Properties

Label 2016.4.a.z.1.2
Level $2016$
Weight $4$
Character 2016.1
Self dual yes
Analytic conductor $118.948$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,4,Mod(1,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2016.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,10,0,21,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(118.947850572\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.22700.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 28x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.03475\) of defining polynomial
Character \(\chi\) \(=\) 2016.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.31394 q^{5} +7.00000 q^{7} +41.9640 q^{11} +26.2780 q^{13} -57.8477 q^{17} +2.16162 q^{19} -200.960 q^{23} -106.390 q^{25} +121.274 q^{29} -279.830 q^{31} +30.1976 q^{35} +124.322 q^{37} -363.355 q^{41} -253.488 q^{43} +84.6279 q^{47} +49.0000 q^{49} -507.104 q^{53} +181.030 q^{55} +338.027 q^{59} -529.831 q^{61} +113.362 q^{65} -429.884 q^{67} +1147.54 q^{71} +490.466 q^{73} +293.748 q^{77} -645.131 q^{79} +974.314 q^{83} -249.551 q^{85} +302.494 q^{89} +183.946 q^{91} +9.32512 q^{95} -1142.65 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 10 q^{5} + 21 q^{7} - 50 q^{13} - 30 q^{17} - 140 q^{19} + 56 q^{23} + 325 q^{25} - 298 q^{29} + 80 q^{31} + 70 q^{35} + 10 q^{37} - 390 q^{41} - 784 q^{43} + 248 q^{47} + 147 q^{49} - 10 q^{53} - 1360 q^{55}+ \cdots - 130 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.31394 0.385851 0.192925 0.981213i \(-0.438203\pi\)
0.192925 + 0.981213i \(0.438203\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 41.9640 1.15024 0.575120 0.818069i \(-0.304955\pi\)
0.575120 + 0.818069i \(0.304955\pi\)
\(12\) 0 0
\(13\) 26.2780 0.560631 0.280315 0.959908i \(-0.409561\pi\)
0.280315 + 0.959908i \(0.409561\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −57.8477 −0.825301 −0.412651 0.910889i \(-0.635397\pi\)
−0.412651 + 0.910889i \(0.635397\pi\)
\(18\) 0 0
\(19\) 2.16162 0.0261006 0.0130503 0.999915i \(-0.495846\pi\)
0.0130503 + 0.999915i \(0.495846\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −200.960 −1.82187 −0.910934 0.412551i \(-0.864638\pi\)
−0.910934 + 0.412551i \(0.864638\pi\)
\(24\) 0 0
\(25\) −106.390 −0.851119
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 121.274 0.776549 0.388275 0.921544i \(-0.373071\pi\)
0.388275 + 0.921544i \(0.373071\pi\)
\(30\) 0 0
\(31\) −279.830 −1.62125 −0.810627 0.585563i \(-0.800873\pi\)
−0.810627 + 0.585563i \(0.800873\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 30.1976 0.145838
\(36\) 0 0
\(37\) 124.322 0.552391 0.276196 0.961101i \(-0.410926\pi\)
0.276196 + 0.961101i \(0.410926\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −363.355 −1.38406 −0.692030 0.721868i \(-0.743284\pi\)
−0.692030 + 0.721868i \(0.743284\pi\)
\(42\) 0 0
\(43\) −253.488 −0.898991 −0.449496 0.893282i \(-0.648396\pi\)
−0.449496 + 0.893282i \(0.648396\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 84.6279 0.262644 0.131322 0.991340i \(-0.458078\pi\)
0.131322 + 0.991340i \(0.458078\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −507.104 −1.31427 −0.657133 0.753775i \(-0.728231\pi\)
−0.657133 + 0.753775i \(0.728231\pi\)
\(54\) 0 0
\(55\) 181.030 0.443821
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 338.027 0.745889 0.372944 0.927854i \(-0.378348\pi\)
0.372944 + 0.927854i \(0.378348\pi\)
\(60\) 0 0
\(61\) −529.831 −1.11210 −0.556049 0.831150i \(-0.687683\pi\)
−0.556049 + 0.831150i \(0.687683\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 113.362 0.216320
\(66\) 0 0
\(67\) −429.884 −0.783860 −0.391930 0.919995i \(-0.628193\pi\)
−0.391930 + 0.919995i \(0.628193\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1147.54 1.91814 0.959072 0.283162i \(-0.0913835\pi\)
0.959072 + 0.283162i \(0.0913835\pi\)
\(72\) 0 0
\(73\) 490.466 0.786366 0.393183 0.919460i \(-0.371374\pi\)
