Properties

Label 2016.4.a.j.1.2
Level $2016$
Weight $4$
Character 2016.1
Self dual yes
Analytic conductor $118.948$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,4,Mod(1,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2016.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-10,0,14,0,0,0,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(118.947850572\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{137}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.35235\) of defining polynomial
Character \(\chi\) \(=\) 2016.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.70470 q^{5} +7.00000 q^{7} +0.704700 q^{11} +35.4094 q^{13} -26.7047 q^{17} -30.8188 q^{19} -5.88590 q^{23} -80.0470 q^{25} -252.094 q^{29} -37.6376 q^{31} +46.9329 q^{35} -139.866 q^{37} +46.7047 q^{41} +254.094 q^{43} -607.960 q^{47} +49.0000 q^{49} -298.685 q^{53} +4.72480 q^{55} -178.591 q^{59} +390.188 q^{61} +237.409 q^{65} +349.141 q^{67} -348.477 q^{71} -646.416 q^{73} +4.93290 q^{77} +1047.50 q^{79} -278.819 q^{83} -179.047 q^{85} -439.309 q^{89} +247.866 q^{91} -206.631 q^{95} -154.309 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{5} + 14 q^{7} - 22 q^{11} + 24 q^{13} - 30 q^{17} + 32 q^{19} - 82 q^{23} + 74 q^{25} - 36 q^{29} + 112 q^{31} - 70 q^{35} + 48 q^{37} + 70 q^{41} + 40 q^{43} - 420 q^{47} + 98 q^{49} - 176 q^{53}+ \cdots - 1760 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.70470 0.599687 0.299843 0.953988i \(-0.403066\pi\)
0.299843 + 0.953988i \(0.403066\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.704700 0.0193159 0.00965796 0.999953i \(-0.496926\pi\)
0.00965796 + 0.999953i \(0.496926\pi\)
\(12\) 0 0
\(13\) 35.4094 0.755446 0.377723 0.925919i \(-0.376707\pi\)
0.377723 + 0.925919i \(0.376707\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −26.7047 −0.380991 −0.190495 0.981688i \(-0.561009\pi\)
−0.190495 + 0.981688i \(0.561009\pi\)
\(18\) 0 0
\(19\) −30.8188 −0.372122 −0.186061 0.982538i \(-0.559572\pi\)
−0.186061 + 0.982538i \(0.559572\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.88590 −0.0533607 −0.0266803 0.999644i \(-0.508494\pi\)
−0.0266803 + 0.999644i \(0.508494\pi\)
\(24\) 0 0
\(25\) −80.0470 −0.640376
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −252.094 −1.61423 −0.807115 0.590394i \(-0.798972\pi\)
−0.807115 + 0.590394i \(0.798972\pi\)
\(30\) 0 0
\(31\) −37.6376 −0.218062 −0.109031 0.994038i \(-0.534775\pi\)
−0.109031 + 0.994038i \(0.534775\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 46.9329 0.226660
\(36\) 0 0
\(37\) −139.866 −0.621454 −0.310727 0.950499i \(-0.600572\pi\)
−0.310727 + 0.950499i \(0.600572\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 46.7047 0.177904 0.0889518 0.996036i \(-0.471648\pi\)
0.0889518 + 0.996036i \(0.471648\pi\)
\(42\) 0 0
\(43\) 254.094 0.901139 0.450569 0.892741i \(-0.351221\pi\)
0.450569 + 0.892741i \(0.351221\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −607.960 −1.88681 −0.943405 0.331643i \(-0.892397\pi\)
−0.943405 + 0.331643i \(0.892397\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −298.685 −0.774103 −0.387052 0.922058i \(-0.626507\pi\)
−0.387052 + 0.922058i \(0.626507\pi\)
\(54\) 0 0
\(55\) 4.72480 0.0115835
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −178.591 −0.394077 −0.197038 0.980396i \(-0.563132\pi\)
−0.197038 + 0.980396i \(0.563132\pi\)
\(60\) 0 0
\(61\) 390.188 0.818991 0.409496 0.912312i \(-0.365705\pi\)
0.409496 + 0.912312i \(0.365705\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 237.409 0.453031
\(66\) 0 0
\(67\) 349.141 0.636632 0.318316 0.947985i \(-0.396883\pi\)
0.318316 + 0.947985i \(0.396883\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −348.477 −0.582487 −0.291243 0.956649i \(-0.594069\pi\)
−0.291243 + 0.956649i \(0.594069\pi\)
\(72\) 0 0
\(73\) −646.416 −1.03640 −0.518201 0.855259i \(-0.673398\pi\)
−0.518201 + 0.855259i \(0.673398\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.93290 0.00730073
