.286 0.229184
\(260\) 0 0
\(261\) 0 0
\(262\) −2483.56 −0.585630
\(263\) 3419.85 0.801813 0.400907 0.916119i \(-0.368695\pi\)
0.400907 + 0.916119i \(0.368695\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1610.87 0.371311
\(267\) 0 0
\(268\) 966.674 0.220332
\(269\) −1425.68 −0.323142 −0.161571 0.986861i \(-0.551656\pi\)
−0.161571 + 0.986861i \(0.551656\pi\)
\(270\) 0 0
\(271\) 4234.80 0.949247 0.474624 0.880189i \(-0.342584\pi\)
0.474624 + 0.880189i \(0.342584\pi\)
\(272\) −999.394 −0.222784
\(273\) 0 0
\(274\) 5311.58 1.17111
\(275\) 0 0
\(276\) 0 0
\(277\) −3258.65 −0.706835 −0.353418 0.935466i \(-0.614981\pi\)
−0.353418 + 0.935466i \(0.614981\pi\)
\(278\) 10142.2 2.18810
\(279\) 0 0
\(280\) 0 0
\(281\) 936.334 0.198779 0.0993897 0.995049i \(-0.468311\pi\)
0.0993897 + 0.995049i \(0.468311\pi\)
\(282\) 0 0
\(283\) 1368.62 0.287477 0.143739 0.989616i \(-0.454088\pi\)
0.143739 + 0.989616i \(0.454088\pi\)
\(284\) 4714.29 0.985005
\(285\) 0 0
\(286\) −8626.98 −1.78365
\(287\) −850.272 −0.174878
\(288\) 0 0
\(289\) −4670.10 −0.950559
\(290\) 0 0
\(291\) 0 0
\(292\) 7873.31 1.57791
\(293\) −1667.96 −0.332571 −0.166285 0.986078i \(-0.553177\pi\)
−0.166285 + 0.986078i \(0.553177\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −7.60571 −0.00149349
\(297\) 0 0
\(298\) −1286.17 −0.250020
\(299\) 3277.73 0.633967
\(300\) 0 0
\(301\) 1493.34 0.285961
\(302\) −12779.2 −2.43497
\(303\) 0 0
\(304\) −3313.03 −0.625051
\(305\) 0 0
\(306\) 0 0
\(307\) 6894.86 1.28179 0.640897 0.767627i \(-0.278563\pi\)
0.640897 + 0.767627i \(0.278563\pi\)
\(308\) 2036.41 0.376738
\(309\) 0 0
\(310\) 0 0
\(311\) 697.317 0.127142 0.0635711 0.997977i \(-0.479751\pi\)
0.0635711 + 0.997977i \(0.479751\pi\)
\(312\) 0 0
\(313\) 4889.18 0.882917 0.441459 0.897282i \(-0.354461\pi\)
0.441459 + 0.897282i \(0.354461\pi\)
\(314\) −10425.7 −1.87375
\(315\) 0 0
\(316\) −4846.78 −0.862824
\(317\) 5468.56 0.968911 0.484455 0.874816i \(-0.339018\pi\)
0.484455 + 0.874816i \(0.339018\pi\)
\(318\) 0 0
\(319\) −9223.47 −1.61886
\(320\) 0 0
\(321\) 0 0
\(322\) −1548.93 −0.268070
\(323\) 805.233 0.138713
\(324\) 0 0
\(325\) 0 0
\(326\) 2567.90 0.436266
\(327\) 0 0
\(328\) 6.76962 0.00113960
\(329\) −3231.81 −0.541567
\(330\) 0 0
\(331\) −5172.64 −0.858955 −0.429478 0.903078i \(-0.641302\pi\)
−0.429478 + 0.903078i \(0.641302\pi\)
\(332\) −10319.6 −1.70591
\(333\) 0 0
\(334\) 7994.69 1.30973
\(335\) 0 0
\(336\) 0 0
\(337\) 409.004 0.0661124 0.0330562 0.999453i \(-0.489476\pi\)
0.0330562 + 0.999453i \(0.489476\pi\)
\(338\) 8619.94 1.38717
\(339\) 0 0
\(340\) 0 0
\(341\) −4829.30 −0.766925
\(342\) 0 0
\(343\) −4875.44 −0.767490
\(344\) −11.8895 −0.00186349
\(345\) 0 0
\(346\) −12276.3 −1.90745
\(347\) 8027.94 1.24197 0.620983 0.783824i \(-0.286734\pi\)
0.620983 + 0.783824i \(0.286734\pi\)
\(348\) 0 0
\(349\) −4988.97 −0.765196 −0.382598 0.923915i \(-0.624971\pi\)
−0.382598 + 0.923915i \(0.624971\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8368.38 −1.26715