0.393183 + 0.919460i \(0.371374\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 293.748 0.434750
\(78\) 0 0
\(79\) −645.131 −0.918770 −0.459385 0.888237i \(-0.651930\pi\)
−0.459385 + 0.888237i \(0.651930\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 974.314 1.28849 0.644246 0.764818i \(-0.277171\pi\)
0.644246 + 0.764818i \(0.277171\pi\)
\(84\) 0 0
\(85\) −249.551 −0.318443
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 302.494 0.360273 0.180137 0.983642i \(-0.442346\pi\)
0.180137 + 0.983642i \(0.442346\pi\)
\(90\) 0 0
\(91\) 183.946 0.211899
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.32512 0.0100709
\(96\) 0 0
\(97\) −1142.65 −1.19606 −0.598032 0.801472i \(-0.704051\pi\)
−0.598032 + 0.801472i \(0.704051\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1022.18 1.00703 0.503517 0.863985i \(-0.332039\pi\)
0.503517 + 0.863985i \(0.332039\pi\)
\(102\) 0 0
\(103\) −422.343 −0.404026 −0.202013 0.979383i \(-0.564748\pi\)
−0.202013 + 0.979383i \(0.564748\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 573.263 0.517938 0.258969 0.965886i \(-0.416617\pi\)
0.258969 + 0.965886i \(0.416617\pi\)
\(108\) 0 0
\(109\) −1568.49 −1.37829 −0.689147 0.724621i \(-0.742015\pi\)
−0.689147 + 0.724621i \(0.742015\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −236.274 −0.196697 −0.0983486 0.995152i \(-0.531356\pi\)
−0.0983486 + 0.995152i \(0.531356\pi\)
\(114\) 0 0
\(115\) −866.928 −0.702969
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −404.934 −0.311935
\(120\) 0 0
\(121\) 429.981 0.323051
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −998.202 −0.714255
\(126\) 0 0
\(127\) 1266.32 0.884782 0.442391 0.896822i \(-0.354130\pi\)
0.442391 + 0.896822i \(0.354130\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −591.805 −0.394704 −0.197352 0.980333i \(-0.563234\pi\)
−0.197352 + 0.980333i \(0.563234\pi\)
\(132\) 0 0
\(133\) 15.1314 0.00986508
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2621.03 −1.63452 −0.817262 0.576266i \(-0.804509\pi\)
−0.817262 + 0.576266i \(0.804509\pi\)
\(138\) 0 0
\(139\) −1947.48 −1.18837 −0.594183 0.804330i \(-0.702525\pi\)
−0.594183 + 0.804330i \(0.702525\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1102.73 0.644860
\(144\) 0 0
\(145\) 523.167 0.299632
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 660.857 0.363353 0.181676 0.983358i \(-0.441848\pi\)
0.181676 + 0.983358i \(0.441848\pi\)
\(150\) 0 0
\(151\) −2051.46 −1.10560 −0.552800 0.833314i \(-0.686441\pi\)
−0.552800 + 0.833314i \(0.686441\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1207.17 −0.625562
\(156\) 0 0
\(157\) −2673.81 −1.35919 −0.679596 0.733587i \(-0.737845\pi\)
−0.679596 + 0.733587i \(0.737845\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1406.72 −0.688602
\(162\) 0 0
\(163\) 3318.17 1.59447 0.797236 0.603667i \(-0.206295\pi\)
0.797236 + 0.603667i \(0.206295\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2239.35 1.03764 0.518821 0.854883i \(-0.326371\pi\)
0.518821 + 0.854883i \(0.326371\pi\)
\(168\) 0 0
\(169\) −1506.47 −0.685693
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1656.63 0.728040 0.364020 0.931391i \(-0.381404\pi\)
0.364020 + 0.931391i \(0.381404\pi\)
\(174\) 0 0
\(175\) −744.729 −0.321693
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −814.515 −0.340110 −0.170055 0.985435i \(-0.554395\pi\)
−0.170055 + 0.985435i \(0.554395\pi\)
\(180\) 0 0
\(181\) −2612.41 −1.07281 −0.536406 0.843960i \(-0.680219\pi\)
−0.536406 + 0.843960i \(0.680219\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 536.320 0.213141
\(186\) 0 0
\(187\) −2427.52 −0.949294
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 252.729 0.0957425 0.0478712 0.998854i \(-0.484756\pi\)
0.0478712 + 0.998854i \(0.484756\pi\)
\(192\) 0 0
\(193\) 4460.67 1.66366 0.831829 0.555032i \(-0.187294\pi\)
0.831829 + 0.555032i \(0.187294\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1499.31 −0.542242 −0.271121 0.962545i \(-0.587394\pi\)
−0.271121 + 0.962545i \(0.587394\pi\)
