Properties

Label 2016.3.d.f.449.2
Level $2016$
Weight $3$
Character 2016.449
Analytic conductor $54.932$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,3,Mod(449,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 44x^{10} + 719x^{8} + 5356x^{6} + 17809x^{4} + 20000x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(2.56196i\) of defining polynomial
Character \(\chi\) \(=\) 2016.449
Dual form 2016.3.d.f.449.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.59798i q^{5} -2.64575 q^{7} -15.9883i q^{11} +13.6731 q^{13} -32.2343i q^{17} +23.4205 q^{19} +7.96534i q^{23} -32.7294 q^{25} -23.0549i q^{29} +29.9819 q^{31} +20.1024i q^{35} +27.4923 q^{37} +19.8136i q^{41} -19.9121 q^{43} -17.4013i q^{47} +7.00000 q^{49} -38.0442i q^{53} -121.479 q^{55} +108.970i q^{59} +36.4222 q^{61} -103.888i q^{65} +88.2321 q^{67} -93.7399i q^{71} +41.3616 q^{73} +42.3010i q^{77} -58.8617 q^{79} +112.269i q^{83} -244.916 q^{85} -47.5136i q^{89} -36.1756 q^{91} -177.949i q^{95} -157.012 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{13} + 64 q^{19} - 124 q^{25} + 160 q^{31} + 56 q^{37} - 64 q^{43} + 84 q^{49} - 160 q^{55} + 104 q^{61} - 64 q^{67} - 64 q^{73} + 32 q^{79} - 184 q^{85} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 7.59798i − 1.51960i −0.650159 0.759798i \(-0.725298\pi\)
0.650159 0.759798i \(-0.274702\pi\)
\(6\) 0 0
\(7\) −2.64575 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 15.9883i − 1.45348i −0.686913 0.726740i \(-0.741034\pi\)
0.686913 0.726740i \(-0.258966\pi\)
\(12\) 0 0
\(13\) 13.6731 1.05178 0.525888 0.850554i \(-0.323733\pi\)
0.525888 + 0.850554i \(0.323733\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 32.2343i − 1.89614i −0.318066 0.948069i \(-0.603033\pi\)
0.318066 0.948069i \(-0.396967\pi\)
\(18\) 0 0
\(19\) 23.4205 1.23266 0.616330 0.787488i \(-0.288619\pi\)
0.616330 + 0.787488i \(0.288619\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.96534i 0.346319i 0.984894 + 0.173160i \(0.0553976\pi\)
−0.984894 + 0.173160i \(0.944602\pi\)
\(24\) 0 0
\(25\) −32.7294 −1.30917
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 23.0549i − 0.794998i −0.917603 0.397499i \(-0.869878\pi\)
0.917603 0.397499i \(-0.130122\pi\)
\(30\) 0 0
\(31\) 29.9819 0.967159 0.483579 0.875300i \(-0.339336\pi\)
0.483579 + 0.875300i \(0.339336\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 20.1024i 0.574354i
\(36\) 0 0
\(37\) 27.4923 0.743036 0.371518 0.928426i \(-0.378837\pi\)
0.371518 + 0.928426i \(0.378837\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 19.8136i 0.483258i 0.970369 + 0.241629i \(0.0776817\pi\)
−0.970369 + 0.241629i \(0.922318\pi\)
\(42\) 0 0
\(43\) −19.9121 −0.463072 −0.231536 0.972826i \(-0.574375\pi\)
−0.231536 + 0.972826i \(0.574375\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 17.4013i − 0.370241i −0.982716 0.185120i \(-0.940733\pi\)
0.982716 0.185120i \(-0.0592675\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 38.0442i − 0.717815i −0.933373 0.358908i \(-0.883149\pi\)
0.933373 0.358908i \(-0.116851\pi\)
\(54\) 0 0
\(55\) −121.479 −2.20870
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 108.970i 1.84694i 0.383666 + 0.923472i \(0.374661\pi\)
−0.383666 + 0.923472i \(0.625339\pi\)
\(60\) 0 0
\(61\) 36.4222 0.597085 0.298543 0.954396i \(-0.403500\pi\)
0.298543 + 0.954396i \(0.403500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 103.888i − 1.59827i
\(66\) 0 0
\(67\) 88.2321 1.31690 0.658449 0.752626i \(-0.271213\pi\)
0.658449 + 0.752626i \(0.271213\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 93.7399i − 1.32028i −0.751142 0.660140i \(-0.770497\pi\)
0.751142 0.660140i \(-0.229503\pi\)
\(72\) 0 0
\(73\) 41.3616 0.566598 0.283299 0.959032i \(-0.408571\pi\)