\(353\) 4238.90 0.639133 0.319567 0.947564i \(-0.396463\pi\)
0.319567 + 0.947564i \(0.396463\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12030.9 −1.79111
\(357\) 0 0
\(358\) 2625.66 0.387628
\(359\) 9453.60 1.38981 0.694905 0.719101i \(-0.255446\pi\)
0.694905 + 0.719101i \(0.255446\pi\)
\(360\) 0 0
\(361\) −4189.62 −0.610820
\(362\) −6015.88 −0.873446
\(363\) 0 0
\(364\) −4108.16 −0.591555
\(365\) 0 0
\(366\) 0 0
\(367\) 2750.63 0.391231 0.195616 0.980681i \(-0.437330\pi\)
0.195616 + 0.980681i \(0.437330\pi\)
\(368\) 3185.65 0.451260
\(369\) 0 0
\(370\) 0 0
\(371\) 1843.39 0.257963
\(372\) 0 0
\(373\) −3417.55 −0.474407 −0.237204 0.971460i \(-0.576231\pi\)
−0.237204 + 0.971460i \(0.576231\pi\)
\(374\) 2037.88 0.281755
\(375\) 0 0
\(376\) 25.7308 0.00352916
\(377\) 18607.0 2.54193
\(378\) 0 0
\(379\) −9983.20 −1.35304 −0.676520 0.736424i \(-0.736513\pi\)
−0.676520 + 0.736424i \(0.736513\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19267.7 2.58069
\(383\) 13456.7 1.79531 0.897654 0.440701i \(-0.145270\pi\)
0.897654 + 0.440701i \(0.145270\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −16101.7 −2.12321
\(387\) 0 0
\(388\) −4877.61 −0.638204
\(389\) −8101.33 −1.05592 −0.527961 0.849269i \(-0.677043\pi\)
−0.527961 + 0.849269i \(0.677043\pi\)
\(390\) 0 0
\(391\) −774.273 −0.100145
\(392\) 17.5205 0.00225744
\(393\) 0 0
\(394\) 8524.03 1.08994
\(395\) 0 0
\(396\) 0 0
\(397\) −7043.15 −0.890392 −0.445196 0.895433i \(-0.646866\pi\)
−0.445196 + 0.895433i \(0.646866\pi\)
\(398\) 12094.0 1.52316
\(399\) 0 0
\(400\) 0 0
\(401\) 2716.60 0.338305 0.169153 0.985590i \(-0.445897\pi\)
0.169153 + 0.985590i \(0.445897\pi\)
\(402\) 0 0
\(403\) 9742.41 1.20423
\(404\) −4664.91 −0.574475
\(405\) 0 0
\(406\) −8792.96 −1.07485
\(407\) 4006.28 0.487922
\(408\) 0 0
\(409\) −6062.59 −0.732948 −0.366474 0.930428i \(-0.619435\pi\)
−0.366474 + 0.930428i \(0.619435\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −11594.2 −1.38642
\(413\) 6114.13 0.728467
\(414\) 0 0
\(415\) 0 0
\(416\) 16882.0 1.98968
\(417\) 0 0
\(418\) 6755.67 0.790504
\(419\) 7008.83 0.817193 0.408596 0.912715i \(-0.366018\pi\)
0.408596 + 0.912715i \(0.366018\pi\)
\(420\) 0 0
\(421\) −10812.3 −1.25168 −0.625842 0.779950i \(-0.715245\pi\)
−0.625842 + 0.779950i \(0.715245\pi\)
\(422\) −8759.74 −1.01047
\(423\) 0 0
\(424\) −14.6766 −0.00168103
\(425\) 0 0
\(426\) 0 0
\(427\) −4173.22 −0.472965
\(428\) −2890.09 −0.326397
\(429\) 0 0
\(430\) 0 0
\(431\) −8875.68 −0.991941 −0.495970 0.868339i \(-0.665188\pi\)
−0.495970 + 0.868339i \(0.665188\pi\)
\(432\) 0 0
\(433\) −7039.08 −0.781239 −0.390619 0.920552i \(-0.627739\pi\)
−0.390619 + 0.920552i \(0.627739\pi\)
\(434\) −4603.89 −0.509202
\(435\) 0 0
\(436\) −8573.65 −0.941751
\(437\) −2566.75 −0.280971
\(438\) 0 0
\(439\) −5139.05 −0.558710 −0.279355 0.960188i \(-0.590121\pi\)
−0.279355 + 0.960188i \(0.590121\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4111.13 −0.442413