\(198\) 0 0
\(199\) −454.108 −0.161763 −0.0808815 0.996724i \(-0.525774\pi\)
−0.0808815 + 0.996724i \(0.525774\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 848.915 0.293508
\(204\) 0 0
\(205\) −1567.49 −0.534040
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 90.7105 0.0300219
\(210\) 0 0
\(211\) 2278.79 0.743501 0.371750 0.928333i \(-0.378758\pi\)
0.371750 + 0.928333i \(0.378758\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1093.53 −0.346876
\(216\) 0 0
\(217\) −1958.81 −0.612776
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1520.12 −0.462689
\(222\) 0 0
\(223\) 1412.43 0.424141 0.212070 0.977254i \(-0.431979\pi\)
0.212070 + 0.977254i \(0.431979\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3027.07 −0.885082 −0.442541 0.896748i \(-0.645923\pi\)
−0.442541 + 0.896748i \(0.645923\pi\)
\(228\) 0 0
\(229\) −6.14697 −0.00177381 −0.000886906 1.00000i \(-0.500282\pi\)
−0.000886906 1.00000i \(0.500282\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2385.66 −0.670771 −0.335386 0.942081i \(-0.608867\pi\)
−0.335386 + 0.942081i \(0.608867\pi\)
\(234\) 0 0
\(235\) 365.080 0.101341
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1606.40 −0.434768 −0.217384 0.976086i \(-0.569752\pi\)
−0.217384 + 0.976086i \(0.569752\pi\)
\(240\) 0 0
\(241\) 835.200 0.223236 0.111618 0.993751i \(-0.464397\pi\)
0.111618 + 0.993751i \(0.464397\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 211.383 0.0551215
\(246\) 0 0
\(247\) 56.8031 0.0146328
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1326.03 −0.333459 −0.166730 0.986003i \(-0.553321\pi\)
−0.166730 + 0.986003i \(0.553321\pi\)
\(252\) 0 0
\(253\) −8433.08 −2.09559
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5210.12 −1.26458 −0.632292 0.774730i \(-0.717886\pi\)
−0.632292 + 0.774730i \(0.717886\pi\)
\(258\) 0 0
\(259\) 870.257 0.208784
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2478.00 0.580988 0.290494 0.956877i \(-0.406180\pi\)
0.290494 + 0.956877i \(0.406180\pi\)
\(264\) 0 0
\(265\) −2187.62 −0.507110
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4990.25 1.13108 0.565540 0.824721i \(-0.308668\pi\)
0.565540 + 0.824721i \(0.308668\pi\)
\(270\) 0 0
\(271\) 6860.80 1.53787 0.768937 0.639325i \(-0.220786\pi\)
0.768937 + 0.639325i \(0.220786\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4464.55 −0.978991
\(276\) 0 0
\(277\) 781.578 0.169532 0.0847662 0.996401i \(-0.472986\pi\)
0.0847662 + 0.996401i \(0.472986\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5447.06 −1.15638 −0.578192 0.815900i \(-0.696242\pi\)
−0.578192 + 0.815900i \(0.696242\pi\)
\(282\) 0 0
\(283\) 6008.83 1.26215 0.631074 0.775723i \(-0.282615\pi\)
0.631074 + 0.775723i \(0.282615\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2543.48 −0.523126
\(288\) 0 0
\(289\) −1566.65 −0.318878
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5840.09 1.16444 0.582221 0.813030i \(-0.302184\pi\)
0.582221 + 0.813030i \(0.302184\pi\)
\(294\) 0 0
\(295\) 1458.23 0.287802
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5280.81 −1.02140
\(300\) 0 0
\(301\) −1774.42 −0.339787
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2285.66 −0.429103
\(306\) 0 0
\(307\) −8443.25 −1.56965 −0.784824 0.619719i \(-0.787247\pi\)
−0.784824 + 0.619719i \(0.787247\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5326.08 0.971106 0.485553 0.874207i \(-0.338618\pi\)
0.485553 + 0.874207i \(0.338618\pi\)
\(312\) 0 0
\(313\) −8820.06 −1.59278 −0.796388 0.604786i \(-0.793259\pi\)
−0.796388 + 0.604786i \(0.793259\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 31.9617 0.00566293 0.00283147 0.999996i \(-0.499099\pi\)
0.00283147 + 0.999996i \(0.499099\pi\)
\(318\) 0 0
\(319\) 5089.13 0.893218
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −125.045 −0.0215408
\(324\) 0 0
\(325\) −2795.71 −0.477164
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 592.395 0.0992699
\(330\) 0 0