\(78\) 0 0
\(79\) 1047.50 1.49181 0.745907 0.666050i \(-0.232016\pi\)
0.745907 + 0.666050i \(0.232016\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −278.819 −0.368727 −0.184363 0.982858i \(-0.559022\pi\)
−0.184363 + 0.982858i \(0.559022\pi\)
\(84\) 0 0
\(85\) −179.047 −0.228475
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −439.309 −0.523221 −0.261610 0.965174i \(-0.584254\pi\)
−0.261610 + 0.965174i \(0.584254\pi\)
\(90\) 0 0
\(91\) 247.866 0.285532
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −206.631 −0.223157
\(96\) 0 0
\(97\) −154.309 −0.161522 −0.0807612 0.996733i \(-0.525735\pi\)
−0.0807612 + 0.996733i \(0.525735\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −166.060 −0.163600 −0.0818001 0.996649i \(-0.526067\pi\)
−0.0818001 + 0.996649i \(0.526067\pi\)
\(102\) 0 0
\(103\) 42.4428 0.0406021 0.0203010 0.999794i \(-0.493538\pi\)
0.0203010 + 0.999794i \(0.493538\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −293.470 −0.265148 −0.132574 0.991173i \(-0.542324\pi\)
−0.132574 + 0.991173i \(0.542324\pi\)
\(108\) 0 0
\(109\) −1176.01 −1.03341 −0.516705 0.856164i \(-0.672842\pi\)
−0.516705 + 0.856164i \(0.672842\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 182.537 0.151961 0.0759806 0.997109i \(-0.475791\pi\)
0.0759806 + 0.997109i \(0.475791\pi\)
\(114\) 0 0
\(115\) −39.4632 −0.0319997
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −186.933 −0.144001
\(120\) 0 0
\(121\) −1330.50 −0.999627
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1374.78 −0.983711
\(126\) 0 0
\(127\) 1374.59 0.960435 0.480217 0.877150i \(-0.340558\pi\)
0.480217 + 0.877150i \(0.340558\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1316.91 −0.878315 −0.439157 0.898410i \(-0.644723\pi\)
−0.439157 + 0.898410i \(0.644723\pi\)
\(132\) 0 0
\(133\) −215.732 −0.140649
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2266.98 1.41373 0.706866 0.707348i \(-0.250109\pi\)
0.706866 + 0.707348i \(0.250109\pi\)
\(138\) 0 0
\(139\) 1162.93 0.709627 0.354813 0.934937i \(-0.384544\pi\)
0.354813 + 0.934937i \(0.384544\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 24.9530 0.0145921
\(144\) 0 0
\(145\) −1690.21 −0.968032
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 54.0674 0.0297273 0.0148637 0.999890i \(-0.495269\pi\)
0.0148637 + 0.999890i \(0.495269\pi\)
\(150\) 0 0
\(151\) −862.014 −0.464567 −0.232284 0.972648i \(-0.574620\pi\)
−0.232284 + 0.972648i \(0.574620\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −252.349 −0.130769
\(156\) 0 0
\(157\) 1459.75 0.742040 0.371020 0.928625i \(-0.379008\pi\)
0.371020 + 0.928625i \(0.379008\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −41.2013 −0.0201684
\(162\) 0 0
\(163\) 1067.77 0.513094 0.256547 0.966532i \(-0.417415\pi\)
0.256547 + 0.966532i \(0.417415\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2082.86 0.965129 0.482564 0.875861i \(-0.339705\pi\)
0.482564 + 0.875861i \(0.339705\pi\)
\(168\) 0 0
\(169\) −943.174 −0.429301
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2210.17 −0.971306 −0.485653 0.874152i \(-0.661418\pi\)
−0.485653 + 0.874152i \(0.661418\pi\)
\(174\) 0 0
\(175\) −560.329 −0.242039
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −934.718 −0.390302 −0.195151 0.980773i \(-0.562520\pi\)
−0.195151 + 0.980773i \(0.562520\pi\)
\(180\) 0 0
\(181\) 5.85221 0.00240327 0.00120163 0.999999i \(-0.499618\pi\)
0.00120163 + 0.999999i \(0.499618\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −937.758 −0.372678
\(186\) 0 0
\(187\) −18.8188 −0.00735918
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2377.34 −0.900618 −0.450309 0.892873i \(-0.648686\pi\)
−0.450309 + 0.892873i \(0.648686\pi\)
\(192\) 0 0
\(193\) −2233.85 −0.833141 −0.416570 0.909103i \(-0.636768\pi\)
−0.416570 + 0.909103i \(0.636768\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2358.95 −0.853139 −0.426570 0.904455i \(-0.640278\pi\)
−0.426570 + 0.904455i \(0.640278\pi\)
\(198\) 0 0