\(443\) 5074.43 0.544229 0.272115 0.962265i \(-0.412277\pi\)
0.272115 + 0.962265i \(0.412277\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 4636.86 0.492291
\(447\) 0 0
\(448\) −3977.26 −0.419437
\(449\) 11783.0 1.23848 0.619238 0.785203i \(-0.287442\pi\)
0.619238 + 0.785203i \(0.287442\pi\)
\(450\) 0 0
\(451\) −3565.88 −0.372307
\(452\) −11311.0 −1.17705
\(453\) 0 0
\(454\) 1632.11 0.168720
\(455\) 0 0
\(456\) 0 0
\(457\) 11230.4 1.14953 0.574764 0.818320i \(-0.305094\pi\)
0.574764 + 0.818320i \(0.305094\pi\)
\(458\) −7428.88 −0.757923
\(459\) 0 0
\(460\) 0 0
\(461\) 7987.75 0.806999 0.403499 0.914980i \(-0.367794\pi\)
0.403499 + 0.914980i \(0.367794\pi\)
\(462\) 0 0
\(463\) 16415.3 1.64770 0.823848 0.566810i \(-0.191823\pi\)
0.823848 + 0.566810i \(0.191823\pi\)
\(464\) 18084.3 1.80936
\(465\) 0 0
\(466\) −11247.1 −1.11805
\(467\) −6002.60 −0.594790 −0.297395 0.954755i \(-0.596118\pi\)
−0.297395 + 0.954755i \(0.596118\pi\)
\(468\) 0 0
\(469\) 944.146 0.0929565
\(470\) 0 0
\(471\) 0 0
\(472\) −48.6790 −0.00474710
\(473\) 6262.76 0.608799
\(474\) 0 0
\(475\) 0 0
\(476\) 970.438 0.0934453
\(477\) 0 0
\(478\) −23014.7 −2.20224
\(479\) −2516.64 −0.240059 −0.120029 0.992770i \(-0.538299\pi\)
−0.120029 + 0.992770i \(0.538299\pi\)
\(480\) 0 0
\(481\) −8082.09 −0.766137
\(482\) 22949.0 2.16867
\(483\) 0 0
\(484\) −2087.01 −0.196000
\(485\) 0 0
\(486\) 0 0
\(487\) 3893.26 0.362260 0.181130 0.983459i \(-0.442025\pi\)
0.181130 + 0.983459i \(0.442025\pi\)
\(488\) 33.2260 0.00308211
\(489\) 0 0
\(490\) 0 0
\(491\) 8911.50 0.819084 0.409542 0.912291i \(-0.365688\pi\)
0.409542 + 0.912291i \(0.365688\pi\)
\(492\) 0 0
\(493\) −4395.38 −0.401538
\(494\) −13628.6 −1.24125
\(495\) 0 0
\(496\) 9468.71 0.857173
\(497\) 4604.42 0.415567
\(498\) 0 0
\(499\) 8639.01 0.775021 0.387510 0.921865i \(-0.373335\pi\)
0.387510 + 0.921865i \(0.373335\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −4481.28 −0.398425
\(503\) 12847.4 1.13884 0.569422 0.822046i \(-0.307167\pi\)
0.569422 + 0.822046i \(0.307167\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −6495.92 −0.570709
\(507\) 0 0
\(508\) 21636.7 1.88971
\(509\) −3956.77 −0.344560 −0.172280 0.985048i \(-0.555113\pi\)
−0.172280 + 0.985048i \(0.555113\pi\)
\(510\) 0 0
\(511\) 7689.83 0.665710
\(512\) 16375.9 1.41351
\(513\) 0 0
\(514\) 3928.53 0.337121
\(515\) 0 0
\(516\) 0 0
\(517\) −13553.6 −1.15297
\(518\) 3819.29 0.323957
\(519\) 0 0
\(520\) 0 0
\(521\) 6392.00 0.537502 0.268751 0.963210i \(-0.413389\pi\)
0.268751 + 0.963210i \(0.413389\pi\)
\(522\) 0 0
\(523\) −13029.6 −1.08938 −0.544690 0.838638i \(-0.683353\pi\)
−0.544690 + 0.838638i \(0.683353\pi\)
\(524\) −4959.89 −0.413500
\(525\) 0 0
\(526\) 13672.8 1.13338
\(527\) −2301.37 −0.190226
\(528\) 0 0
\(529\) −9698.94 −0.797151
\(530\) 0 0
\(531\) 0 0
\(532\) 3217.04 0.262174
\(533\) 7193.64 0.584598
\(534\) 0 0
\(535\) 0 0
\(536\) −7.51702 −0.000605757 0
\(537\) 0 0
\(538\) −5699.95 −0.456770
\(539\) −9228.86 −0.737505
\(540\) 0 0