\(331\) −943.305 −0.156643 −0.0783214 0.996928i \(-0.524956\pi\)
−0.0783214 + 0.996928i \(0.524956\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1854.49 −0.302453
\(336\) 0 0
\(337\) −2994.01 −0.483958 −0.241979 0.970281i \(-0.577797\pi\)
−0.241979 + 0.970281i \(0.577797\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −11742.8 −1.86483
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −756.781 −0.117078 −0.0585391 0.998285i \(-0.518644\pi\)
−0.0585391 + 0.998285i \(0.518644\pi\)
\(348\) 0 0
\(349\) −6388.02 −0.979778 −0.489889 0.871785i \(-0.662963\pi\)
−0.489889 + 0.871785i \(0.662963\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −315.429 −0.0475597 −0.0237799 0.999717i \(-0.507570\pi\)
−0.0237799 + 0.999717i \(0.507570\pi\)
\(354\) 0 0
\(355\) 4950.43 0.740117
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6672.00 −0.980876 −0.490438 0.871476i \(-0.663163\pi\)
−0.490438 + 0.871476i \(0.663163\pi\)
\(360\) 0 0
\(361\) −6854.33 −0.999319
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2115.84 0.303420
\(366\) 0 0
\(367\) −23.3540 −0.00332171 −0.00166085 0.999999i \(-0.500529\pi\)
−0.00166085 + 0.999999i \(0.500529\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3549.73 −0.496746
\(372\) 0 0
\(373\) −6294.34 −0.873750 −0.436875 0.899522i \(-0.643915\pi\)
−0.436875 + 0.899522i \(0.643915\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3186.82 0.435358
\(378\) 0 0
\(379\) 1311.59 0.177762 0.0888810 0.996042i \(-0.471671\pi\)
0.0888810 + 0.996042i \(0.471671\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3519.66 0.469572 0.234786 0.972047i \(-0.424561\pi\)
0.234786 + 0.972047i \(0.424561\pi\)
\(384\) 0 0
\(385\) 1267.21 0.167748
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12858.6 −1.67598 −0.837988 0.545689i \(-0.816268\pi\)
−0.837988 + 0.545689i \(0.816268\pi\)
\(390\) 0 0
\(391\) 11625.0 1.50359
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2783.05 −0.354508
\(396\) 0 0
\(397\) 13317.7 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12106.3 −1.50763 −0.753817 0.657085i \(-0.771789\pi\)
−0.753817 + 0.657085i \(0.771789\pi\)
\(402\) 0 0
\(403\) −7353.36 −0.908925
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5217.07 0.635382
\(408\) 0 0
\(409\) −12778.6 −1.54489 −0.772447 0.635079i \(-0.780968\pi\)
−0.772447 + 0.635079i \(0.780968\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2366.19 0.281919
\(414\) 0 0
\(415\) 4203.13 0.497166
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15045.6 −1.75423 −0.877117 0.480277i \(-0.840536\pi\)
−0.877117 + 0.480277i \(0.840536\pi\)
\(420\) 0 0
\(421\) 2782.26 0.322088 0.161044 0.986947i \(-0.448514\pi\)
0.161044 + 0.986947i \(0.448514\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6154.41 0.702430
\(426\) 0 0
\(427\) −3708.82 −0.420333
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5223.64 0.583791 0.291896 0.956450i \(-0.405714\pi\)
0.291896 + 0.956450i \(0.405714\pi\)
\(432\) 0 0
\(433\) −4568.84 −0.507077 −0.253539 0.967325i \(-0.581594\pi\)
−0.253539 + 0.967325i \(0.581594\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −434.399 −0.0475518
\(438\) 0 0
\(439\) −380.473 −0.0413644 −0.0206822 0.999786i \(-0.506584\pi\)
−0.0206822 + 0.999786i \(0.506584\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3397.79 −0.364411 −0.182205 0.983261i \(-0.558324\pi\)
−0.182205 + 0.983261i \(0.558324\pi\)
\(444\) 0 0
\(445\) 1304.94 0.139012
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16161.4 1.69867 0.849336 0.527853i \(-0.177003\pi\)
0.849336 + 0.527853i \(0.177003\pi\)
\(450\) 0 0
\(451\) −15247.8 −1.59200
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 793.532 0.0817612
\(456\) 0 0
\(457\) 8906.44 0.911653 0.455827 0.890069i \(-0.349344\pi\)
0.455827 + 0.890069i \(0.349344\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3435.99 0.347137 0.173568 0.984822i \(-0.444470\pi\)
0.173568 + 0.984822i \(0.444470\pi\)
\(462\) 0 0
