Properties

Label 2025.4.a.bd.1.3
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,24,0,0,0,0,0,0,0,0,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} + 567x^{4} - 2024x^{2} + 1900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 405)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.85698\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.85698 q^{2} -4.55164 q^{4} -1.02402 q^{7} +23.3081 q^{8} -16.1402 q^{11} -3.05437 q^{13} +1.90159 q^{14} -6.86951 q^{16} -69.2824 q^{17} -12.6207 q^{19} +29.9720 q^{22} +56.6563 q^{23} +5.67190 q^{26} +4.66098 q^{28} +196.187 q^{29} +213.360 q^{31} -173.708 q^{32} +128.656 q^{34} -299.951 q^{37} +23.4363 q^{38} -139.067 q^{41} +475.161 q^{43} +73.4644 q^{44} -105.209 q^{46} -193.371 q^{47} -341.951 q^{49} +13.9024 q^{52} +214.125 q^{53} -23.8680 q^{56} -364.315 q^{58} -149.848 q^{59} -495.145 q^{61} -396.204 q^{62} +377.528 q^{64} +761.598 q^{67} +315.348 q^{68} -736.184 q^{71} -701.058 q^{73} +557.001 q^{74} +57.4446 q^{76} +16.5279 q^{77} +780.649 q^{79} +258.245 q^{82} +961.505 q^{83} -882.362 q^{86} -376.198 q^{88} +520.561 q^{89} +3.12775 q^{91} -257.879 q^{92} +359.086 q^{94} -1155.19 q^{97} +634.996 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{4} + 42 q^{14} + 4 q^{16} - 118 q^{19} - 36 q^{26} - 318 q^{29} - 416 q^{31} - 638 q^{34} + 486 q^{41} - 852 q^{44} - 598 q^{46} - 350 q^{49} + 1530 q^{56} + 1146 q^{59} - 398 q^{61} - 1640 q^{64}+ \cdots - 1238 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85698 −0.656540 −0.328270 0.944584i \(-0.606466\pi\)
−0.328270 + 0.944584i \(0.606466\pi\)
\(3\) 0 0
\(4\) −4.55164 −0.568955
\(5\) 0 0
\(6\) 0 0
\(7\) −1.02402 −0.0552920 −0.0276460 0.999618i \(-0.508801\pi\)
−0.0276460 + 0.999618i \(0.508801\pi\)
\(8\) 23.3081 1.03008
\(9\) 0 0
\(10\) 0 0
\(11\) −16.1402 −0.442405 −0.221203 0.975228i \(-0.570998\pi\)
−0.221203 + 0.975228i \(0.570998\pi\)
\(12\) 0 0
\(13\) −3.05437 −0.0651639 −0.0325819 0.999469i \(-0.510373\pi\)
−0.0325819 + 0.999469i \(0.510373\pi\)
\(14\) 1.90159 0.0363015
\(15\) 0 0
\(16\) −6.86951 −0.107336
\(17\) −69.2824 −0.988438 −0.494219 0.869337i \(-0.664546\pi\)
−0.494219 + 0.869337i \(0.664546\pi\)
\(18\) 0 0
\(19\) −12.6207 −0.152388 −0.0761941 0.997093i \(-0.524277\pi\)
−0.0761941 + 0.997093i \(0.524277\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 29.9720 0.290457
\(23\) 56.6563 0.513637 0.256819 0.966460i \(-0.417326\pi\)
0.256819 + 0.966460i \(0.417326\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 5.67190 0.0427827
\(27\) 0 0
\(28\) 4.66098 0.0314587
\(29\) 196.187 1.25624 0.628121 0.778116i \(-0.283824\pi\)
0.628121 + 0.778116i \(0.283824\pi\)
\(30\) 0 0
\(31\) 213.360 1.23615 0.618073 0.786121i \(-0.287914\pi\)
0.618073 + 0.786121i \(0.287914\pi\)
\(32\) −173.708 −0.959612
\(33\) 0 0
\(34\) 128.656 0.648950
\(35\) 0 0
\(36\) 0 0
\(37\) −299.951 −1.33275 −0.666373 0.745619i \(-0.732154\pi\)
−0.666373 + 0.745619i \(0.732154\pi\)
\(38\) 23.4363 0.100049
\(39\) 0 0
\(40\) 0 0
\(41\) −139.067 −0.529723 −0.264862 0.964286i \(-0.585326\pi\)
−0.264862 + 0.964286i \(0.585326\pi\)
\(42\) 0 0
\(43\) 475.161 1.68515 0.842573 0.538582i \(-0.181040\pi\)
0.842573 + 0.538582i \(0.181040\pi\)
\(44\) 73.4644 0.251708
\(45\) 0 0
\(46\) −105.209 −0.337224
\(47\) −193.371 −0.600130 −0.300065 0.953919i \(-0.597008\pi\)
−0.300065 + 0.953919i \(0.597008\pi\)
\(48\) 0 0
\(49\) −341.951 −0.996943
\(50\) 0 0
\(51\) 0 0
\(52\) 13.9024 0.0370753
\(53\) 214.125 0.554950 0.277475 0.960733i \(-0.410502\pi\)
0.277475 + 0.960733i \(0.410502\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −23.8680 −0.0569553
\(57\) 0 0
\(58\) −364.315 −0.824774
\(59\) −149.848 −0.330653 −0.165326 0.986239i \(-0.552868\pi\)
−0.165326 + 0.986239i \(0.552868\pi\)
\(60\) 0 0
\(61\) −495.145 −1.03929 −0.519646 0.854382i \(-0.673936\pi\)
−0.519646 + 0.854382i \(0.673936\pi\)
\(62\) −396.204 −0.811580
\(63\) 0 0
\(64\) 377.528 0.737360
\(65\) 0 0
\(66\) 0 0
\(67\) 761.598 1.38872 0.694358 0.719630i \(-0.255689\pi\)
0.694358 + 0.719630i \(0.255689\pi\)
\(68\) 315.348 0.562377
\(69\) 0 0
\(70\) 0 0
\(71\) −736.184 −1.23055 −0.615274 0.788313i \(-0.710955\pi\)
−0.615274 + 0.788313i \(0.710955\pi\)
\(72\) 0 0
\(73\) −701.058 −1.12401 −0.562004 0.827135i \(-0.689969\pi\)
−0.562004 + 0.827135i \(0.689969\pi\)