\(541\) −9481.72 −0.753514 −0.376757 0.926312i \(-0.622961\pi\)
−0.376757 + 0.926312i \(0.622961\pi\)
\(542\) 16931.0 1.34179
\(543\) 0 0
\(544\) −3987.90 −0.314301
\(545\) 0 0
\(546\) 0 0
\(547\) 22132.1 1.72998 0.864991 0.501788i \(-0.167324\pi\)
0.864991 + 0.501788i \(0.167324\pi\)
\(548\) 10607.7 0.826893
\(549\) 0 0
\(550\) 0 0
\(551\) −14570.9 −1.12657
\(552\) 0 0
\(553\) −4733.83 −0.364019
\(554\) −13028.3 −0.999131
\(555\) 0 0
\(556\) 20255.0 1.54497
\(557\) 4426.25 0.336708 0.168354 0.985727i \(-0.446155\pi\)
0.168354 + 0.985727i \(0.446155\pi\)
\(558\) 0 0
\(559\) −12634.2 −0.955939
\(560\) 0 0
\(561\) 0 0
\(562\) 3743.52 0.280980
\(563\) 3173.26 0.237543 0.118772 0.992922i \(-0.462104\pi\)
0.118772 + 0.992922i \(0.462104\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 5471.83 0.406357
\(567\) 0 0
\(568\) −36.6591 −0.00270807
\(569\) 3665.79 0.270084 0.135042 0.990840i \(-0.456883\pi\)
0.135042 + 0.990840i \(0.456883\pi\)
\(570\) 0 0
\(571\) 9022.74 0.661279 0.330639 0.943757i \(-0.392736\pi\)
0.330639 + 0.943757i \(0.392736\pi\)
\(572\) −17228.8 −1.25940
\(573\) 0 0
\(574\) −3399.44 −0.247195
\(575\) 0 0
\(576\) 0 0
\(577\) −16600.1 −1.19769 −0.598847 0.800863i \(-0.704374\pi\)
−0.598847 + 0.800863i \(0.704374\pi\)
\(578\) −18671.3 −1.34364
\(579\) 0 0
\(580\) 0 0
\(581\) −10079.1 −0.719713
\(582\) 0 0
\(583\) 7730.84 0.549191
\(584\) −61.2242 −0.00433815
\(585\) 0 0
\(586\) −6668.60 −0.470098
\(587\) 18193.9 1.27929 0.639645 0.768671i \(-0.279082\pi\)
0.639645 + 0.768671i \(0.279082\pi\)
\(588\) 0 0
\(589\) −7629.14 −0.533707
\(590\) 0 0
\(591\) 0 0
\(592\) −7855.04 −0.545338
\(593\) −448.648 −0.0310688 −0.0155344 0.999879i \(-0.504945\pi\)
−0.0155344 + 0.999879i \(0.504945\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2568.60 −0.176533
\(597\) 0 0
\(598\) 13104.6 0.896130
\(599\) −8787.84 −0.599435 −0.299717 0.954028i \(-0.596892\pi\)
−0.299717 + 0.954028i \(0.596892\pi\)
\(600\) 0 0
\(601\) 9787.87 0.664319 0.332159 0.943223i \(-0.392223\pi\)
0.332159 + 0.943223i \(0.392223\pi\)
\(602\) 5970.44 0.404214
\(603\) 0 0
\(604\) −25521.2 −1.71928
\(605\) 0 0
\(606\) 0 0
\(607\) −12769.7 −0.853883 −0.426942 0.904279i \(-0.640409\pi\)
−0.426942 + 0.904279i \(0.640409\pi\)
\(608\) −13220.0 −0.881815
\(609\) 0 0
\(610\) 0 0
\(611\) 27342.4 1.81040
\(612\) 0 0
\(613\) 22910.6 1.50954 0.754771 0.655988i \(-0.227748\pi\)
0.754771 + 0.655988i \(0.227748\pi\)
\(614\) 27566.1 1.81185
\(615\) 0 0
\(616\) −15.8355 −0.00103576
\(617\) 22841.4 1.49038 0.745188 0.666854i \(-0.232360\pi\)
0.745188 + 0.666854i \(0.232360\pi\)
\(618\) 0 0
\(619\) −495.421 −0.0321691 −0.0160845 0.999871i \(-0.505120\pi\)
−0.0160845 + 0.999871i \(0.505120\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2787.92 0.179719
\(623\) −11750.5 −0.755656
\(624\) 0 0
\(625\) 0 0
\(626\) 19547.2 1.24803
\(627\) 0 0
\(628\) −20821.0 −1.32301
\(629\) 1909.17 0.121023
\(630\) 0 0
\(631\) 25481.5 1.60761 0.803807 0.594890i \(-0.202805\pi\)