\(463\) −7531.44 −0.755974 −0.377987 0.925811i \(-0.623384\pi\)
−0.377987 + 0.925811i \(0.623384\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8808.26 0.872800 0.436400 0.899753i \(-0.356253\pi\)
0.436400 + 0.899753i \(0.356253\pi\)
\(468\) 0 0
\(469\) −3009.19 −0.296271
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10637.4 −1.03406
\(474\) 0 0
\(475\) −229.975 −0.0222147
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 978.352 0.0933237 0.0466618 0.998911i \(-0.485142\pi\)
0.0466618 + 0.998911i \(0.485142\pi\)
\(480\) 0 0
\(481\) 3266.94 0.309688
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4929.31 −0.461502
\(486\) 0 0
\(487\) 7188.45 0.668870 0.334435 0.942419i \(-0.391454\pi\)
0.334435 + 0.942419i \(0.391454\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6156.65 0.565877 0.282939 0.959138i \(-0.408691\pi\)
0.282939 + 0.959138i \(0.408691\pi\)
\(492\) 0 0
\(493\) −7015.39 −0.640887
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8032.80 0.724990
\(498\) 0 0
\(499\) −13832.0 −1.24089 −0.620445 0.784250i \(-0.713048\pi\)
−0.620445 + 0.784250i \(0.713048\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16630.6 1.47420 0.737100 0.675783i \(-0.236195\pi\)
0.737100 + 0.675783i \(0.236195\pi\)
\(504\) 0 0
\(505\) 4409.61 0.388564
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11795.0 −1.02712 −0.513562 0.858053i \(-0.671674\pi\)
−0.513562 + 0.858053i \(0.671674\pi\)
\(510\) 0 0
\(511\) 3433.26 0.297219
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1821.96 −0.155894
\(516\) 0 0
\(517\) 3551.33 0.302103
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 597.161 0.0502151 0.0251076 0.999685i \(-0.492007\pi\)
0.0251076 + 0.999685i \(0.492007\pi\)
\(522\) 0 0
\(523\) 6287.96 0.525724 0.262862 0.964833i \(-0.415334\pi\)
0.262862 + 0.964833i \(0.415334\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16187.5 1.33802
\(528\) 0 0
\(529\) 28217.8 2.31921
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9548.23 −0.775947
\(534\) 0 0
\(535\) 2473.02 0.199847
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2056.24 0.164320
\(540\) 0 0
\(541\) −6931.94 −0.550882 −0.275441 0.961318i \(-0.588824\pi\)
−0.275441 + 0.961318i \(0.588824\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6766.37 −0.531816
\(546\) 0 0
\(547\) 24713.6 1.93177 0.965884 0.258976i \(-0.0833850\pi\)
0.965884 + 0.258976i \(0.0833850\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 262.148 0.0202684
\(552\) 0 0
\(553\) −4515.91 −0.347263
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2598.91 −0.197700 −0.0988502 0.995102i \(-0.531516\pi\)
−0.0988502 + 0.995102i \(0.531516\pi\)
\(558\) 0 0
\(559\) −6661.17 −0.504002
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15673.3 −1.17327 −0.586636 0.809851i \(-0.699548\pi\)
−0.586636 + 0.809851i \(0.699548\pi\)
\(564\) 0 0
\(565\) −1019.27 −0.0758957
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23643.3 1.74196 0.870981 0.491316i \(-0.163484\pi\)
0.870981 + 0.491316i \(0.163484\pi\)
\(570\) 0 0
\(571\) −11308.1 −0.828772 −0.414386 0.910101i \(-0.636004\pi\)
−0.414386 + 0.910101i \(0.636004\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 21380.1 1.55063
\(576\) 0 0
\(577\) −26768.4 −1.93134 −0.965669 0.259776i \(-0.916351\pi\)
−0.965669 + 0.259776i \(0.916351\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6820.20 0.487004
\(582\) 0 0
\(583\) −21280.1 −1.51172
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12495.4 0.878607 0.439304 0.898339i \(-0.355225\pi\)
0.439304 + 0.898339i \(0.355225\pi\)
\(588\) 0 0
\(589\) −604.886 −0.0423156
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1891.59 −0.130992 −0.0654959 0.997853i \(-0.520863\pi\)
−0.0654959 + 0.997853i \(0.520863\pi\)
\(594\) 0 0
\(595\) −1746.86 −0.120360
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6620.09 0.451569 0.225784 0.974177i \(-0.427506\pi\)
0.225784 + 0.974177i \(0.427506\pi\)
\(600\) 0 0