\(199\) 367.759 0.131004 0.0655018 0.997852i \(-0.479135\pi\)
0.0655018 + 0.997852i \(0.479135\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1764.66 −0.610122
\(204\) 0 0
\(205\) 313.141 0.106686
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −21.7180 −0.00718787
\(210\) 0 0
\(211\) 1873.13 0.611144 0.305572 0.952169i \(-0.401152\pi\)
0.305572 + 0.952169i \(0.401152\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1703.62 0.540401
\(216\) 0 0
\(217\) −263.463 −0.0824196
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −945.597 −0.287818
\(222\) 0 0
\(223\) −3352.83 −1.00683 −0.503413 0.864046i \(-0.667923\pi\)
−0.503413 + 0.864046i \(0.667923\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1006.08 0.294167 0.147084 0.989124i \(-0.453011\pi\)
0.147084 + 0.989124i \(0.453011\pi\)
\(228\) 0 0
\(229\) 1550.82 0.447515 0.223758 0.974645i \(-0.428168\pi\)
0.223758 + 0.974645i \(0.428168\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −592.215 −0.166512 −0.0832559 0.996528i \(-0.526532\pi\)
−0.0832559 + 0.996528i \(0.526532\pi\)
\(234\) 0 0
\(235\) −4076.19 −1.13149
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5096.56 1.37937 0.689684 0.724111i \(-0.257749\pi\)
0.689684 + 0.724111i \(0.257749\pi\)
\(240\) 0 0
\(241\) −4499.44 −1.20263 −0.601316 0.799011i \(-0.705357\pi\)
−0.601316 + 0.799011i \(0.705357\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 328.530 0.0856695
\(246\) 0 0
\(247\) −1091.28 −0.281118
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1602.75 0.403047 0.201523 0.979484i \(-0.435411\pi\)
0.201523 + 0.979484i \(0.435411\pi\)
\(252\) 0 0
\(253\) −4.14779 −0.00103071
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4953.82 1.20238 0.601188 0.799107i \(-0.294694\pi\)
0.601188 + 0.799107i \(0.294694\pi\)
\(258\) 0 0
\(259\) −979.061 −0.234888
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3675.40 0.861730 0.430865 0.902416i \(-0.358208\pi\)
0.430865 + 0.902416i \(0.358208\pi\)
\(264\) 0 0
\(265\) −2002.59 −0.464219
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1989.64 −0.450969 −0.225485 0.974247i \(-0.572397\pi\)
−0.225485 + 0.974247i \(0.572397\pi\)
\(270\) 0 0
\(271\) 1638.85 0.367354 0.183677 0.982987i \(-0.441200\pi\)
0.183677 + 0.982987i \(0.441200\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −56.4091 −0.0123694
\(276\) 0 0
\(277\) −7810.87 −1.69426 −0.847130 0.531386i \(-0.821671\pi\)
−0.847130 + 0.531386i \(0.821671\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3018.34 −0.640779 −0.320389 0.947286i \(-0.603814\pi\)
−0.320389 + 0.947286i \(0.603814\pi\)
\(282\) 0 0
\(283\) −7348.13 −1.54347 −0.771734 0.635946i \(-0.780610\pi\)
−0.771734 + 0.635946i \(0.780610\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 326.933 0.0672413
\(288\) 0 0
\(289\) −4199.86 −0.854846
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4211.91 −0.839804 −0.419902 0.907569i \(-0.637936\pi\)
−0.419902 + 0.907569i \(0.637936\pi\)
\(294\) 0 0
\(295\) −1197.40 −0.236322
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −208.416 −0.0403111
\(300\) 0 0
\(301\) 1778.66 0.340598
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2616.09 0.491138
\(306\) 0 0
\(307\) −7553.16 −1.40417 −0.702087 0.712091i \(-0.747748\pi\)
−0.702087 + 0.712091i \(0.747748\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2656.58 0.484375 0.242188 0.970229i \(-0.422135\pi\)
0.242188 + 0.970229i \(0.422135\pi\)
\(312\) 0 0
\(313\) −10819.2 −1.95379 −0.976893 0.213731i \(-0.931439\pi\)
−0.976893 + 0.213731i \(0.931439\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1704.91 −0.302074 −0.151037 0.988528i \(-0.548261\pi\)
−0.151037 + 0.988528i \(0.548261\pi\)
\(318\) 0 0
\(319\) −177.651 −0.0311803
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 823.007 0.141775
\(324\) 0 0
\(325\) −2834.42 −0.483770
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4255.72 −0.713147
\(330\) 0 0
\(331\) 75.1144 0.0124733 0.00623665 0.999981i \(-0.498015\pi\)