0.803807 + 0.594890i \(0.202805\pi\)
\(632\) 37.6894 0.00237216
\(633\) 0 0
\(634\) 21863.6 1.36958
\(635\) 0 0
\(636\) 0 0
\(637\) 18617.9 1.15803
\(638\) −36876.0 −2.28830
\(639\) 0 0
\(640\) 0 0
\(641\) −2913.25 −0.179511 −0.0897555 0.995964i \(-0.528609\pi\)
−0.0897555 + 0.995964i \(0.528609\pi\)
\(642\) 0 0
\(643\) 15121.2 0.927404 0.463702 0.885991i \(-0.346521\pi\)
0.463702 + 0.885991i \(0.346521\pi\)
\(644\) −3093.35 −0.189278
\(645\) 0 0
\(646\) 3219.37 0.196075
\(647\) 8436.06 0.512605 0.256303 0.966597i \(-0.417496\pi\)
0.256303 + 0.966597i \(0.417496\pi\)
\(648\) 0 0
\(649\) 25641.5 1.55087
\(650\) 0 0
\(651\) 0 0
\(652\) 5128.32 0.308037
\(653\) −17146.6 −1.02756 −0.513780 0.857922i \(-0.671755\pi\)
−0.513780 + 0.857922i \(0.671755\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6991.54 0.416119
\(657\) 0 0
\(658\) −12921.0 −0.765519
\(659\) 1774.60 0.104900 0.0524498 0.998624i \(-0.483297\pi\)
0.0524498 + 0.998624i \(0.483297\pi\)
\(660\) 0 0
\(661\) −7159.71 −0.421302 −0.210651 0.977561i \(-0.567558\pi\)
−0.210651 + 0.977561i \(0.567558\pi\)
\(662\) −20680.5 −1.21416
\(663\) 0 0
\(664\) 80.2473 0.00469006
\(665\) 0 0
\(666\) 0 0
\(667\) 14010.6 0.813335
\(668\) 15966.1 0.924771
\(669\) 0 0
\(670\) 0 0
\(671\) −17501.7 −1.00692
\(672\) 0 0
\(673\) −15556.7 −0.891034 −0.445517 0.895273i \(-0.646980\pi\)
−0.445517 + 0.895273i \(0.646980\pi\)
\(674\) 1635.22 0.0934516
\(675\) 0 0
\(676\) 17214.8 0.979448
\(677\) 4461.98 0.253306 0.126653 0.991947i \(-0.459577\pi\)
0.126653 + 0.991947i \(0.459577\pi\)
\(678\) 0 0
\(679\) −4763.94 −0.269254
\(680\) 0 0
\(681\) 0 0
\(682\) −19307.8 −1.08407
\(683\) 33470.5 1.87513 0.937566 0.347808i \(-0.113074\pi\)
0.937566 + 0.347808i \(0.113074\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −19492.3 −1.08487
\(687\) 0 0
\(688\) −12279.3 −0.680440
\(689\) −15595.8 −0.862342
\(690\) 0 0
\(691\) −20280.9 −1.11653 −0.558264 0.829664i \(-0.688532\pi\)
−0.558264 + 0.829664i \(0.688532\pi\)
\(692\) −24516.9 −1.34681
\(693\) 0 0
\(694\) 32096.2 1.75555
\(695\) 0 0
\(696\) 0 0
\(697\) −1699.29 −0.0923463
\(698\) −19946.2 −1.08163
\(699\) 0 0
\(700\) 0 0
\(701\) 3762.36 0.202714 0.101357 0.994850i \(-0.467682\pi\)
0.101357 + 0.994850i \(0.467682\pi\)
\(702\) 0 0
\(703\) 6328.97 0.339547
\(704\) −16679.9 −0.892964
\(705\) 0 0
\(706\) 16947.4 0.903432
\(707\) −4556.19 −0.242367
\(708\) 0 0
\(709\) 1643.51 0.0870570 0.0435285 0.999052i \(-0.486140\pi\)
0.0435285 + 0.999052i \(0.486140\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 93.5541 0.00492428
\(713\) 7335.81 0.385313
\(714\) 0 0
\(715\) 0 0
\(716\) 5243.68 0.273695
\(717\) 0 0
\(718\) 37796.0 1.96453
\(719\) 3748.68 0.194440 0.0972200 0.995263i \(-0.469005\pi\)
0.0972200 + 0.995263i \(0.469005\pi\)
\(720\) 0 0
\(721\) −11324.0 −0.584921
\(722\) −16750.3 −0.863411
\(723\) 0 0
\(724\) −12014.2 −0.616720
\(725\) 0 0
\(726\) 0 0
\(727\) 12221.3 0.623470 0.311735 0.950169i \(-0.399090\pi\)
0.311735 + 0.950169i \(0.399090\pi\)