\(601\) −28416.4 −1.92867 −0.964333 0.264690i \(-0.914730\pi\)
−0.964333 + 0.264690i \(0.914730\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1854.91 0.124649
\(606\) 0 0
\(607\) −8543.67 −0.571297 −0.285648 0.958335i \(-0.592209\pi\)
−0.285648 + 0.958335i \(0.592209\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2223.85 0.147246
\(612\) 0 0
\(613\) 20334.9 1.33984 0.669918 0.742435i \(-0.266329\pi\)
0.669918 + 0.742435i \(0.266329\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27044.6 1.76463 0.882315 0.470660i \(-0.155984\pi\)
0.882315 + 0.470660i \(0.155984\pi\)
\(618\) 0 0
\(619\) 5072.37 0.329363 0.164682 0.986347i \(-0.447340\pi\)
0.164682 + 0.986347i \(0.447340\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2117.46 0.136170
\(624\) 0 0
\(625\) 8992.56 0.575524
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7191.76 −0.455889
\(630\) 0 0
\(631\) −15462.5 −0.975517 −0.487759 0.872979i \(-0.662185\pi\)
−0.487759 + 0.872979i \(0.662185\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5462.81 0.341394
\(636\) 0 0
\(637\) 1287.62 0.0800901
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7083.52 −0.436478 −0.218239 0.975895i \(-0.570031\pi\)
−0.218239 + 0.975895i \(0.570031\pi\)
\(642\) 0 0
\(643\) −22814.3 −1.39924 −0.699619 0.714516i \(-0.746647\pi\)
−0.699619 + 0.714516i \(0.746647\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18553.9 1.12740 0.563700 0.825980i \(-0.309377\pi\)
0.563700 + 0.825980i \(0.309377\pi\)
\(648\) 0 0
\(649\) 14185.0 0.857951
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8293.14 −0.496992 −0.248496 0.968633i \(-0.579936\pi\)
−0.248496 + 0.968633i \(0.579936\pi\)
\(654\) 0 0
\(655\) −2553.01 −0.152297
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −22379.6 −1.32289 −0.661447 0.749992i \(-0.730057\pi\)
−0.661447 + 0.749992i \(0.730057\pi\)
\(660\) 0 0
\(661\) 13096.5 0.770643 0.385322 0.922782i \(-0.374090\pi\)
0.385322 + 0.922782i \(0.374090\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 65.2758 0.00380645
\(666\) 0 0
\(667\) −24371.1 −1.41477
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22233.9 −1.27918
\(672\) 0 0
\(673\) −27876.6 −1.59668 −0.798339 0.602209i \(-0.794288\pi\)
−0.798339 + 0.602209i \(0.794288\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2365.28 −0.134276 −0.0671381 0.997744i \(-0.521387\pi\)
−0.0671381 + 0.997744i \(0.521387\pi\)
\(678\) 0 0
\(679\) −7998.53 −0.452070
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −31403.9 −1.75935 −0.879675 0.475576i \(-0.842240\pi\)
−0.879675 + 0.475576i \(0.842240\pi\)
\(684\) 0 0
\(685\) −11307.0 −0.630682
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −13325.7 −0.736818
\(690\) 0 0
\(691\) −14302.5 −0.787397 −0.393698 0.919240i \(-0.628805\pi\)
−0.393698 + 0.919240i \(0.628805\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8401.30 −0.458532
\(696\) 0 0
\(697\) 21019.2 1.14227
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32812.2 1.76790 0.883950 0.467581i \(-0.154875\pi\)
0.883950 + 0.467581i \(0.154875\pi\)
\(702\) 0 0
\(703\) 268.738 0.0144177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7155.24 0.380623
\(708\) 0 0
\(709\) 34531.4 1.82913 0.914565 0.404439i \(-0.132533\pi\)
0.914565 + 0.404439i \(0.132533\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 56234.4 2.95371
\(714\) 0 0
\(715\) 4757.11 0.248820
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1577.27 0.0818113 0.0409056 0.999163i \(-0.486976\pi\)
0.0409056 + 0.999163i \(0.486976\pi\)
\(720\) 0 0
\(721\) −2956.40 −0.152707
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12902.3 −0.660936
\(726\) 0 0
\(727\) 35968.9 1.83496 0.917479 0.397784i \(-0.130221\pi\)
0.917479 + 0.397784i \(0.130221\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 14663.7 0.741939
\(732\) 0 0
\(733\) 19579.7 0.986619 0.493310 0.869854i \(-0.335787\pi\)
0.493310 + 0.869854i \(0.335787\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −18039.7 −0.901627