\(74\) 557.001 0.875001
\(75\) 0 0
\(76\) 57.4446 0.0867020
\(77\) 16.5279 0.0244615
\(78\) 0 0
\(79\) 780.649 1.11177 0.555886 0.831259i \(-0.312379\pi\)
0.555886 + 0.831259i \(0.312379\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 258.245 0.347785
\(83\) 961.505 1.27155 0.635776 0.771873i \(-0.280680\pi\)
0.635776 + 0.771873i \(0.280680\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −882.362 −1.10637
\(87\) 0 0
\(88\) −376.198 −0.455714
\(89\) 520.561 0.619993 0.309996 0.950738i \(-0.399672\pi\)
0.309996 + 0.950738i \(0.399672\pi\)
\(90\) 0 0
\(91\) 3.12775 0.00360304
\(92\) −257.879 −0.292236
\(93\) 0 0
\(94\) 359.086 0.394010
\(95\) 0 0
\(96\) 0 0
\(97\) −1155.19 −1.20919 −0.604596 0.796532i \(-0.706666\pi\)
−0.604596 + 0.796532i \(0.706666\pi\)
\(98\) 634.996 0.654533
\(99\) 0 0
\(100\) 0 0
\(101\) 1388.75 1.36817 0.684086 0.729401i \(-0.260201\pi\)
0.684086 + 0.729401i \(0.260201\pi\)
\(102\) 0 0
\(103\) 1003.13 0.959622 0.479811 0.877372i \(-0.340705\pi\)
0.479811 + 0.877372i \(0.340705\pi\)
\(104\) −71.1916 −0.0671242
\(105\) 0 0
\(106\) −397.625 −0.364347
\(107\) 1626.48 1.46952 0.734758 0.678329i \(-0.237296\pi\)
0.734758 + 0.678329i \(0.237296\pi\)
\(108\) 0 0
\(109\) −268.408 −0.235861 −0.117930 0.993022i \(-0.537626\pi\)
−0.117930 + 0.993022i \(0.537626\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 7.03453 0.00593483
\(113\) 1190.42 0.991022 0.495511 0.868602i \(-0.334981\pi\)
0.495511 + 0.868602i \(0.334981\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −892.972 −0.714745
\(117\) 0 0
\(118\) 278.264 0.217087
\(119\) 70.9468 0.0546528
\(120\) 0 0
\(121\) −1070.49 −0.804278
\(122\) 919.472 0.682337
\(123\) 0 0
\(124\) −971.135 −0.703311
\(125\) 0 0
\(126\) 0 0
\(127\) 396.224 0.276844 0.138422 0.990373i \(-0.455797\pi\)
0.138422 + 0.990373i \(0.455797\pi\)
\(128\) 688.605 0.475505
\(129\) 0 0
\(130\) 0 0
\(131\) 995.717 0.664093 0.332046 0.943263i \(-0.392261\pi\)
0.332046 + 0.943263i \(0.392261\pi\)
\(132\) 0 0
\(133\) 12.9238 0.00842585
\(134\) −1414.27 −0.911748
\(135\) 0 0
\(136\) −1614.84 −1.01817
\(137\) 2198.88 1.37126 0.685631 0.727949i \(-0.259526\pi\)
0.685631 + 0.727949i \(0.259526\pi\)
\(138\) 0 0
\(139\) −475.975 −0.290444 −0.145222 0.989399i \(-0.546390\pi\)
−0.145222 + 0.989399i \(0.546390\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1367.08 0.807905
\(143\) 49.2982 0.0288288
\(144\) 0 0
\(145\) 0 0
\(146\) 1301.85 0.737957
\(147\) 0 0
\(148\) 1365.27 0.758271
\(149\) −1440.38 −0.791948 −0.395974 0.918262i \(-0.629593\pi\)
−0.395974 + 0.918262i \(0.629593\pi\)
\(150\) 0 0
\(151\) −347.351 −0.187199 −0.0935994 0.995610i \(-0.529837\pi\)
−0.0935994 + 0.995610i \(0.529837\pi\)
\(152\) −294.163 −0.156972
\(153\) 0 0
\(154\) −30.6920 −0.0160599
\(155\) 0 0
\(156\) 0 0
\(157\) −520.092 −0.264381 −0.132191 0.991224i \(-0.542201\pi\)
−0.132191 + 0.991224i \(0.542201\pi\)
\(158\) −1449.65 −0.729923
\(159\) 0 0
\(160\) 0 0
\(161\) −58.0174 −0.0284001
\(162\) 0 0
\(163\) −3756.90 −1.80530 −0.902648 0.430380i \(-0.858380\pi\)
−0.902648 + 0.430380i \(0.858380\pi\)
\(164\) 632.984 0.301389
\(165\) 0 0
\(166\) −1785.49 −0.834826
\(167\) 936.744 0.434056 0.217028 0.976165i \(-0.430364\pi\)
0.217028 + 0.976165i \(0.430364\pi\)
\(168\) 0 0
\(169\) −2187.67 −0.995754
\(170\) 0 0
\(171\) 0 0
\(172\) −2162.76 −0.958772
\(173\) −2493.98 −1.09603 −0.548017 0.836467i \(-0.684617\pi\)
−0.548017 + 0.836467i \(0.684617\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 110.875 0.0474860
\(177\) 0 0
\(178\) −966.670 −0.407050
\(179\) −2769.95 −1.15662 −0.578312 0.815816i \(-0.696288\pi\)
−0.578312 + 0.815816i \(0.696288\pi\)
\(180\) 0 0
\(181\) −477.139 −0.195942 −0.0979708 0.995189i \(-0.531235\pi\)
−0.0979708 + 0.995189i \(0.531235\pi\)
\(182\) −5.80815 −0.00236554
\(183\) 0 0
\(184\) 1320.55 0.529089
\(185\) 0 0
\(186\) 0 0
\(187\) 1118.23 0.437290
\(188\) 880.156 0.341447
\(189\) 0 0
\(190\) 0 0
\(191\) 5099.95 1.93204 0.966019 0.258469i \(-0.0832181\pi\)
0.966019 + 0.258469i \(0.0832181\pi\)
\(192\) 0 0
\(193\) 4538.00 1.69250 0.846250 0.532786i \(-0.178855\pi\)
0.846250 + 0.532786i \(0.178855\pi\)
\(194\) 2145.16 0.793884
\(195\) 0 0
\(196\) 1556.44 0.567215
\(197\) −835.536 −0.302180 −0.151090 0.988520i \(-0.548278\pi\)
−0.151090 + 0.988520i \(0.548278\pi\)
\(198\) 0 0