\(728\) 31.9458 0.00162636
\(729\) 0 0
\(730\) 0 0
\(731\) 2984.48 0.151005
\(732\) 0 0
\(733\) −31862.7 −1.60556 −0.802781 0.596274i \(-0.796647\pi\)
−0.802781 + 0.596274i \(0.796647\pi\)
\(734\) 10997.2 0.553016
\(735\) 0 0
\(736\) 12711.7 0.636632
\(737\) 3959.57 0.197900
\(738\) 0 0
\(739\) 9905.64 0.493078 0.246539 0.969133i \(-0.420707\pi\)
0.246539 + 0.969133i \(0.420707\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 7369.99 0.364637
\(743\) 29282.9 1.44588 0.722938 0.690913i \(-0.242791\pi\)
0.722938 + 0.690913i \(0.242791\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −13663.6 −0.670587
\(747\) 0 0
\(748\) 4069.83 0.198941
\(749\) −2822.74 −0.137705
\(750\) 0 0
\(751\) −26361.7 −1.28090 −0.640448 0.768001i \(-0.721251\pi\)
−0.640448 + 0.768001i \(0.721251\pi\)
\(752\) 26574.3 1.28865
\(753\) 0 0
\(754\) 74391.9 3.59309
\(755\) 0 0
\(756\) 0 0
\(757\) 5667.66 0.272120 0.136060 0.990701i \(-0.456556\pi\)
0.136060 + 0.990701i \(0.456556\pi\)
\(758\) −39913.4 −1.91256
\(759\) 0 0
\(760\) 0 0
\(761\) −36532.3 −1.74020 −0.870101 0.492874i \(-0.835946\pi\)
−0.870101 + 0.492874i \(0.835946\pi\)
\(762\) 0 0
\(763\) −8373.85 −0.397318
\(764\) 38479.3 1.82216
\(765\) 0 0
\(766\) 53800.5 2.53772
\(767\) −51728.0 −2.43519
\(768\) 0 0
\(769\) 40900.2 1.91795 0.958973 0.283498i \(-0.0914949\pi\)
0.958973 + 0.283498i \(0.0914949\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −32156.6 −1.49915
\(773\) −28081.8 −1.30664 −0.653319 0.757083i \(-0.726624\pi\)
−0.653319 + 0.757083i \(0.726624\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 37.9292 0.00175461
\(777\) 0 0
\(778\) −32389.6 −1.49257
\(779\) −5633.23 −0.259091
\(780\) 0 0
\(781\) 19310.1 0.884723
\(782\) −3095.59 −0.141558
\(783\) 0 0
\(784\) 18094.8 0.824291
\(785\) 0 0
\(786\) 0 0
\(787\) −41047.8 −1.85921 −0.929605 0.368558i \(-0.879852\pi\)
−0.929605 + 0.368558i \(0.879852\pi\)
\(788\) 17023.2 0.769578
\(789\) 0 0
\(790\) 0 0
\(791\) −11047.4 −0.496587
\(792\) 0 0
\(793\) 35307.0 1.58107
\(794\) −28158.9 −1.25859
\(795\) 0 0
\(796\) 24152.7 1.07547
\(797\) 3768.31 0.167478 0.0837392 0.996488i \(-0.473314\pi\)
0.0837392 + 0.996488i \(0.473314\pi\)
\(798\) 0 0
\(799\) −6458.88 −0.285981
\(800\) 0 0
\(801\) 0 0
\(802\) 10861.1 0.478203
\(803\) 32249.7 1.41727
\(804\) 0 0
\(805\) 0 0
\(806\) 38950.7 1.70221
\(807\) 0 0
\(808\) 36.2751 0.00157940
\(809\) 24285.5 1.05542 0.527708 0.849426i \(-0.323051\pi\)
0.527708 + 0.849426i \(0.323051\pi\)
\(810\) 0 0
\(811\) −42698.1 −1.84875 −0.924374 0.381487i \(-0.875412\pi\)
−0.924374 + 0.381487i \(0.875412\pi\)
\(812\) −17560.3 −0.758923
\(813\) 0 0
\(814\) 16017.4 0.689691
\(815\) 0 0
\(816\) 0 0
\(817\) 9893.67 0.423667
\(818\) −24238.6 −1.03604
\(819\) 0 0
\(820\) 0 0
\(821\) −9160.55 −0.389410 −0.194705 0.980862i \(-0.562375\pi\)
−0.194705 + 0.980862i \(0.562375\pi\)
\(822\) 0 0
\(823\) −37097.7 −1.57126 −0.785629 0.618697i \(-0.787661\pi\)
−0.785629 + 0.618697i \(0.787661\pi\)
\(824\) 90.1585 0.00381167