0.283299 + 0.959032i \(0.408571\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 42.3010i 0.549364i
\(78\) 0 0
\(79\) −58.8617 −0.745084 −0.372542 0.928015i \(-0.621514\pi\)
−0.372542 + 0.928015i \(0.621514\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 112.269i 1.35264i 0.736606 + 0.676322i \(0.236427\pi\)
−0.736606 + 0.676322i \(0.763573\pi\)
\(84\) 0 0
\(85\) −244.916 −2.88136
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 47.5136i − 0.533860i −0.963716 0.266930i \(-0.913991\pi\)
0.963716 0.266930i \(-0.0860093\pi\)
\(90\) 0 0
\(91\) −36.1756 −0.397534
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 177.949i − 1.87315i
\(96\) 0 0
\(97\) −157.012 −1.61868 −0.809338 0.587343i \(-0.800174\pi\)
−0.809338 + 0.587343i \(0.800174\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 186.370i − 1.84525i −0.385702 0.922623i \(-0.626041\pi\)
0.385702 0.922623i \(-0.373959\pi\)
\(102\) 0 0
\(103\) 2.15397 0.0209123 0.0104561 0.999945i \(-0.496672\pi\)
0.0104561 + 0.999945i \(0.496672\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 105.455i − 0.985556i −0.870155 0.492778i \(-0.835981\pi\)
0.870155 0.492778i \(-0.164019\pi\)
\(108\) 0 0
\(109\) −132.397 −1.21466 −0.607328 0.794451i \(-0.707759\pi\)
−0.607328 + 0.794451i \(0.707759\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 56.5496i 0.500439i 0.968189 + 0.250219i \(0.0805028\pi\)
−0.968189 + 0.250219i \(0.919497\pi\)
\(114\) 0 0
\(115\) 60.5205 0.526265
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 85.2840i 0.716672i
\(120\) 0 0
\(121\) −134.625 −1.11260
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 58.7277i 0.469821i
\(126\) 0 0
\(127\) 118.496 0.933036 0.466518 0.884512i \(-0.345508\pi\)
0.466518 + 0.884512i \(0.345508\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 183.469i 1.40052i 0.713885 + 0.700262i \(0.246934\pi\)
−0.713885 + 0.700262i \(0.753066\pi\)
\(132\) 0 0
\(133\) −61.9649 −0.465901
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 272.567i 1.98954i 0.102134 + 0.994771i \(0.467433\pi\)
−0.102134 + 0.994771i \(0.532567\pi\)
\(138\) 0 0
\(139\) 13.9010 0.100007 0.0500037 0.998749i \(-0.484077\pi\)
0.0500037 + 0.998749i \(0.484077\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 218.609i − 1.52873i
\(144\) 0 0
\(145\) −175.171 −1.20808
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 73.1094i 0.490667i 0.969439 + 0.245334i \(0.0788975\pi\)
−0.969439 + 0.245334i \(0.921103\pi\)
\(150\) 0 0
\(151\) 225.320 1.49218 0.746092 0.665843i \(-0.231928\pi\)
0.746092 + 0.665843i \(0.231928\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 227.802i − 1.46969i
\(156\) 0 0
\(157\) −232.971 −1.48389 −0.741945 0.670461i \(-0.766097\pi\)
−0.741945 + 0.670461i \(0.766097\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 21.0743i − 0.130896i
\(162\) 0 0
\(163\) −204.651 −1.25552 −0.627762 0.778405i \(-0.716029\pi\)
−0.627762 + 0.778405i \(0.716029\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 34.9420i 0.209233i 0.994513 + 0.104617i \(0.0333616\pi\)
−0.994513 + 0.104617i \(0.966638\pi\)
\(168\) 0 0
\(169\) 17.9531 0.106231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 72.6526i − 0.419957i −0.977706 0.209979i \(-0.932661\pi\)
0.977706 0.209979i \(-0.0673394\pi\)
\(174\) 0 0
\(175\) 86.5938 0.494822
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 280.382i 1.56638i 0.621784 + 0.783189i \(0.286408\pi\)
−0.621784 + 0.783189i \(0.713592\pi\)
\(180\) 0 0
\(181\) −67.1393 −0.370936 −0.185468 0.982650i \(-0.559380\pi\)
−0.185468 + 0.982650i \(0.559380\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 208.886i − 1.12911i
\(186\) 0 0
\(187\) −515.372 −2.75600
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 237.891i 1.24550i 0.782420 + 0.622751i \(0.213985\pi\)