\(199\) −5045.21 −1.79721 −0.898607 0.438753i \(-0.855420\pi\)
−0.898607 + 0.438753i \(0.855420\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2578.87 −0.898261
\(203\) −200.900 −0.0694602
\(204\) 0 0
\(205\) 0 0
\(206\) −1862.78 −0.630031
\(207\) 0 0
\(208\) 20.9820 0.00699444
\(209\) 203.700 0.0674173
\(210\) 0 0
\(211\) −4048.83 −1.32101 −0.660504 0.750822i \(-0.729658\pi\)
−0.660504 + 0.750822i \(0.729658\pi\)
\(212\) −974.620 −0.315741
\(213\) 0 0
\(214\) −3020.34 −0.964797
\(215\) 0 0
\(216\) 0 0
\(217\) −218.485 −0.0683490
\(218\) 498.427 0.154852
\(219\) 0 0
\(220\) 0 0
\(221\) 211.614 0.0644105
\(222\) 0 0
\(223\) 1976.14 0.593419 0.296709 0.954968i \(-0.404111\pi\)
0.296709 + 0.954968i \(0.404111\pi\)
\(224\) 177.881 0.0530589
\(225\) 0 0
\(226\) −2210.59 −0.650646
\(227\) −742.725 −0.217165 −0.108582 0.994087i \(-0.534631\pi\)
−0.108582 + 0.994087i \(0.534631\pi\)
\(228\) 0 0
\(229\) −1151.56 −0.332301 −0.166151 0.986100i \(-0.553134\pi\)
−0.166151 + 0.986100i \(0.553134\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4572.75 1.29403
\(233\) −1954.50 −0.549544 −0.274772 0.961509i \(-0.588602\pi\)
−0.274772 + 0.961509i \(0.588602\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 682.052 0.188126
\(237\) 0 0
\(238\) −131.746 −0.0358817
\(239\) −1567.50 −0.424239 −0.212120 0.977244i \(-0.568037\pi\)
−0.212120 + 0.977244i \(0.568037\pi\)
\(240\) 0 0
\(241\) −7402.25 −1.97851 −0.989255 0.146197i \(-0.953297\pi\)
−0.989255 + 0.146197i \(0.953297\pi\)
\(242\) 1987.88 0.528041
\(243\) 0 0
\(244\) 2253.72 0.591310
\(245\) 0 0
\(246\) 0 0
\(247\) 38.5482 0.00993021
\(248\) 4973.01 1.27333
\(249\) 0 0
\(250\) 0 0
\(251\) −6720.19 −1.68994 −0.844970 0.534814i \(-0.820382\pi\)
−0.844970 + 0.534814i \(0.820382\pi\)
\(252\) 0 0
\(253\) −914.445 −0.227236
\(254\) −735.779 −0.181759
\(255\) 0 0
\(256\) −4298.95 −1.04955
\(257\) −224.241 −0.0544270 −0.0272135 0.999630i \(-0.508663\pi\)
−0.0272135 + 0.999630i \(0.508663\pi\)
\(258\) 0 0
\(259\) 307.156 0.0736902
\(260\) 0 0
\(261\) 0 0
\(262\) −1849.02 −0.436004
\(263\) 3935.69 0.922757 0.461379 0.887203i \(-0.347355\pi\)
0.461379 + 0.887203i \(0.347355\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −23.9993 −0.00553191
\(267\) 0 0
\(268\) −3466.52 −0.790116
\(269\) −3509.03 −0.795352 −0.397676 0.917526i \(-0.630183\pi\)
−0.397676 + 0.917526i \(0.630183\pi\)
\(270\) 0 0
\(271\) −3557.73 −0.797480 −0.398740 0.917064i \(-0.630552\pi\)
−0.398740 + 0.917064i \(0.630552\pi\)
\(272\) 475.936 0.106095
\(273\) 0 0
\(274\) −4083.27 −0.900290
\(275\) 0 0
\(276\) 0 0
\(277\) −4502.64 −0.976668 −0.488334 0.872657i \(-0.662395\pi\)
−0.488334 + 0.872657i \(0.662395\pi\)
\(278\) 883.875 0.190688
\(279\) 0 0
\(280\) 0 0
\(281\) 8534.68 1.81187 0.905936 0.423414i \(-0.139168\pi\)
0.905936 + 0.423414i \(0.139168\pi\)
\(282\) 0 0
\(283\) −4611.25 −0.968589 −0.484294 0.874905i \(-0.660924\pi\)
−0.484294 + 0.874905i \(0.660924\pi\)
\(284\) 3350.84 0.700126
\(285\) 0 0
\(286\) −91.5457 −0.0189273
\(287\) 142.408 0.0292895
\(288\) 0 0
\(289\) −112.947 −0.0229895
\(290\) 0 0
\(291\) 0 0
\(292\) 3190.96 0.639510
\(293\) −7923.38 −1.57983 −0.789913 0.613219i \(-0.789874\pi\)
−0.789913 + 0.613219i \(0.789874\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6991.28 −1.37284
\(297\) 0 0
\(298\) 2674.75 0.519946
\(299\) −173.050 −0.0334706
\(300\) 0 0
\(301\) −486.575 −0.0931752
\(302\) 645.022 0.122904
\(303\) 0 0
\(304\) 86.6977 0.0163568
\(305\) 0 0
\(306\) 0 0
\(307\) 3908.89 0.726684 0.363342 0.931656i \(-0.381636\pi\)
0.363342 + 0.931656i \(0.381636\pi\)
\(308\) −75.2292 −0.0139175
\(309\) 0 0
\(310\) 0 0
\(311\) −5864.44 −1.06927 −0.534633 0.845084i \(-0.679550\pi\)
−0.534633 + 0.845084i \(0.679550\pi\)
\(312\) 0 0
\(313\) 2580.04 0.465918 0.232959 0.972487i \(-0.425159\pi\)
0.232959 + 0.972487i \(0.425159\pi\)
\(314\) 965.799 0.173577
\(315\) 0 0
\(316\) −3553.23 −0.632547
\(317\) −5113.14 −0.905939 −0.452969 0.891526i \(-0.649635\pi\)
−0.452969 + 0.891526i \(0.649635\pi\)
\(318\) 0 0
\(319\) −3166.50 −0.555768
\(320\) 0 0
\(321\) 0 0
\(322\) 107.737 0.0186458
\(323\) 874.389 0.150626
\(324\) 0 0
\(325\) 0 0
\(326\) 6976.48 1.18525
\(327\) 0 0
\(328\) −3241.39 −0.545659
\(329\) 198.017 0.0331824
\(330\) 0 0
\(331\) −9659.43 −1.60402 −0.802009 0.597311i \(-0.796236\pi\)