\(738\) 0 0
\(739\) −963.684 −0.0479698 −0.0239849 0.999712i \(-0.507635\pi\)
−0.0239849 + 0.999712i \(0.507635\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30102.0 1.48632 0.743158 0.669115i \(-0.233327\pi\)
0.743158 + 0.669115i \(0.233327\pi\)
\(744\) 0 0
\(745\) 2850.90 0.140200
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4012.84 0.195762
\(750\) 0 0
\(751\) 19002.8 0.923331 0.461666 0.887054i \(-0.347252\pi\)
0.461666 + 0.887054i \(0.347252\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8849.89 −0.426597
\(756\) 0 0
\(757\) 23766.6 1.14110 0.570550 0.821263i \(-0.306730\pi\)
0.570550 + 0.821263i \(0.306730\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7390.89 −0.352063 −0.176031 0.984385i \(-0.556326\pi\)
−0.176031 + 0.984385i \(0.556326\pi\)
\(762\) 0 0
\(763\) −10979.4 −0.520947
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8882.68 0.418168
\(768\) 0 0
\(769\) 20847.7 0.977616 0.488808 0.872391i \(-0.337432\pi\)
0.488808 + 0.872391i \(0.337432\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 26362.7 1.22665 0.613325 0.789831i \(-0.289832\pi\)
0.613325 + 0.789831i \(0.289832\pi\)
\(774\) 0 0
\(775\) 29771.0 1.37988
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −785.436 −0.0361248
\(780\) 0 0
\(781\) 48155.5 2.20633
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11534.6 −0.524445
\(786\) 0 0
\(787\) 9668.13 0.437906 0.218953 0.975735i \(-0.429736\pi\)
0.218953 + 0.975735i \(0.429736\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1653.92 −0.0743445
\(792\) 0 0
\(793\) −13922.9 −0.623476
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19201.7 0.853398 0.426699 0.904394i \(-0.359676\pi\)
0.426699 + 0.904394i \(0.359676\pi\)
\(798\) 0 0
\(799\) −4895.53 −0.216760
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 20582.0 0.904510
\(804\) 0 0
\(805\) −6068.49 −0.265697
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −15965.2 −0.693829 −0.346914 0.937897i \(-0.612771\pi\)
−0.346914 + 0.937897i \(0.612771\pi\)
\(810\) 0 0
\(811\) 40776.8 1.76556 0.882778 0.469791i \(-0.155671\pi\)
0.882778 + 0.469791i \(0.155671\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 14314.4 0.615228
\(816\) 0 0
\(817\) −547.947 −0.0234642
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −29419.1 −1.25059 −0.625296 0.780388i \(-0.715022\pi\)
−0.625296 + 0.780388i \(0.715022\pi\)
\(822\) 0 0
\(823\) −21955.7 −0.929925 −0.464963 0.885330i \(-0.653932\pi\)
−0.464963 + 0.885330i \(0.653932\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −31083.4 −1.30699 −0.653493 0.756933i \(-0.726697\pi\)
−0.653493 + 0.756933i \(0.726697\pi\)
\(828\) 0 0
\(829\) −20566.2 −0.861635 −0.430817 0.902439i \(-0.641775\pi\)
−0.430817 + 0.902439i \(0.641775\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2834.54 −0.117900
\(834\) 0 0
\(835\) 9660.43 0.400375
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12908.4 −0.531165 −0.265582 0.964088i \(-0.585564\pi\)
−0.265582 + 0.964088i \(0.585564\pi\)
\(840\) 0 0
\(841\) −9681.72 −0.396971
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6498.81 −0.264575
\(846\) 0 0
\(847\) 3009.87 0.122102
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24983.8 −1.00638
\(852\) 0 0
\(853\) −19464.3 −0.781297 −0.390648 0.920540i \(-0.627749\pi\)
−0.390648 + 0.920540i \(0.627749\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17420.5 0.694366 0.347183 0.937797i \(-0.387138\pi\)
0.347183 + 0.937797i \(0.387138\pi\)
\(858\) 0 0
\(859\) 17576.1 0.698126 0.349063 0.937099i \(-0.386500\pi\)
0.349063 + 0.937099i \(0.386500\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16781.2 −0.661920 −0.330960 0.943645i \(-0.607373\pi\)
−0.330960 + 0.943645i \(0.607373\pi\)
\(864\) 0 0
\(865\) 7146.58 0.280915
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −27072.3 −1.05681
\(870\) 0 0
\(871\) −11296.5 −0.439456
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6987.42 −0.269963