\(825\) 0 0
\(826\) 24444.7 1.02971
\(827\) −24878.9 −1.04610 −0.523050 0.852302i \(-0.675206\pi\)
−0.523050 + 0.852302i \(0.675206\pi\)
\(828\) 0 0
\(829\) −8788.86 −0.368214 −0.184107 0.982906i \(-0.558939\pi\)
−0.184107 + 0.982906i \(0.558939\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 33649.2 1.40214
\(833\) −4397.95 −0.182929
\(834\) 0 0
\(835\) 0 0
\(836\) 13491.7 0.558157
\(837\) 0 0
\(838\) 28021.7 1.15512
\(839\) 6041.34 0.248594 0.124297 0.992245i \(-0.460332\pi\)
0.124297 + 0.992245i \(0.460332\pi\)
\(840\) 0 0
\(841\) 55146.5 2.26112
\(842\) −43228.2 −1.76929
\(843\) 0 0
\(844\) −17494.0 −0.713468
\(845\) 0 0
\(846\) 0 0
\(847\) −2038.38 −0.0826912
\(848\) −15157.7 −0.613818
\(849\) 0 0
\(850\) 0 0
\(851\) −6085.63 −0.245138
\(852\) 0 0
\(853\) −19541.8 −0.784405 −0.392203 0.919879i \(-0.628287\pi\)
−0.392203 + 0.919879i \(0.628287\pi\)
\(854\) −16684.8 −0.668549
\(855\) 0 0
\(856\) 22.4739 0.000897361 0
\(857\) 34985.7 1.39450 0.697252 0.716826i \(-0.254406\pi\)
0.697252 + 0.716826i \(0.254406\pi\)
\(858\) 0 0
\(859\) −3118.04 −0.123849 −0.0619244 0.998081i \(-0.519724\pi\)
−0.0619244 + 0.998081i \(0.519724\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −35485.5 −1.40214
\(863\) −8308.05 −0.327705 −0.163852 0.986485i \(-0.552392\pi\)
−0.163852 + 0.986485i \(0.552392\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −28142.6 −1.10430
\(867\) 0 0
\(868\) −9194.36 −0.359536
\(869\) −19852.8 −0.774981
\(870\) 0 0
\(871\) −7987.85 −0.310744
\(872\) 66.6702 0.00258915
\(873\) 0 0
\(874\) −10262.0 −0.397160
\(875\) 0 0
\(876\) 0 0
\(877\) 31065.2 1.19612 0.598059 0.801452i \(-0.295939\pi\)
0.598059 + 0.801452i \(0.295939\pi\)
\(878\) −20546.2 −0.789751
\(879\) 0 0
\(880\) 0 0
\(881\) 27176.4 1.03927 0.519634 0.854389i \(-0.326068\pi\)
0.519634 + 0.854389i \(0.326068\pi\)
\(882\) 0 0
\(883\) 17811.1 0.678813 0.339406 0.940640i \(-0.389774\pi\)
0.339406 + 0.940640i \(0.389774\pi\)
\(884\) −8210.29 −0.312378
\(885\) 0 0
\(886\) 20287.9 0.769283
\(887\) −9708.93 −0.367524 −0.183762 0.982971i \(-0.558828\pi\)
−0.183762 + 0.982971i \(0.558828\pi\)
\(888\) 0 0
\(889\) 21132.5 0.797256
\(890\) 0 0
\(891\) 0 0
\(892\) 9260.22 0.347595
\(893\) −21411.4 −0.802359
\(894\) 0 0
\(895\) 0 0
\(896\) 61.9764 0.00231081
\(897\) 0 0
\(898\) 47109.2 1.75062
\(899\) 41643.8 1.54494
\(900\) 0 0
\(901\) 3684.08 0.136220
\(902\) −14256.6 −0.526266
\(903\) 0 0
\(904\) 87.9562 0.00323604
\(905\) 0 0
\(906\) 0 0
\(907\) −1793.35 −0.0656530 −0.0328265 0.999461i \(-0.510451\pi\)
−0.0328265 + 0.999461i \(0.510451\pi\)
\(908\) 3259.47 0.119129
\(909\) 0 0
\(910\) 0 0
\(911\) −40163.5 −1.46068 −0.730338 0.683086i \(-0.760638\pi\)
−0.730338 + 0.683086i \(0.760638\pi\)
\(912\) 0 0
\(913\) −42270.0 −1.53224
\(914\) 44899.6 1.62489
\(915\) 0 0
\(916\) −14836.1 −0.535152
\(917\) −4844.30 −0.174453
\(918\) 0 0
\(919\) −19871.3 −0.713268 −0.356634 0.934244i \(-0.616076\pi\)