−0.802009 + 0.597311i \(0.796236\pi\)
\(332\) −4376.42 −0.723456
\(333\) 0 0
\(334\) −1739.51 −0.284976
\(335\) 0 0
\(336\) 0 0
\(337\) 10014.6 1.61878 0.809392 0.587269i \(-0.199797\pi\)
0.809392 + 0.587269i \(0.199797\pi\)
\(338\) 4062.45 0.653753
\(339\) 0 0
\(340\) 0 0
\(341\) −3443.67 −0.546877
\(342\) 0 0
\(343\) 701.406 0.110415
\(344\) 11075.1 1.73584
\(345\) 0 0
\(346\) 4631.27 0.719591
\(347\) 302.277 0.0467639 0.0233819 0.999727i \(-0.492557\pi\)
0.0233819 + 0.999727i \(0.492557\pi\)
\(348\) 0 0
\(349\) 4268.50 0.654692 0.327346 0.944904i \(-0.393846\pi\)
0.327346 + 0.944904i \(0.393846\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2803.69 0.424537
\(353\) −5331.06 −0.803807 −0.401904 0.915682i \(-0.631651\pi\)
−0.401904 + 0.915682i \(0.631651\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2369.40 −0.352748
\(357\) 0 0
\(358\) 5143.73 0.759370
\(359\) 5000.05 0.735077 0.367538 0.930008i \(-0.380201\pi\)
0.367538 + 0.930008i \(0.380201\pi\)
\(360\) 0 0
\(361\) −6699.72 −0.976778
\(362\) 886.036 0.128644
\(363\) 0 0
\(364\) −14.2364 −0.00204997
\(365\) 0 0
\(366\) 0 0
\(367\) −11958.3 −1.70087 −0.850433 0.526084i \(-0.823660\pi\)
−0.850433 + 0.526084i \(0.823660\pi\)
\(368\) −389.201 −0.0551318
\(369\) 0 0
\(370\) 0 0
\(371\) −219.269 −0.0306843
\(372\) 0 0
\(373\) −8400.04 −1.16605 −0.583026 0.812453i \(-0.698132\pi\)
−0.583026 + 0.812453i \(0.698132\pi\)
\(374\) −2076.53 −0.287099
\(375\) 0 0
\(376\) −4507.12 −0.618183
\(377\) −599.228 −0.0818616
\(378\) 0 0
\(379\) −3416.45 −0.463038 −0.231519 0.972830i \(-0.574370\pi\)
−0.231519 + 0.972830i \(0.574370\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −9470.49 −1.26846
\(383\) 6883.21 0.918317 0.459159 0.888354i \(-0.348151\pi\)
0.459159 + 0.888354i \(0.348151\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −8426.97 −1.11120
\(387\) 0 0
\(388\) 5258.00 0.687976
\(389\) 6131.20 0.799137 0.399568 0.916703i \(-0.369160\pi\)
0.399568 + 0.916703i \(0.369160\pi\)
\(390\) 0 0
\(391\) −3925.29 −0.507699
\(392\) −7970.24 −1.02693
\(393\) 0 0
\(394\) 1551.57 0.198393
\(395\) 0 0
\(396\) 0 0
\(397\) 1078.96 0.136401 0.0682006 0.997672i \(-0.478274\pi\)
0.0682006 + 0.997672i \(0.478274\pi\)
\(398\) 9368.85 1.17994
\(399\) 0 0
\(400\) 0 0
\(401\) 1481.85 0.184539 0.0922694 0.995734i \(-0.470588\pi\)
0.0922694 + 0.995734i \(0.470588\pi\)
\(402\) 0 0
\(403\) −651.680 −0.0805521
\(404\) −6321.07 −0.778428
\(405\) 0 0
\(406\) 373.067 0.0456034
\(407\) 4841.27 0.589613
\(408\) 0 0
\(409\) −6855.84 −0.828850 −0.414425 0.910084i \(-0.636017\pi\)
−0.414425 + 0.910084i \(0.636017\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4565.87 −0.545981
\(413\) 153.447 0.0182824
\(414\) 0 0
\(415\) 0 0
\(416\) 530.570 0.0625320
\(417\) 0 0
\(418\) −378.266 −0.0442622
\(419\) −1750.38 −0.204085 −0.102043 0.994780i \(-0.532538\pi\)
−0.102043 + 0.994780i \(0.532538\pi\)
\(420\) 0 0
\(421\) 185.281 0.0214490 0.0107245 0.999942i \(-0.496586\pi\)
0.0107245 + 0.999942i \(0.496586\pi\)
\(422\) 7518.58 0.867296
\(423\) 0 0
\(424\) 4990.85 0.571644
\(425\) 0 0
\(426\) 0 0
\(427\) 507.039 0.0574645
\(428\) −7403.17 −0.836088
\(429\) 0 0
\(430\) 0 0
\(431\) 2340.26 0.261546 0.130773 0.991412i \(-0.458254\pi\)
0.130773 + 0.991412i \(0.458254\pi\)
\(432\) 0 0
\(433\) 12295.7 1.36465 0.682326 0.731048i \(-0.260968\pi\)
0.682326 + 0.731048i \(0.260968\pi\)
\(434\) 405.722 0.0448739
\(435\) 0 0
\(436\) 1221.70 0.134194
\(437\) −715.040 −0.0782723
\(438\) 0 0
\(439\) −4488.49 −0.487981 −0.243991 0.969778i \(-0.578457\pi\)
−0.243991 + 0.969778i \(0.578457\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −392.963 −0.0422881
\(443\) −9811.11 −1.05223 −0.526117 0.850412i \(-0.676353\pi\)
−0.526117 + 0.850412i \(0.676353\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −3669.65 −0.389603
\(447\) 0 0
\(448\) −386.598 −0.0407701
\(449\) −4230.71 −0.444676 −0.222338 0.974970i \(-0.571369\pi\)
−0.222338 + 0.974970i \(0.571369\pi\)
\(450\) 0 0
\(451\) 2244.58 0.234352
\(452\) −5418.37 −0.563846
\(453\) 0 0
\(454\) 1379.22 0.142577
\(455\) 0 0
\(456\) 0 0
\(457\) 4686.07 0.479662 0.239831 0.970815i \(-0.422908\pi\)
0.239831 + 0.970815i \(0.422908\pi\)
\(458\) 2138.42 0.218169
\(459\) 0 0
\(460\) 0 0
\(461\) 12995.4 1.31292 0.656460 0.754361i \(-0.272053\pi\)
