Properties

Label 2025.4.a.bc
Level $2025$
Weight $4$
Character orbit 2025.a
Self dual yes
Analytic conductor $119.479$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,24,0,0,0,0,0,0,0,0,0,-42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} + 567x^{4} - 2024x^{2} + 1900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 405)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 3) q^{4} - \beta_{6} q^{7} + (\beta_{6} + \beta_{4} + 2 \beta_1) q^{8} + (\beta_{7} + \beta_{2}) q^{11} + (\beta_{6} - \beta_{4} - 2 \beta_{3}) q^{13} + ( - \beta_{5} - 3 \beta_{2} - 5) q^{14}+ \cdots + ( - 35 \beta_{6} + \beta_{4} + \cdots - 247 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{4} - 42 q^{14} + 4 q^{16} - 118 q^{19} + 36 q^{26} + 318 q^{29} - 416 q^{31} - 638 q^{34} - 486 q^{41} + 852 q^{44} - 598 q^{46} - 350 q^{49} - 1530 q^{56} - 1146 q^{59} - 398 q^{61} - 1640 q^{64}+ \cdots - 1238 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 44x^{6} + 567x^{4} - 2024x^{2} + 1900 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 39\nu^{5} + 402\nu^{3} - 704\nu ) / 30 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{7} + 171\nu^{5} - 1953\nu^{3} + 3506\nu ) / 90 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} - 45\nu^{4} + 540\nu^{2} - 1016 ) / 18 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4\nu^{7} - 171\nu^{5} + 2043\nu^{3} - 5126\nu ) / 90 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{6} - 36\nu^{4} + 333\nu^{2} - 548 ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{4} + 18\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} - 2\beta_{5} + 23\beta_{2} + 201 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 23\beta_{6} + 29\beta_{4} + 8\beta_{3} + 368\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 45\beta_{7} - 72\beta_{5} + 495\beta_{2} + 4121 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 495\beta_{6} + 729\beta_{4} + 342\beta_{3} + 7820\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.80346
−3.99806
−1.85698
−1.22227
1.22227
1.85698
3.99806
4.80346
−4.80346 0 15.0732 0 0 5.92463 −33.9759 0 0
1.2 −3.99806 0 7.98447 0 0 7.79840 0.0620886 0 0
1.3 −1.85698 0 −4.55164 0 0 1.02402 23.3081 0 0
1.4 −1.22227 0 −6.50606 0 0 −33.1668 17.7303 0 0
1.5 1.22227 0 −6.50606 0 0 33.1668 −17.7303 0 0
1.6 1.85698 0 −4.55164 0 0 −1.02402 −23.3081 0 0
1.7 3.99806 0 7.98447 0 0 −7.79840 −0.0620886 0 0
1.8 4.80346 0 15.0732 0 0 −5.92463 33.9759 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2025.4.a.bc 8
3.b odd 2 1 2025.4.a.bd 8
5.b even 2 1 inner 2025.4.a.bc 8
5.c odd 4 2 405.4.b.b 8
15.d odd 2 1 2025.4.a.bd 8
15.e even 4 2 405.4.b.c yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
405.4.b.b 8 5.c odd 4 2
405.4.b.c yes 8 15.e even 4 2
2025.4.a.bc 8 1.a even 1 1 trivial
2025.4.a.bc 8 5.b even 2 1 inner
2025.4.a.bd 8 3.b odd 2 1
2025.4.a.bd 8 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2025))\):

\( T_{2}^{8} - 44T_{2}^{6} + 567T_{2}^{4} - 2024T_{2}^{2} + 1900 \) Copy content Toggle raw display
\( T_{7}^{8} - 1197T_{7}^{6} + 108900T_{7}^{4} - 2461104T_{7}^{2} + 2462400 \) Copy content Toggle raw display
\( T_{11}^{4} - 1755T_{11}^{2} - 7038T_{11} + 502920 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 44 T^{6} + \cdots + 1900 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - 1197 T^{6} + \cdots + 2462400 \) Copy content Toggle raw display
$11$ \( (T^{4} - 1755 T^{2} + \cdots + 502920)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 68838460416 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 24363576945664 \) Copy content Toggle raw display
$19$ \( (T^{4} + 59 T^{3} + \cdots + 2964730)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 533400694426624 \) Copy content Toggle raw display
$29$ \( (T^{4} - 159 T^{3} + \cdots - 16354800)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 208 T^{3} + \cdots - 27072584)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{4} + 243 T^{3} + \cdots + 54333414)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 57\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 18\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 21\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( (T^{4} + 573 T^{3} + \cdots + 77712038244)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 199 T^{3} + \cdots + 37684911880)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 68\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( (T^{4} - 864 T^{3} + \cdots + 17785914552)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 37\!\cdots\!04 \) Copy content Toggle raw display
$79$ \( (T^{4} + 1298 T^{3} + \cdots - 256210144256)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 50\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( (T^{4} - 543 T^{3} + \cdots + 438625777050)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 31\!\cdots\!36 \) Copy content Toggle raw display
show more
show less