−0.782420 + 0.622751i \(0.786015\pi\)
\(192\) 0 0
\(193\) −133.526 −0.691847 −0.345923 0.938263i \(-0.612434\pi\)
−0.345923 + 0.938263i \(0.612434\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 45.5663i 0.231301i 0.993290 + 0.115650i \(0.0368953\pi\)
−0.993290 + 0.115650i \(0.963105\pi\)
\(198\) 0 0
\(199\) 168.351 0.845986 0.422993 0.906133i \(-0.360979\pi\)
0.422993 + 0.906133i \(0.360979\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 60.9977i 0.300481i
\(204\) 0 0
\(205\) 150.543 0.734358
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 374.454i − 1.79165i
\(210\) 0 0
\(211\) 188.623 0.893949 0.446974 0.894547i \(-0.352502\pi\)
0.446974 + 0.894547i \(0.352502\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 151.292i 0.703683i
\(216\) 0 0
\(217\) −79.3247 −0.365552
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 440.743i − 1.99431i
\(222\) 0 0
\(223\) −219.326 −0.983523 −0.491761 0.870730i \(-0.663647\pi\)
−0.491761 + 0.870730i \(0.663647\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 318.370i − 1.40251i −0.712911 0.701255i \(-0.752624\pi\)
0.712911 0.701255i \(-0.247376\pi\)
\(228\) 0 0
\(229\) −236.519 −1.03283 −0.516417 0.856337i \(-0.672734\pi\)
−0.516417 + 0.856337i \(0.672734\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 378.533i − 1.62460i −0.583237 0.812302i \(-0.698214\pi\)
0.583237 0.812302i \(-0.301786\pi\)
\(234\) 0 0
\(235\) −132.215 −0.562617
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 409.885i − 1.71500i −0.514486 0.857499i \(-0.672017\pi\)
0.514486 0.857499i \(-0.327983\pi\)
\(240\) 0 0
\(241\) 405.153 1.68113 0.840565 0.541710i \(-0.182223\pi\)
0.840565 + 0.541710i \(0.182223\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 53.1859i − 0.217085i
\(246\) 0 0
\(247\) 320.231 1.29648
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 324.644i 1.29340i 0.762744 + 0.646701i \(0.223852\pi\)
−0.762744 + 0.646701i \(0.776148\pi\)
\(252\) 0 0
\(253\) 127.352 0.503368
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 125.364i − 0.487796i −0.969801 0.243898i \(-0.921574\pi\)
0.969801 0.243898i \(-0.0784263\pi\)
\(258\) 0 0
\(259\) −72.7378 −0.280841
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 139.300i 0.529659i 0.964295 + 0.264830i \(0.0853157\pi\)
−0.964295 + 0.264830i \(0.914684\pi\)
\(264\) 0 0
\(265\) −289.059 −1.09079
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 137.020i 0.509370i 0.967024 + 0.254685i \(0.0819718\pi\)
−0.967024 + 0.254685i \(0.918028\pi\)
\(270\) 0 0
\(271\) −133.499 −0.492615 −0.246308 0.969192i \(-0.579217\pi\)
−0.246308 + 0.969192i \(0.579217\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 523.286i 1.90286i
\(276\) 0 0
\(277\) 134.839 0.486783 0.243392 0.969928i \(-0.421740\pi\)
0.243392 + 0.969928i \(0.421740\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 117.970i − 0.419824i −0.977720 0.209912i \(-0.932682\pi\)
0.977720 0.209912i \(-0.0673177\pi\)
\(282\) 0 0
\(283\) 19.1183 0.0675560 0.0337780 0.999429i \(-0.489246\pi\)
0.0337780 + 0.999429i \(0.489246\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 52.4218i − 0.182654i
\(288\) 0 0
\(289\) −750.052 −2.59534
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 102.725i 0.350597i 0.984515 + 0.175298i \(0.0560890\pi\)
−0.984515 + 0.175298i \(0.943911\pi\)
\(294\) 0 0
\(295\) 827.950 2.80661
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 108.911i 0.364250i
\(300\) 0 0
\(301\) 52.6825 0.175025
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 276.735i − 0.907329i
\(306\) 0 0
\(307\) 35.2385 0.114783 0.0573917 0.998352i \(-0.481722\pi\)
0.0573917 + 0.998352i \(0.481722\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 328.518i − 1.05633i −0.849143 0.528164i \(-0.822881\pi\)