−0.356634 + 0.934244i \(0.616076\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 31935.5 1.14071
\(923\) −38955.2 −1.38920
\(924\) 0 0
\(925\) 0 0
\(926\) 65629.3 2.32906
\(927\) 0 0
\(928\) 72161.9 2.55262
\(929\) 3690.27 0.130327 0.0651636 0.997875i \(-0.479243\pi\)
0.0651636 + 0.997875i \(0.479243\pi\)
\(930\) 0 0
\(931\) −14579.4 −0.513233
\(932\) −22461.5 −0.789432
\(933\) 0 0
\(934\) −23998.7 −0.840752
\(935\) 0 0
\(936\) 0 0
\(937\) −15191.5 −0.529653 −0.264826 0.964296i \(-0.585315\pi\)
−0.264826 + 0.964296i \(0.585315\pi\)
\(938\) 3774.75 0.131397
\(939\) 0 0
\(940\) 0 0
\(941\) 29396.9 1.01840 0.509198 0.860650i \(-0.329942\pi\)
0.509198 + 0.860650i \(0.329942\pi\)
\(942\) 0 0
\(943\) 5416.64 0.187052
\(944\) −50274.8 −1.73337
\(945\) 0 0
\(946\) 25038.9 0.860554
\(947\) 1602.80 0.0549991 0.0274995 0.999622i \(-0.491246\pi\)
0.0274995 + 0.999622i \(0.491246\pi\)
\(948\) 0 0
\(949\) −65059.0 −2.22540
\(950\) 0 0
\(951\) 0 0
\(952\) −7.54629 −0.000256908 0
\(953\) −14868.1 −0.505377 −0.252689 0.967548i \(-0.581315\pi\)
−0.252689 + 0.967548i \(0.581315\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −45962.4 −1.55495
\(957\) 0 0
\(958\) −10061.7 −0.339329
\(959\) 10360.5 0.348860
\(960\) 0 0
\(961\) −7986.78 −0.268094
\(962\) −32312.7 −1.08295
\(963\) 0 0
\(964\) 45831.2 1.53125
\(965\) 0 0
\(966\) 0 0
\(967\) −44013.7 −1.46369 −0.731843 0.681474i \(-0.761339\pi\)
−0.731843 + 0.681474i \(0.761339\pi\)
\(968\) 16.2290 0.000538862 0
\(969\) 0 0
\(970\) 0 0
\(971\) 50954.6 1.68405 0.842024 0.539440i \(-0.181364\pi\)
0.842024 + 0.539440i \(0.181364\pi\)
\(972\) 0 0
\(973\) 19782.9 0.651810
\(974\) 15565.5 0.512064
\(975\) 0 0
\(976\) 34315.2 1.12541
\(977\) −18626.3 −0.609935 −0.304968 0.952363i \(-0.598646\pi\)
−0.304968 + 0.952363i \(0.598646\pi\)
\(978\) 0 0
\(979\) −49279.3 −1.60876
\(980\) 0 0
\(981\) 0 0
\(982\) 35628.7 1.15780
\(983\) −11506.9 −0.373361 −0.186681 0.982421i \(-0.559773\pi\)
−0.186681 + 0.982421i \(0.559773\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −17573.0 −0.567584
\(987\) 0 0
\(988\) −27217.5 −0.876420
\(989\) −9513.27 −0.305869
\(990\) 0 0
\(991\) 31332.2 1.00434 0.502170 0.864769i \(-0.332535\pi\)
0.502170 + 0.864769i \(0.332535\pi\)
\(992\) 37783.1 1.20929
\(993\) 0 0
\(994\) 18408.8 0.587415
\(995\) 0 0
\(996\) 0 0
\(997\) 29027.6 0.922080 0.461040 0.887379i \(-0.347476\pi\)
0.461040 + 0.887379i \(0.347476\pi\)
\(998\) 34539.3 1.09551
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.bd.1.7 8
3.2 odd 2 2025.4.a.bc.1.2 8
5.2 odd 4 405.4.b.c.244.7 yes 8
5.3 odd 4 405.4.b.c.244.2 yes 8
5.4 even 2 inner 2025.4.a.bd.1.2 8
15.2 even 4 405.4.b.b.244.2 8
15.8 even 4 405.4.b.b.244.7 yes 8
15.14 odd 2 2025.4.a.bc.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.4.b.b.244.2 8 15.2 even 4
405.4.b.b.244.7 yes 8 15.8 even 4
405.4.b.c.244.2 yes 8 5.3 odd 4
405.4.b.c.244.7 yes 8 5.2 odd 4
2025.4.a.bc.1.2 8 3.2 odd 2
2025.4.a.bc.1.7 8 15.14 odd 2
2025.4.a.bd.1.2 8 5.4 even 2 inner
2025.4.a.bd.1.7 8 1.1 even 1 trivial