0.656460 + 0.754361i \(0.272053\pi\)
\(462\) 0 0
\(463\) −950.920 −0.0954492 −0.0477246 0.998861i \(-0.515197\pi\)
−0.0477246 + 0.998861i \(0.515197\pi\)
\(464\) −1347.71 −0.134840
\(465\) 0 0
\(466\) 3629.47 0.360798
\(467\) −18320.3 −1.81534 −0.907670 0.419685i \(-0.862140\pi\)
−0.907670 + 0.419685i \(0.862140\pi\)
\(468\) 0 0
\(469\) −779.893 −0.0767849
\(470\) 0 0
\(471\) 0 0
\(472\) −3492.66 −0.340599
\(473\) −7669.19 −0.745518
\(474\) 0 0
\(475\) 0 0
\(476\) −322.924 −0.0310949
\(477\) 0 0
\(478\) 2910.81 0.278530
\(479\) 10559.3 1.00724 0.503619 0.863926i \(-0.332002\pi\)
0.503619 + 0.863926i \(0.332002\pi\)
\(480\) 0 0
\(481\) 916.161 0.0868469
\(482\) 13745.8 1.29897
\(483\) 0 0
\(484\) 4872.50 0.457597
\(485\) 0 0
\(486\) 0 0
\(487\) 677.906 0.0630778 0.0315389 0.999503i \(-0.489959\pi\)
0.0315389 + 0.999503i \(0.489959\pi\)
\(488\) −11540.9 −1.07056
\(489\) 0 0
\(490\) 0 0
\(491\) −8179.39 −0.751794 −0.375897 0.926662i \(-0.622665\pi\)
−0.375897 + 0.926662i \(0.622665\pi\)
\(492\) 0 0
\(493\) −13592.3 −1.24172
\(494\) −71.5831 −0.00651958
\(495\) 0 0
\(496\) −1465.68 −0.132683
\(497\) 753.869 0.0680395
\(498\) 0 0
\(499\) 7533.28 0.675823 0.337912 0.941178i \(-0.390280\pi\)
0.337912 + 0.941178i \(0.390280\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 12479.2 1.10951
\(503\) −5729.79 −0.507910 −0.253955 0.967216i \(-0.581732\pi\)
−0.253955 + 0.967216i \(0.581732\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1698.10 0.149190
\(507\) 0 0
\(508\) −1803.47 −0.157512
\(509\) −17391.8 −1.51450 −0.757250 0.653126i \(-0.773457\pi\)
−0.757250 + 0.653126i \(0.773457\pi\)
\(510\) 0 0
\(511\) 717.899 0.0621487
\(512\) 2474.21 0.213566
\(513\) 0 0
\(514\) 416.409 0.0357335
\(515\) 0 0
\(516\) 0 0
\(517\) 3121.05 0.265501
\(518\) −570.382 −0.0483806
\(519\) 0 0
\(520\) 0 0
\(521\) −3803.92 −0.319871 −0.159935 0.987127i \(-0.551129\pi\)
−0.159935 + 0.987127i \(0.551129\pi\)
\(522\) 0 0
\(523\) 997.925 0.0834345 0.0417172 0.999129i \(-0.486717\pi\)
0.0417172 + 0.999129i \(0.486717\pi\)
\(524\) −4532.14 −0.377839
\(525\) 0 0
\(526\) −7308.49 −0.605828
\(527\) −14782.1 −1.22185
\(528\) 0 0
\(529\) −8957.06 −0.736177
\(530\) 0 0
\(531\) 0 0
\(532\) −58.8246 −0.00479393
\(533\) 424.763 0.0345188
\(534\) 0 0
\(535\) 0 0
\(536\) 17751.4 1.43049
\(537\) 0 0
\(538\) 6516.20 0.522181
\(539\) 5519.17 0.441053
\(540\) 0 0
\(541\) −4211.74 −0.334707 −0.167354 0.985897i \(-0.553522\pi\)
−0.167354 + 0.985897i \(0.553522\pi\)
\(542\) 6606.63 0.523578
\(543\) 0 0
\(544\) 12034.9 0.948517
\(545\) 0 0
\(546\) 0 0
\(547\) 13471.6 1.05303 0.526514 0.850167i \(-0.323499\pi\)
0.526514 + 0.850167i \(0.323499\pi\)
\(548\) −10008.5 −0.780186
\(549\) 0 0
\(550\) 0 0
\(551\) −2476.01 −0.191436
\(552\) 0 0
\(553\) −799.403 −0.0614721
\(554\) 8361.29 0.641222
\(555\) 0 0
\(556\) 2166.47 0.165249
\(557\) 13291.0 1.01105 0.505526 0.862811i \(-0.331298\pi\)
0.505526 + 0.862811i \(0.331298\pi\)
\(558\) 0 0
\(559\) −1451.32 −0.109811
\(560\) 0 0
\(561\) 0 0
\(562\) −15848.7 −1.18957
\(563\) −13629.1 −1.02024 −0.510121 0.860103i \(-0.670399\pi\)
−0.510121 + 0.860103i \(0.670399\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 8562.99 0.635918
\(567\) 0 0
\(568\) −17159.0 −1.26757
\(569\) −19977.4 −1.47187 −0.735935 0.677052i \(-0.763257\pi\)
−0.735935 + 0.677052i \(0.763257\pi\)
\(570\) 0 0
\(571\) −21864.1 −1.60242 −0.801211 0.598383i \(-0.795810\pi\)
−0.801211 + 0.598383i \(0.795810\pi\)
\(572\) −224.388 −0.0164023
\(573\) 0 0
\(574\) −264.448 −0.0192297
\(575\) 0 0
\(576\) 0 0
\(577\) −10696.0 −0.771714 −0.385857 0.922559i \(-0.626094\pi\)
−0.385857 + 0.922559i \(0.626094\pi\)
\(578\) 209.741 0.0150935
\(579\) 0 0
\(580\) 0 0
\(581\) −984.603 −0.0703067
\(582\) 0 0
\(583\) −3456.02 −0.245513
\(584\) −16340.3 −1.15782
\(585\) 0 0
\(586\) 14713.5 1.03722
\(587\) −26421.1 −1.85778 −0.928889 0.370358i \(-0.879235\pi\)
−0.928889 + 0.370358i \(0.879235\pi\)
\(588\) 0 0
\(589\) −2692.74 −0.188374
\(590\) 0 0
\(591\) 0 0
\(592\) 2060.51 0.143052
\(593\) −25567.0 −1.77051 −0.885253 0.465110i \(-0.846015\pi\)
−0.885253 + 0.465110i \(0.846015\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6556.07 0.450582
\(597\) 0 0
\(598\) 321.349 0.0219748
\(599\) 3565.31 0.243196 0.121598 0.992579i \(-0.461198\pi\)
0.121598 + 0.992579i \(0.461198\pi\)