0.849143 0.528164i \(-0.177119\pi\)
\(312\) 0 0
\(313\) 290.295 0.927459 0.463729 0.885977i \(-0.346511\pi\)
0.463729 + 0.885977i \(0.346511\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 37.4331i − 0.118086i −0.998255 0.0590428i \(-0.981195\pi\)
0.998255 0.0590428i \(-0.0188048\pi\)
\(318\) 0 0
\(319\) −368.609 −1.15551
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 754.945i − 2.33729i
\(324\) 0 0
\(325\) −447.511 −1.37696
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 46.0395i 0.139938i
\(330\) 0 0
\(331\) −169.871 −0.513207 −0.256603 0.966517i \(-0.582603\pi\)
−0.256603 + 0.966517i \(0.582603\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 670.386i − 2.00115i
\(336\) 0 0
\(337\) 23.1974 0.0688349 0.0344175 0.999408i \(-0.489042\pi\)
0.0344175 + 0.999408i \(0.489042\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 479.359i − 1.40575i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 65.8953i 0.189900i 0.995482 + 0.0949500i \(0.0302691\pi\)
−0.995482 + 0.0949500i \(0.969731\pi\)
\(348\) 0 0
\(349\) 356.672 1.02198 0.510992 0.859586i \(-0.329278\pi\)
0.510992 + 0.859586i \(0.329278\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 660.912i 1.87227i 0.351638 + 0.936136i \(0.385625\pi\)
−0.351638 + 0.936136i \(0.614375\pi\)
\(354\) 0 0
\(355\) −712.235 −2.00629
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 265.729i 0.740192i 0.928993 + 0.370096i \(0.120675\pi\)
−0.928993 + 0.370096i \(0.879325\pi\)
\(360\) 0 0
\(361\) 187.521 0.519449
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 314.265i − 0.861000i
\(366\) 0 0
\(367\) 504.859 1.37564 0.687819 0.725882i \(-0.258568\pi\)
0.687819 + 0.725882i \(0.258568\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 100.656i 0.271309i
\(372\) 0 0
\(373\) 376.433 1.00920 0.504602 0.863352i \(-0.331639\pi\)
0.504602 + 0.863352i \(0.331639\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 315.232i − 0.836159i
\(378\) 0 0
\(379\) −730.419 −1.92723 −0.963614 0.267298i \(-0.913869\pi\)
−0.963614 + 0.267298i \(0.913869\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 329.591i − 0.860551i −0.902698 0.430275i \(-0.858416\pi\)
0.902698 0.430275i \(-0.141584\pi\)
\(384\) 0 0
\(385\) 321.402 0.834812
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 212.863i 0.547205i 0.961843 + 0.273602i \(0.0882152\pi\)
−0.961843 + 0.273602i \(0.911785\pi\)
\(390\) 0 0
\(391\) 256.757 0.656668
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 447.230i 1.13223i
\(396\) 0 0
\(397\) −525.086 −1.32264 −0.661318 0.750106i \(-0.730003\pi\)
−0.661318 + 0.750106i \(0.730003\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 449.796i 1.12169i 0.827923 + 0.560843i \(0.189523\pi\)
−0.827923 + 0.560843i \(0.810477\pi\)
\(402\) 0 0
\(403\) 409.945 1.01723
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 439.555i − 1.07999i
\(408\) 0 0
\(409\) −241.664 −0.590866 −0.295433 0.955363i \(-0.595464\pi\)
−0.295433 + 0.955363i \(0.595464\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 288.307i − 0.698079i
\(414\) 0 0
\(415\) 853.021 2.05547
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 597.571i 1.42618i 0.701070 + 0.713092i \(0.252706\pi\)
−0.701070 + 0.713092i \(0.747294\pi\)
\(420\) 0 0
\(421\) 773.357 1.83695 0.918476 0.395476i \(-0.129420\pi\)
0.918476 + 0.395476i \(0.129420\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1055.01i 2.48238i
\(426\) 0 0
\(427\) −96.3641 −0.225677
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 133.936i − 0.310757i −0.987855 0.155379i \(-0.950340\pi\)
0.987855 0.155379i \(-0.0496598\pi\)
\(432\) 0 0
\(433\) 522.822 1.20744 0.603720 0.797196i \(-0.293684\pi\)
0.603720 + 0.797196i \(0.293684\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 186.552i 0.426893i