0.00623665 + 0.999981i \(0.498015\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2340.89 0.381780
\(336\) 0 0
\(337\) −1474.97 −0.238417 −0.119208 0.992869i \(-0.538036\pi\)
−0.119208 + 0.992869i \(0.538036\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −26.5232 −0.00421206
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −73.8327 −0.0114223 −0.00571116 0.999984i \(-0.501818\pi\)
−0.00571116 + 0.999984i \(0.501818\pi\)
\(348\) 0 0
\(349\) 3803.45 0.583364 0.291682 0.956515i \(-0.405785\pi\)
0.291682 + 0.956515i \(0.405785\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7569.15 −1.14126 −0.570631 0.821207i \(-0.693301\pi\)
−0.570631 + 0.821207i \(0.693301\pi\)
\(354\) 0 0
\(355\) −2336.43 −0.349309
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5094.05 0.748896 0.374448 0.927248i \(-0.377832\pi\)
0.374448 + 0.927248i \(0.377832\pi\)
\(360\) 0 0
\(361\) −5909.20 −0.861525
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4334.03 −0.621516
\(366\) 0 0
\(367\) 8647.95 1.23003 0.615013 0.788517i \(-0.289151\pi\)
0.615013 + 0.788517i \(0.289151\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2090.79 −0.292584
\(372\) 0 0
\(373\) −13760.1 −1.91011 −0.955053 0.296436i \(-0.904202\pi\)
−0.955053 + 0.296436i \(0.904202\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8926.50 −1.21946
\(378\) 0 0
\(379\) −2462.66 −0.333768 −0.166884 0.985977i \(-0.553371\pi\)
−0.166884 + 0.985977i \(0.553371\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2553.40 0.340659 0.170330 0.985387i \(-0.445517\pi\)
0.170330 + 0.985387i \(0.445517\pi\)
\(384\) 0 0
\(385\) 33.0736 0.00437815
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5247.13 0.683907 0.341954 0.939717i \(-0.388911\pi\)
0.341954 + 0.939717i \(0.388911\pi\)
\(390\) 0 0
\(391\) 157.181 0.0203299
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7023.20 0.894621
\(396\) 0 0
\(397\) −11500.6 −1.45390 −0.726952 0.686688i \(-0.759064\pi\)
−0.726952 + 0.686688i \(0.759064\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 288.322 0.0359055 0.0179528 0.999839i \(-0.494285\pi\)
0.0179528 + 0.999839i \(0.494285\pi\)
\(402\) 0 0
\(403\) −1332.72 −0.164734
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −98.5634 −0.0120039
\(408\) 0 0
\(409\) 13567.8 1.64030 0.820151 0.572147i \(-0.193889\pi\)
0.820151 + 0.572147i \(0.193889\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1250.13 −0.148947
\(414\) 0 0
\(415\) −1869.40 −0.221121
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12094.2 −1.41012 −0.705059 0.709148i \(-0.749080\pi\)
−0.705059 + 0.709148i \(0.749080\pi\)
\(420\) 0 0
\(421\) 2030.79 0.235094 0.117547 0.993067i \(-0.462497\pi\)
0.117547 + 0.993067i \(0.462497\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2137.63 0.243977
\(426\) 0 0
\(427\) 2731.32 0.309550
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11236.7 1.25580 0.627902 0.778292i \(-0.283914\pi\)
0.627902 + 0.778292i \(0.283914\pi\)
\(432\) 0 0
\(433\) −2847.80 −0.316066 −0.158033 0.987434i \(-0.550515\pi\)
−0.158033 + 0.987434i \(0.550515\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 181.396 0.0198567
\(438\) 0 0
\(439\) 596.831 0.0648866 0.0324433 0.999474i \(-0.489671\pi\)
0.0324433 + 0.999474i \(0.489671\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10883.5 −1.16725 −0.583624 0.812024i \(-0.698366\pi\)
−0.583624 + 0.812024i \(0.698366\pi\)
\(444\) 0 0
\(445\) −2945.43 −0.313768
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6593.68 0.693040 0.346520 0.938043i \(-0.387363\pi\)
0.346520 + 0.938043i \(0.387363\pi\)
\(450\) 0 0
\(451\) 32.9128 0.00343637
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1661.87 0.171230
\(456\) 0 0
\(457\) 14848.9 1.51992 0.759960 0.649970i \(-0.225218\pi\)
0.759960 + 0.649970i \(0.225218\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1723.59 −0.174134 −0.0870668 0.996202i \(-0.527749\pi\)
−0.0870668 + 0.996202i \(0.527749\pi\)