\(600\) 0 0
\(601\) 8979.40 0.609446 0.304723 0.952441i \(-0.401436\pi\)
0.304723 + 0.952441i \(0.401436\pi\)
\(602\) 903.559 0.0611733
\(603\) 0 0
\(604\) 1581.01 0.106508
\(605\) 0 0
\(606\) 0 0
\(607\) −20174.5 −1.34903 −0.674513 0.738263i \(-0.735647\pi\)
−0.674513 + 0.738263i \(0.735647\pi\)
\(608\) 2192.31 0.146234
\(609\) 0 0
\(610\) 0 0
\(611\) 590.628 0.0391068
\(612\) 0 0
\(613\) 7366.17 0.485346 0.242673 0.970108i \(-0.421976\pi\)
0.242673 + 0.970108i \(0.421976\pi\)
\(614\) −7258.72 −0.477098
\(615\) 0 0
\(616\) 385.235 0.0251973
\(617\) 1688.85 0.110195 0.0550975 0.998481i \(-0.482453\pi\)
0.0550975 + 0.998481i \(0.482453\pi\)
\(618\) 0 0
\(619\) −15073.5 −0.978765 −0.489383 0.872069i \(-0.662778\pi\)
−0.489383 + 0.872069i \(0.662778\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 10890.1 0.702017
\(623\) −533.066 −0.0342807
\(624\) 0 0
\(625\) 0 0
\(626\) −4791.07 −0.305894
\(627\) 0 0
\(628\) 2367.27 0.150421
\(629\) 20781.3 1.31734
\(630\) 0 0
\(631\) −5188.82 −0.327359 −0.163680 0.986514i \(-0.552336\pi\)
−0.163680 + 0.986514i \(0.552336\pi\)
\(632\) 18195.5 1.14522
\(633\) 0 0
\(634\) 9494.98 0.594785
\(635\) 0 0
\(636\) 0 0
\(637\) 1044.45 0.0649647
\(638\) 5880.12 0.364884
\(639\) 0 0
\(640\) 0 0
\(641\) −13861.3 −0.854117 −0.427058 0.904224i \(-0.640450\pi\)
−0.427058 + 0.904224i \(0.640450\pi\)
\(642\) 0 0
\(643\) 27120.4 1.66333 0.831667 0.555274i \(-0.187387\pi\)
0.831667 + 0.555274i \(0.187387\pi\)
\(644\) 264.074 0.0161583
\(645\) 0 0
\(646\) −1623.72 −0.0988923
\(647\) −941.957 −0.0572367 −0.0286184 0.999590i \(-0.509111\pi\)
−0.0286184 + 0.999590i \(0.509111\pi\)
\(648\) 0 0
\(649\) 2418.57 0.146282
\(650\) 0 0
\(651\) 0 0
\(652\) 17100.0 1.02713
\(653\) 6306.43 0.377932 0.188966 0.981984i \(-0.439486\pi\)
0.188966 + 0.981984i \(0.439486\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 955.324 0.0568584
\(657\) 0 0
\(658\) −367.712 −0.0217856
\(659\) −3003.37 −0.177533 −0.0887667 0.996052i \(-0.528293\pi\)
−0.0887667 + 0.996052i \(0.528293\pi\)
\(660\) 0 0
\(661\) 14926.2 0.878310 0.439155 0.898411i \(-0.355278\pi\)
0.439155 + 0.898411i \(0.355278\pi\)
\(662\) 17937.3 1.05310
\(663\) 0 0
\(664\) 22410.9 1.30980
\(665\) 0 0
\(666\) 0 0
\(667\) 11115.2 0.645253
\(668\) −4263.72 −0.246958
\(669\) 0 0
\(670\) 0 0
\(671\) 7991.74 0.459788
\(672\) 0 0
\(673\) −12069.9 −0.691321 −0.345660 0.938360i \(-0.612345\pi\)
−0.345660 + 0.938360i \(0.612345\pi\)
\(674\) −18596.9 −1.06280
\(675\) 0 0
\(676\) 9957.48 0.566539
\(677\) 8131.34 0.461614 0.230807 0.973000i \(-0.425863\pi\)
0.230807 + 0.973000i \(0.425863\pi\)
\(678\) 0 0
\(679\) 1182.94 0.0668587
\(680\) 0 0
\(681\) 0 0
\(682\) 6394.81 0.359047
\(683\) 28805.3 1.61377 0.806884 0.590710i \(-0.201152\pi\)
0.806884 + 0.590710i \(0.201152\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1302.49 −0.0724919
\(687\) 0 0
\(688\) −3264.12 −0.180877
\(689\) −654.018 −0.0361627
\(690\) 0 0
\(691\) 21170.5 1.16551 0.582754 0.812649i \(-0.301975\pi\)
0.582754 + 0.812649i \(0.301975\pi\)
\(692\) 11351.7 0.623594
\(693\) 0 0
\(694\) −561.321 −0.0307024
\(695\) 0 0
\(696\) 0 0
\(697\) 9634.92 0.523599
\(698\) −7926.51 −0.429832
\(699\) 0 0
\(700\) 0 0
\(701\) 31508.9 1.69768 0.848841 0.528649i \(-0.177301\pi\)
0.848841 + 0.528649i \(0.177301\pi\)
\(702\) 0 0
\(703\) 3785.57 0.203095
\(704\) −6093.39 −0.326212
\(705\) 0 0
\(706\) 9899.66 0.527732
\(707\) −1422.11 −0.0756490
\(708\) 0 0
\(709\) −16548.3 −0.876567 −0.438283 0.898837i \(-0.644413\pi\)
−0.438283 + 0.898837i \(0.644413\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12133.3 0.638644
\(713\) 12088.2 0.634931
\(714\) 0 0
\(715\) 0 0
\(716\) 12607.8 0.658066
\(717\) 0 0
\(718\) −9284.97 −0.482607
\(719\) 32635.3 1.69275 0.846377 0.532584i \(-0.178779\pi\)
0.846377 + 0.532584i \(0.178779\pi\)
\(720\) 0 0
\(721\) −1027.22 −0.0530594
\(722\) 12441.2 0.641294
\(723\) 0 0
\(724\) 2171.76 0.111482
\(725\) 0 0
\(726\) 0 0
\(727\) −32435.2 −1.65468 −0.827341 0.561701i \(-0.810147\pi\)
−0.827341 + 0.561701i \(0.810147\pi\)
\(728\) 72.9018 0.00371143
\(729\) 0 0
\(730\) 0 0
\(731\) −32920.3 −1.66566
\(732\) 0 0
\(733\) −15278.0 −0.769859 −0.384930 0.922946i \(-0.625774\pi\)
−0.384930 + 0.922946i \(0.625774\pi\)
\(734\) 22206.3 1.11669
\(735\) 0 0
\(736\) −9841.67 −0.492893