\(876\) 0 0
\(877\) −11052.6 −0.425564 −0.212782 0.977100i \(-0.568252\pi\)
−0.212782 + 0.977100i \(0.568252\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 27155.3 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(882\) 0 0
\(883\) −16920.5 −0.644869 −0.322435 0.946592i \(-0.604501\pi\)
−0.322435 + 0.946592i \(0.604501\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12728.0 −0.481809 −0.240904 0.970549i \(-0.577444\pi\)
−0.240904 + 0.970549i \(0.577444\pi\)
\(888\) 0 0
\(889\) 8864.21 0.334416
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 182.934 0.00685514
\(894\) 0 0
\(895\) −3513.77 −0.131232
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −33935.9 −1.25898
\(900\) 0 0
\(901\) 29334.8 1.08467
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11269.8 −0.413945
\(906\) 0 0
\(907\) 7314.94 0.267793 0.133897 0.990995i \(-0.457251\pi\)
0.133897 + 0.990995i \(0.457251\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 33450.2 1.21652 0.608262 0.793736i \(-0.291867\pi\)
0.608262 + 0.793736i \(0.291867\pi\)
\(912\) 0 0
\(913\) 40886.2 1.48208
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4142.63 −0.149184
\(918\) 0 0
\(919\) 10448.9 0.375058 0.187529 0.982259i \(-0.439952\pi\)
0.187529 + 0.982259i \(0.439952\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 30155.1 1.07537
\(924\) 0 0
\(925\) −13226.7 −0.470151
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −11230.1 −0.396606 −0.198303 0.980141i \(-0.563543\pi\)
−0.198303 + 0.980141i \(0.563543\pi\)
\(930\) 0 0
\(931\) 105.920 0.00372865
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −10472.2 −0.366286
\(936\) 0 0
\(937\) 34110.1 1.18925 0.594625 0.804003i \(-0.297300\pi\)
0.594625 + 0.804003i \(0.297300\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14232.0 0.493039 0.246520 0.969138i \(-0.420713\pi\)
0.246520 + 0.969138i \(0.420713\pi\)
\(942\) 0 0
\(943\) 73019.6 2.52158
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1587.95 0.0544893 0.0272446 0.999629i \(-0.491327\pi\)
0.0272446 + 0.999629i \(0.491327\pi\)
\(948\) 0 0
\(949\) 12888.5 0.440861
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2167.64 −0.0736796 −0.0368398 0.999321i \(-0.511729\pi\)
−0.0368398 + 0.999321i \(0.511729\pi\)
\(954\) 0 0
\(955\) 1090.26 0.0369423
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18347.2 −0.617792
\(960\) 0 0
\(961\) 48513.6 1.62846
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19243.1 0.641923
\(966\) 0 0
\(967\) 36873.9 1.22625 0.613125 0.789986i \(-0.289912\pi\)
0.613125 + 0.789986i \(0.289912\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7783.35 −0.257240 −0.128620 0.991694i \(-0.541055\pi\)
−0.128620 + 0.991694i \(0.541055\pi\)
\(972\) 0 0
\(973\) −13632.3 −0.449160
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −32743.7 −1.07222 −0.536112 0.844147i \(-0.680107\pi\)
−0.536112 + 0.844147i \(0.680107\pi\)
\(978\) 0 0
\(979\) 12693.9 0.414401
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −34153.1 −1.10815 −0.554076 0.832466i \(-0.686928\pi\)
−0.554076 + 0.832466i \(0.686928\pi\)
\(984\) 0 0
\(985\) −6467.94 −0.209224
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 50940.9 1.63784
\(990\) 0 0
\(991\) −52838.0 −1.69370 −0.846849 0.531833i \(-0.821503\pi\)
−0.846849 + 0.531833i \(0.821503\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1958.99 −0.0624163
\(996\) 0 0
\(997\) 24190.0 0.768409 0.384204 0.923248i \(-0.374476\pi\)
0.384204 + 0.923248i \(0.374476\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.4.a.z.1.2 3
3.2 odd 2 672.4.a.o.1.2 3
4.3 odd 2 2016.4.a.y.1.2 3
12.11 even 2 672.4.a.q.1.2 yes 3
24.5 odd 2 1344.4.a.bv.1.2 3
24.11 even 2 1344.4.a.bt.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.a.o.1.2 3 3.2 odd 2
672.4.a.q.1.2 yes 3 12.11 even 2
1344.4.a.bt.1.2 3 24.11 even 2
1344.4.a.bv.1.2 3 24.5 odd 2
2016.4.a.y.1.2 3 4.3 odd 2
2016.4.a.z.1.2 3 1.1 even 1 trivial