\(462\) 0 0
\(463\) 17899.2 1.79664 0.898321 0.439339i \(-0.144787\pi\)
0.898321 + 0.439339i \(0.144787\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17921.1 −1.77579 −0.887893 0.460051i \(-0.847831\pi\)
−0.887893 + 0.460051i \(0.847831\pi\)
\(468\) 0 0
\(469\) 2443.99 0.240624
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 179.060 0.0174063
\(474\) 0 0
\(475\) 2466.95 0.238298
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1507.10 −0.143760 −0.0718801 0.997413i \(-0.522900\pi\)
−0.0718801 + 0.997413i \(0.522900\pi\)
\(480\) 0 0
\(481\) −4952.56 −0.469475
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1034.59 −0.0968628
\(486\) 0 0
\(487\) 7618.50 0.708885 0.354443 0.935078i \(-0.384671\pi\)
0.354443 + 0.935078i \(0.384671\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7346.20 0.675212 0.337606 0.941287i \(-0.390383\pi\)
0.337606 + 0.941287i \(0.390383\pi\)
\(492\) 0 0
\(493\) 6732.09 0.615007
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2439.34 −0.220159
\(498\) 0 0
\(499\) −18775.3 −1.68436 −0.842182 0.539193i \(-0.818729\pi\)
−0.842182 + 0.539193i \(0.818729\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2556.27 0.226597 0.113299 0.993561i \(-0.463858\pi\)
0.113299 + 0.993561i \(0.463858\pi\)
\(504\) 0 0
\(505\) −1113.38 −0.0981088
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1902.18 −0.165644 −0.0828219 0.996564i \(-0.526393\pi\)
−0.0828219 + 0.996564i \(0.526393\pi\)
\(510\) 0 0
\(511\) −4524.91 −0.391723
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 284.566 0.0243485
\(516\) 0 0
\(517\) −428.429 −0.0364454
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14253.1 −1.19854 −0.599272 0.800545i \(-0.704543\pi\)
−0.599272 + 0.800545i \(0.704543\pi\)
\(522\) 0 0
\(523\) 10544.3 0.881591 0.440796 0.897608i \(-0.354696\pi\)
0.440796 + 0.897608i \(0.354696\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1005.10 0.0830795
\(528\) 0 0
\(529\) −12132.4 −0.997153
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1653.79 0.134397
\(534\) 0 0
\(535\) −1967.63 −0.159005
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 34.5303 0.00275942
\(540\) 0 0
\(541\) −7563.14 −0.601044 −0.300522 0.953775i \(-0.597161\pi\)
−0.300522 + 0.953775i \(0.597161\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7884.82 −0.619722
\(546\) 0 0
\(547\) −9059.07 −0.708113 −0.354057 0.935224i \(-0.615198\pi\)
−0.354057 + 0.935224i \(0.615198\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7769.23 0.600691
\(552\) 0 0
\(553\) 7332.52 0.563853
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23719.2 1.80434 0.902169 0.431384i \(-0.141974\pi\)
0.902169 + 0.431384i \(0.141974\pi\)
\(558\) 0 0
\(559\) 8997.32 0.680762
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14719.8 −1.10189 −0.550947 0.834540i \(-0.685733\pi\)
−0.550947 + 0.834540i \(0.685733\pi\)
\(564\) 0 0
\(565\) 1223.85 0.0911291
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5184.65 0.381989 0.190994 0.981591i \(-0.438829\pi\)
0.190994 + 0.981591i \(0.438829\pi\)
\(570\) 0 0
\(571\) 13173.6 0.965496 0.482748 0.875759i \(-0.339639\pi\)
0.482748 + 0.875759i \(0.339639\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 471.149 0.0341709
\(576\) 0 0
\(577\) 2354.29 0.169862 0.0849311 0.996387i \(-0.472933\pi\)
0.0849311 + 0.996387i \(0.472933\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1951.73 −0.139366
\(582\) 0 0
\(583\) −210.483 −0.0149525
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17138.5 −1.20508 −0.602541 0.798088i \(-0.705845\pi\)
−0.602541 + 0.798088i \(0.705845\pi\)
\(588\) 0 0
\(589\) 1159.95 0.0811455
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20553.0 1.42329 0.711645 0.702540i \(-0.247951\pi\)
0.711645 + 0.702540i \(0.247951\pi\)
\(594\) 0 0
\(595\) −1253.33 −0.0863554
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19280.3 −1.31514 −0.657571 0.753392i \(-0.728416\pi\)
−0.657571 + 0.753392i \(0.728416\pi\)
\(600\) 0 0