\(737\) −12292.3 −0.614375
\(738\) 0 0
\(739\) −20611.4 −1.02599 −0.512993 0.858393i \(-0.671463\pi\)
−0.512993 + 0.858393i \(0.671463\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 407.177 0.0201455
\(743\) 21784.4 1.07563 0.537815 0.843063i \(-0.319250\pi\)
0.537815 + 0.843063i \(0.319250\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 15598.7 0.765561
\(747\) 0 0
\(748\) −5089.79 −0.248798
\(749\) −1665.56 −0.0812525
\(750\) 0 0
\(751\) 18299.2 0.889146 0.444573 0.895743i \(-0.353355\pi\)
0.444573 + 0.895743i \(0.353355\pi\)
\(752\) 1328.37 0.0644156
\(753\) 0 0
\(754\) 1112.75 0.0537455
\(755\) 0 0
\(756\) 0 0
\(757\) −27136.5 −1.30290 −0.651448 0.758693i \(-0.725838\pi\)
−0.651448 + 0.758693i \(0.725838\pi\)
\(758\) 6344.27 0.304003
\(759\) 0 0
\(760\) 0 0
\(761\) 5534.03 0.263611 0.131806 0.991276i \(-0.457922\pi\)
0.131806 + 0.991276i \(0.457922\pi\)
\(762\) 0 0
\(763\) 274.856 0.0130412
\(764\) −23213.1 −1.09924
\(765\) 0 0
\(766\) −12782.0 −0.602912
\(767\) 457.691 0.0215466
\(768\) 0 0
\(769\) −30272.2 −1.41956 −0.709782 0.704422i \(-0.751206\pi\)
−0.709782 + 0.704422i \(0.751206\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20655.3 −0.962956
\(773\) 16238.3 0.755562 0.377781 0.925895i \(-0.376687\pi\)
0.377781 + 0.925895i \(0.376687\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −26925.3 −1.24557
\(777\) 0 0
\(778\) −11385.5 −0.524666
\(779\) 1755.12 0.0807236
\(780\) 0 0
\(781\) 11882.2 0.544401
\(782\) 7289.17 0.333325
\(783\) 0 0
\(784\) 2349.04 0.107008
\(785\) 0 0
\(786\) 0 0
\(787\) 17287.5 0.783017 0.391508 0.920174i \(-0.371953\pi\)
0.391508 + 0.920174i \(0.371953\pi\)
\(788\) 3803.06 0.171927
\(789\) 0 0
\(790\) 0 0
\(791\) −1219.02 −0.0547956
\(792\) 0 0
\(793\) 1512.36 0.0677243
\(794\) −2003.60 −0.0895529
\(795\) 0 0
\(796\) 22964.0 1.02253
\(797\) 1836.82 0.0816354 0.0408177 0.999167i \(-0.487004\pi\)
0.0408177 + 0.999167i \(0.487004\pi\)
\(798\) 0 0
\(799\) 13397.2 0.593192
\(800\) 0 0
\(801\) 0 0
\(802\) −2751.76 −0.121157
\(803\) 11315.2 0.497267
\(804\) 0 0
\(805\) 0 0
\(806\) 1210.15 0.0528857
\(807\) 0 0
\(808\) 32369.0 1.40933
\(809\) 14459.9 0.628410 0.314205 0.949355i \(-0.398262\pi\)
0.314205 + 0.949355i \(0.398262\pi\)
\(810\) 0 0
\(811\) 30701.8 1.32933 0.664664 0.747142i \(-0.268575\pi\)
0.664664 + 0.747142i \(0.268575\pi\)
\(812\) 914.424 0.0395197
\(813\) 0 0
\(814\) −8990.12 −0.387105
\(815\) 0 0
\(816\) 0 0
\(817\) −5996.84 −0.256797
\(818\) 12731.1 0.544173
\(819\) 0 0
\(820\) 0 0
\(821\) −29132.0 −1.23838 −0.619192 0.785239i \(-0.712540\pi\)
−0.619192 + 0.785239i \(0.712540\pi\)
\(822\) 0 0
\(823\) 35618.9 1.50862 0.754312 0.656516i \(-0.227971\pi\)
0.754312 + 0.656516i \(0.227971\pi\)
\(824\) 23381.0 0.988490
\(825\) 0 0
\(826\) −284.948 −0.0120032
\(827\) −9616.94 −0.404370 −0.202185 0.979347i \(-0.564804\pi\)
−0.202185 + 0.979347i \(0.564804\pi\)
\(828\) 0 0
\(829\) 38846.8 1.62751 0.813755 0.581208i \(-0.197420\pi\)
0.813755 + 0.581208i \(0.197420\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1153.11 −0.0480492
\(833\) 23691.2 0.985417
\(834\) 0 0
\(835\) 0 0
\(836\) −927.168 −0.0383574
\(837\) 0 0
\(838\) 3250.41 0.133990
\(839\) −3938.86 −0.162079 −0.0810396 0.996711i \(-0.525824\pi\)
−0.0810396 + 0.996711i \(0.525824\pi\)
\(840\) 0 0
\(841\) 14100.3 0.578144
\(842\) −344.062 −0.0140822
\(843\) 0 0
\(844\) 18428.8 0.751594
\(845\) 0 0
\(846\) 0 0
\(847\) 1096.21 0.0444701
\(848\) −1470.93 −0.0595661
\(849\) 0 0
\(850\) 0 0
\(851\) −16994.1 −0.684548
\(852\) 0 0
\(853\) 27660.3 1.11028 0.555142 0.831756i \(-0.312664\pi\)
0.555142 + 0.831756i \(0.312664\pi\)
\(854\) −941.561 −0.0377278
\(855\) 0 0
\(856\) 37910.3 1.51372
\(857\) −21674.2 −0.863918 −0.431959 0.901893i \(-0.642177\pi\)
−0.431959 + 0.901893i \(0.642177\pi\)
\(858\) 0 0
\(859\) −9236.03 −0.366856 −0.183428 0.983033i \(-0.558719\pi\)
−0.183428 + 0.983033i \(0.558719\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −4345.81 −0.171715
\(863\) −8055.86 −0.317758 −0.158879 0.987298i \(-0.550788\pi\)
−0.158879 + 0.987298i \(0.550788\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −22832.9 −0.895950
\(867\) 0 0
\(868\) 994.464 0.0388875
\(869\) −12599.8 −0.491853
\(870\) 0 0
\(871\) −2326.20 −0.0904941
\(872\) −6256.08 −0.242956
\(873\) 0 0
\(874\) 1327.81 0.0513889
\(875\) 0 0