\(601\) 24736.4 1.67890 0.839451 0.543436i \(-0.182877\pi\)
0.839451 + 0.543436i \(0.182877\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8920.63 −0.599463
\(606\) 0 0
\(607\) 4926.07 0.329395 0.164698 0.986344i \(-0.447335\pi\)
0.164698 + 0.986344i \(0.447335\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21527.5 −1.42538
\(612\) 0 0
\(613\) −28344.4 −1.86757 −0.933784 0.357837i \(-0.883514\pi\)
−0.933784 + 0.357837i \(0.883514\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −21881.8 −1.42776 −0.713879 0.700269i \(-0.753063\pi\)
−0.713879 + 0.700269i \(0.753063\pi\)
\(618\) 0 0
\(619\) 8355.39 0.542538 0.271269 0.962504i \(-0.412557\pi\)
0.271269 + 0.962504i \(0.412557\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3075.16 −0.197759
\(624\) 0 0
\(625\) 788.397 0.0504574
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3735.07 0.236768
\(630\) 0 0
\(631\) 10780.0 0.680100 0.340050 0.940407i \(-0.389556\pi\)
0.340050 + 0.940407i \(0.389556\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9216.22 0.575960
\(636\) 0 0
\(637\) 1735.06 0.107921
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20161.7 1.24234 0.621171 0.783675i \(-0.286657\pi\)
0.621171 + 0.783675i \(0.286657\pi\)
\(642\) 0 0
\(643\) 18277.8 1.12100 0.560502 0.828153i \(-0.310608\pi\)
0.560502 + 0.828153i \(0.310608\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2534.86 0.154027 0.0770136 0.997030i \(-0.475462\pi\)
0.0770136 + 0.997030i \(0.475462\pi\)
\(648\) 0 0
\(649\) −125.853 −0.00761195
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16869.8 1.01098 0.505488 0.862833i \(-0.331312\pi\)
0.505488 + 0.862833i \(0.331312\pi\)
\(654\) 0 0
\(655\) −8829.51 −0.526713
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7724.65 0.456616 0.228308 0.973589i \(-0.426681\pi\)
0.228308 + 0.973589i \(0.426681\pi\)
\(660\) 0 0
\(661\) 6387.26 0.375848 0.187924 0.982184i \(-0.439824\pi\)
0.187924 + 0.982184i \(0.439824\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1446.42 −0.0843453
\(666\) 0 0
\(667\) 1483.80 0.0861364
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 274.965 0.0158196
\(672\) 0 0
\(673\) 14558.1 0.833837 0.416919 0.908944i \(-0.363110\pi\)
0.416919 + 0.908944i \(0.363110\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 32914.0 1.86852 0.934259 0.356595i \(-0.116063\pi\)
0.934259 + 0.356595i \(0.116063\pi\)
\(678\) 0 0
\(679\) −1080.16 −0.0610497
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −27334.4 −1.53137 −0.765683 0.643218i \(-0.777599\pi\)
−0.765683 + 0.643218i \(0.777599\pi\)
\(684\) 0 0
\(685\) 15199.4 0.847796
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −10576.2 −0.584794
\(690\) 0 0
\(691\) 25255.2 1.39038 0.695190 0.718826i \(-0.255320\pi\)
0.695190 + 0.718826i \(0.255320\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7797.07 0.425554
\(696\) 0 0
\(697\) −1247.23 −0.0677796
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −16418.5 −0.884620 −0.442310 0.896862i \(-0.645841\pi\)
−0.442310 + 0.896862i \(0.645841\pi\)
\(702\) 0 0
\(703\) 4310.50 0.231257
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1162.42 −0.0618351
\(708\) 0 0
\(709\) −13186.2 −0.698475 −0.349238 0.937034i \(-0.613559\pi\)
−0.349238 + 0.937034i \(0.613559\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 221.531 0.0116359
\(714\) 0 0
\(715\) 167.302 0.00875071
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17244.2 0.894438 0.447219 0.894425i \(-0.352415\pi\)
0.447219 + 0.894425i \(0.352415\pi\)
\(720\) 0 0
\(721\) 297.100 0.0153461
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 20179.4 1.03371
\(726\) 0 0
\(727\) −3297.69 −0.168232 −0.0841160 0.996456i \(-0.526807\pi\)
−0.0841160 + 0.996456i \(0.526807\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6785.50 −0.343325
\(732\) 0 0
\(733\) 14191.5 0.715112 0.357556 0.933892i \(-0.383610\pi\)
0.357556 + 0.933892i \(0.383610\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 246.040 0.0122971
\(738\) 0 0
\(739\) −31437.7 −1.56489 −0.782446 0.622718i \(-0.786028\pi\)
−0.782446 + 0.622718i \(0.786028\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9095.98 0.449124 0.224562 0.974460i \(-0.427905\pi\)
0.224562 + 0.974460i \(0.427905\pi\)
\(744\) 0 0
\(745\) 362.506 0.0178271
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2054.29 −0.100216
\(750\) 0 0
\(751\) −19791.9 −0.961676 −0.480838 0.876810i \(-0.659667\pi\)
−0.480838 + 0.876810i \(0.659667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −5779.54 −0.278595
\(756\) 0 0
\(757\) 11194.5 0.537479 0.268739 0.963213i \(-0.413393\pi\)
0.268739 + 0.963213i \(0.413393\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24445.6 −1.16446 −0.582230 0.813024i \(-0.697820\pi\)
−0.582230 + 0.813024i \(0.697820\pi\)
\(762\) 0 0
\(763\) −8232.10 −0.390592
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6323.79 −0.297704
\(768\) 0 0
\(769\) 33296.7 1.56139 0.780695 0.624912i \(-0.214865\pi\)
0.780695 + 0.624912i \(0.214865\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 31129.8 1.44846 0.724230 0.689559i \(-0.242195\pi\)
0.724230 + 0.689559i \(0.242195\pi\)
\(774\) 0 0
\(775\) 3012.78 0.139641
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1439.38 −0.0662018
\(780\) 0 0
\(781\) −245.571 −0.0112513
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9787.15 0.444992
\(786\) 0 0
\(787\) −22918.3 −1.03805 −0.519027 0.854758i \(-0.673706\pi\)
−0.519027 + 0.854758i \(0.673706\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1277.76 0.0574359
\(792\) 0 0
\(793\) 13816.3 0.618704
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −40462.6 −1.79832 −0.899158 0.437624i \(-0.855820\pi\)
−0.899158 + 0.437624i \(0.855820\pi\)
\(798\) 0 0
\(799\) 16235.4 0.718857
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −455.529 −0.0200190
\(804\) 0 0
\(805\) −276.242 −0.0120947
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 8286.03 0.360100 0.180050 0.983657i \(-0.442374\pi\)
0.180050 + 0.983657i \(0.442374\pi\)
\(810\) 0 0
\(811\) 15527.8 0.672323 0.336162 0.941804i \(-0.390871\pi\)
0.336162 + 0.941804i \(0.390871\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7159.09 0.307696
\(816\) 0 0
\(817\) −7830.87 −0.335334
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13165.6 0.559663 0.279831 0.960049i \(-0.409721\pi\)
0.279831 + 0.960049i \(0.409721\pi\)
\(822\) 0 0
\(823\) 9659.67 0.409131 0.204565 0.978853i \(-0.434422\pi\)
0.204565 + 0.978853i \(0.434422\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31937.7 1.34290 0.671452 0.741048i \(-0.265671\pi\)
0.671452 + 0.741048i \(0.265671\pi\)
\(828\) 0 0
\(829\) 29987.5 1.25635 0.628173 0.778074i \(-0.283803\pi\)
0.628173 + 0.778074i \(0.283803\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1308.53 −0.0544272
\(834\) 0 0
\(835\) 13964.9 0.578775
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 25864.3 1.06428 0.532141 0.846656i \(-0.321387\pi\)
0.532141 + 0.846656i \(0.321387\pi\)
\(840\) 0 0
\(841\) 39162.4 1.60574
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6323.70 −0.257446
\(846\) 0 0
\(847\) −9313.52 −0.377823
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 823.236 0.0331612
\(852\) 0 0
\(853\) −9652.50 −0.387451 −0.193725 0.981056i \(-0.562057\pi\)
−0.193725 + 0.981056i \(0.562057\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7058.37 −0.281341 −0.140671 0.990056i \(-0.544926\pi\)
−0.140671 + 0.990056i \(0.544926\pi\)
\(858\) 0 0
\(859\) −5146.18 −0.204407 −0.102203 0.994764i \(-0.532589\pi\)
−0.102203 + 0.994764i \(0.532589\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23233.4 0.916426 0.458213 0.888842i \(-0.348490\pi\)
0.458213 + 0.888842i \(0.348490\pi\)
\(864\) 0 0
\(865\) −14818.5 −0.582479
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 738.176 0.0288158
\(870\) 0 0
\(871\) 12362.9 0.480941
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −9623.45 −0.371808