\(876\) 0 0
\(877\) 34062.1 1.31151 0.655756 0.754973i \(-0.272350\pi\)
0.655756 + 0.754973i \(0.272350\pi\)
\(878\) 8335.01 0.320379
\(879\) 0 0
\(880\) 0 0
\(881\) 29946.6 1.14521 0.572603 0.819833i \(-0.305934\pi\)
0.572603 + 0.819833i \(0.305934\pi\)
\(882\) 0 0
\(883\) −45422.6 −1.73114 −0.865568 0.500792i \(-0.833042\pi\)
−0.865568 + 0.500792i \(0.833042\pi\)
\(884\) −963.191 −0.0366466
\(885\) 0 0
\(886\) 18219.0 0.690835
\(887\) −46885.3 −1.77481 −0.887405 0.460991i \(-0.847494\pi\)
−0.887405 + 0.460991i \(0.847494\pi\)
\(888\) 0 0
\(889\) −405.743 −0.0153073
\(890\) 0 0
\(891\) 0 0
\(892\) −8994.69 −0.337628
\(893\) 2440.47 0.0914528
\(894\) 0 0
\(895\) 0 0
\(896\) −705.147 −0.0262916
\(897\) 0 0
\(898\) 7856.33 0.291948
\(899\) 41858.4 1.55290
\(900\) 0 0
\(901\) −14835.1 −0.548534
\(902\) −4168.12 −0.153862
\(903\) 0 0
\(904\) 27746.5 1.02083
\(905\) 0 0
\(906\) 0 0
\(907\) 31490.5 1.15284 0.576420 0.817153i \(-0.304449\pi\)
0.576420 + 0.817153i \(0.304449\pi\)
\(908\) 3380.61 0.123557
\(909\) 0 0
\(910\) 0 0
\(911\) −40798.1 −1.48376 −0.741878 0.670535i \(-0.766065\pi\)
−0.741878 + 0.670535i \(0.766065\pi\)
\(912\) 0 0
\(913\) −15518.9 −0.562542
\(914\) −8701.93 −0.314917
\(915\) 0 0
\(916\) 5241.47 0.189064
\(917\) −1019.64 −0.0367190
\(918\) 0 0
\(919\) −25901.7 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −24132.2 −0.861985
\(923\) 2248.58 0.0801873
\(924\) 0 0
\(925\) 0 0
\(926\) 1765.84 0.0626663
\(927\) 0 0
\(928\) −34079.3 −1.20550
\(929\) −6125.72 −0.216338 −0.108169 0.994132i \(-0.534499\pi\)
−0.108169 + 0.994132i \(0.534499\pi\)
\(930\) 0 0
\(931\) 4315.65 0.151922
\(932\) 8896.19 0.312666
\(933\) 0 0
\(934\) 34020.4 1.19184
\(935\) 0 0
\(936\) 0 0
\(937\) −32640.5 −1.13801 −0.569007 0.822333i \(-0.692672\pi\)
−0.569007 + 0.822333i \(0.692672\pi\)
\(938\) 1448.24 0.0504124
\(939\) 0 0
\(940\) 0 0
\(941\) −23106.0 −0.800460 −0.400230 0.916415i \(-0.631070\pi\)
−0.400230 + 0.916415i \(0.631070\pi\)
\(942\) 0 0
\(943\) −7879.04 −0.272086
\(944\) 1029.38 0.0354909
\(945\) 0 0
\(946\) 14241.5 0.489463
\(947\) 2309.51 0.0792491 0.0396245 0.999215i \(-0.487384\pi\)
0.0396245 + 0.999215i \(0.487384\pi\)
\(948\) 0 0
\(949\) 2141.29 0.0732447
\(950\) 0 0
\(951\) 0 0
\(952\) 1653.63 0.0562968
\(953\) 27818.8 0.945580 0.472790 0.881175i \(-0.343247\pi\)
0.472790 + 0.881175i \(0.343247\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7134.69 0.241373
\(957\) 0 0
\(958\) −19608.4 −0.661293
\(959\) −2251.70 −0.0758199
\(960\) 0 0
\(961\) 15731.3 0.528056
\(962\) −1701.29 −0.0570185
\(963\) 0 0
\(964\) 33692.4 1.12568
\(965\) 0 0
\(966\) 0 0
\(967\) 19865.9 0.660646 0.330323 0.943868i \(-0.392842\pi\)
0.330323 + 0.943868i \(0.392842\pi\)
\(968\) −24951.2 −0.828472
\(969\) 0 0
\(970\) 0 0
\(971\) 10529.6 0.348004 0.174002 0.984745i \(-0.444330\pi\)
0.174002 + 0.984745i \(0.444330\pi\)
\(972\) 0 0
\(973\) 487.409 0.0160592
\(974\) −1258.86 −0.0414131
\(975\) 0 0
\(976\) 3401.40 0.111553
\(977\) 23428.3 0.767184 0.383592 0.923503i \(-0.374687\pi\)
0.383592 + 0.923503i \(0.374687\pi\)
\(978\) 0 0
\(979\) −8401.97 −0.274288
\(980\) 0 0
\(981\) 0 0
\(982\) 15188.9 0.493583
\(983\) 60100.0 1.95004 0.975021 0.222114i \(-0.0712957\pi\)
0.975021 + 0.222114i \(0.0712957\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 25240.6 0.815238
\(987\) 0 0
\(988\) −175.457 −0.00564984
\(989\) 26920.9 0.865555
\(990\) 0 0
\(991\) 13491.2 0.432455 0.216228 0.976343i \(-0.430625\pi\)
0.216228 + 0.976343i \(0.430625\pi\)
\(992\) −37062.3 −1.18622
\(993\) 0 0
\(994\) −1399.92 −0.0446707
\(995\) 0 0
\(996\) 0 0
\(997\) 30289.6 0.962167 0.481084 0.876675i \(-0.340243\pi\)
0.481084 + 0.876675i \(0.340243\pi\)
\(998\) −13989.1 −0.443705
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.bd.1.3 8
3.2 odd 2 2025.4.a.bc.1.6 8
5.2 odd 4 405.4.b.c.244.3 yes 8
5.3 odd 4 405.4.b.c.244.6 yes 8
5.4 even 2 inner 2025.4.a.bd.1.6 8
15.2 even 4 405.4.b.b.244.6 yes 8
15.8 even 4 405.4.b.b.244.3 8
15.14 odd 2 2025.4.a.bc.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.4.b.b.244.3 8 15.8 even 4
405.4.b.b.244.6 yes 8 15.2 even 4
405.4.b.c.244.3 yes 8 5.2 odd 4
405.4.b.c.244.6 yes 8 5.3 odd 4
2025.4.a.bc.1.3 8 15.14 odd 2
2025.4.a.bc.1.6 8 3.2 odd 2
2025.4.a.bd.1.3 8 1.1 even 1 trivial
2025.4.a.bd.1.6 8 5.4 even 2 inner