\(876\) 0 0
\(877\) 17998.3 0.692997 0.346498 0.938051i \(-0.387371\pi\)
0.346498 + 0.938051i \(0.387371\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −10400.3 −0.397723 −0.198861 0.980028i \(-0.563724\pi\)
−0.198861 + 0.980028i \(0.563724\pi\)
\(882\) 0 0
\(883\) −35365.0 −1.34782 −0.673912 0.738812i \(-0.735387\pi\)
−0.673912 + 0.738812i \(0.735387\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 39216.8 1.48452 0.742261 0.670111i \(-0.233754\pi\)
0.742261 + 0.670111i \(0.233754\pi\)
\(888\) 0 0
\(889\) 9622.13 0.363010
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18736.6 0.702123
\(894\) 0 0
\(895\) −6267.01 −0.234059
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9488.21 0.352002
\(900\) 0 0
\(901\) 7976.28 0.294926
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 39.2373 0.00144121
\(906\) 0 0
\(907\) −42804.2 −1.56702 −0.783511 0.621378i \(-0.786573\pi\)
−0.783511 + 0.621378i \(0.786573\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −32448.5 −1.18010 −0.590048 0.807368i \(-0.700891\pi\)
−0.590048 + 0.807368i \(0.700891\pi\)
\(912\) 0 0
\(913\) −196.484 −0.00712230
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9218.39 −0.331972
\(918\) 0 0
\(919\) −21991.6 −0.789375 −0.394688 0.918815i \(-0.629147\pi\)
−0.394688 + 0.918815i \(0.629147\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −12339.3 −0.440037
\(924\) 0 0
\(925\) 11195.8 0.397964
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1281.57 0.0452606 0.0226303 0.999744i \(-0.492796\pi\)
0.0226303 + 0.999744i \(0.492796\pi\)
\(930\) 0 0
\(931\) −1510.12 −0.0531603
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −126.174 −0.00441320
\(936\) 0 0
\(937\) 23582.2 0.822194 0.411097 0.911592i \(-0.365146\pi\)
0.411097 + 0.911592i \(0.365146\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −27439.5 −0.950586 −0.475293 0.879828i \(-0.657658\pi\)
−0.475293 + 0.879828i \(0.657658\pi\)
\(942\) 0 0
\(943\) −274.899 −0.00949305
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17543.6 0.601996 0.300998 0.953625i \(-0.402680\pi\)
0.300998 + 0.953625i \(0.402680\pi\)
\(948\) 0 0
\(949\) −22889.2 −0.782945
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 13884.1 0.471930 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(954\) 0 0
\(955\) −15939.3 −0.540088
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15868.9 0.534340
\(960\) 0 0
\(961\) −28374.4 −0.952449
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −14977.3 −0.499623
\(966\) 0 0
\(967\) 39807.7 1.32382 0.661908 0.749585i \(-0.269747\pi\)
0.661908 + 0.749585i \(0.269747\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20963.7 −0.692851 −0.346425 0.938077i \(-0.612605\pi\)
−0.346425 + 0.938077i \(0.612605\pi\)
\(972\) 0 0
\(973\) 8140.48 0.268214
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 38199.7 1.25089 0.625443 0.780270i \(-0.284918\pi\)
0.625443 + 0.780270i \(0.284918\pi\)
\(978\) 0 0
\(979\) −309.581 −0.0101065
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −18877.5 −0.612510 −0.306255 0.951950i \(-0.599076\pi\)
−0.306255 + 0.951950i \(0.599076\pi\)
\(984\) 0 0
\(985\) −15816.1 −0.511616
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1495.57 −0.0480854
\(990\) 0 0
\(991\) −1894.95 −0.0607418 −0.0303709 0.999539i \(-0.509669\pi\)
−0.0303709 + 0.999539i \(0.509669\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2465.71 0.0785611
\(996\) 0 0
\(997\) 60576.0 1.92424 0.962118 0.272635i \(-0.0878950\pi\)
0.962118 + 0.272635i \(0.0878950\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.4.a.j.1.2 2
3.2 odd 2 672.4.a.m.1.1 yes 2
4.3 odd 2 2016.4.a.i.1.2 2
12.11 even 2 672.4.a.h.1.1 2
24.5 odd 2 1344.4.a.be.1.2 2
24.11 even 2 1344.4.a.bm.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.4.a.h.1.1 2 12.11 even 2
672.4.a.m.1.1 yes 2 3.2 odd 2
1344.4.a.be.1.2 2 24.5 odd 2
1344.4.a.bm.1.2 2 24.11 even 2
2016.4.a.i.1.2 2 4.3 odd 2
2016.4.a.j.1.2 2 1.1 even 1 trivial