\(438\) 0 0
\(439\) −664.678 −1.51407 −0.757037 0.653372i \(-0.773354\pi\)
−0.757037 + 0.653372i \(0.773354\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 747.553i 1.68748i 0.536753 + 0.843739i \(0.319651\pi\)
−0.536753 + 0.843739i \(0.680349\pi\)
\(444\) 0 0
\(445\) −361.007 −0.811253
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 256.828i − 0.572000i −0.958230 0.286000i \(-0.907674\pi\)
0.958230 0.286000i \(-0.0923257\pi\)
\(450\) 0 0
\(451\) 316.785 0.702406
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 274.861i 0.604091i
\(456\) 0 0
\(457\) 335.849 0.734899 0.367450 0.930043i \(-0.380231\pi\)
0.367450 + 0.930043i \(0.380231\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 348.270i 0.755466i 0.925915 + 0.377733i \(0.123296\pi\)
−0.925915 + 0.377733i \(0.876704\pi\)
\(462\) 0 0
\(463\) −694.584 −1.50018 −0.750090 0.661335i \(-0.769990\pi\)
−0.750090 + 0.661335i \(0.769990\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 351.357i − 0.752371i −0.926544 0.376185i \(-0.877236\pi\)
0.926544 0.376185i \(-0.122764\pi\)
\(468\) 0 0
\(469\) −233.440 −0.497740
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 318.360i 0.673066i
\(474\) 0 0
\(475\) −766.539 −1.61377
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 204.236i 0.426380i 0.977011 + 0.213190i \(0.0683853\pi\)
−0.977011 + 0.213190i \(0.931615\pi\)
\(480\) 0 0
\(481\) 375.905 0.781506
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1192.97i 2.45973i
\(486\) 0 0
\(487\) 783.629 1.60910 0.804548 0.593888i \(-0.202408\pi\)
0.804548 + 0.593888i \(0.202408\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 767.058i 1.56224i 0.624383 + 0.781119i \(0.285351\pi\)
−0.624383 + 0.781119i \(0.714649\pi\)
\(492\) 0 0
\(493\) −743.161 −1.50743
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 248.013i 0.499019i
\(498\) 0 0
\(499\) 614.441 1.23135 0.615673 0.788002i \(-0.288884\pi\)
0.615673 + 0.788002i \(0.288884\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 659.785i 1.31170i 0.754891 + 0.655850i \(0.227690\pi\)
−0.754891 + 0.655850i \(0.772310\pi\)
\(504\) 0 0
\(505\) −1416.04 −2.80403
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 525.085i 1.03160i 0.856709 + 0.515800i \(0.172505\pi\)
−0.856709 + 0.515800i \(0.827495\pi\)
\(510\) 0 0
\(511\) −109.433 −0.214154
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 16.3658i − 0.0317783i
\(516\) 0 0
\(517\) −278.217 −0.538137
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 101.327i − 0.194486i −0.995261 0.0972431i \(-0.968998\pi\)
0.995261 0.0972431i \(-0.0310024\pi\)
\(522\) 0 0
\(523\) 145.620 0.278432 0.139216 0.990262i \(-0.455542\pi\)
0.139216 + 0.990262i \(0.455542\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 966.447i − 1.83387i
\(528\) 0 0
\(529\) 465.553 0.880063
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 270.913i 0.508279i
\(534\) 0 0
\(535\) −801.242 −1.49765
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 111.918i − 0.207640i
\(540\) 0 0
\(541\) 324.233 0.599322 0.299661 0.954046i \(-0.403126\pi\)
0.299661 + 0.954046i \(0.403126\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1005.95i 1.84579i
\(546\) 0 0
\(547\) 692.428 1.26587 0.632933 0.774207i \(-0.281851\pi\)
0.632933 + 0.774207i \(0.281851\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 539.959i − 0.979962i
\(552\) 0 0
\(553\) 155.733 0.281615
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 335.715i − 0.602719i −0.953511 0.301360i \(-0.902560\pi\)
0.953511 0.301360i \(-0.0974405\pi\)
\(558\) 0 0
\(559\) −272.260 −0.487048
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 306.666i 0.544700i 0.962198 + 0.272350i \(0.0878008\pi\)
−0.962198 + 0.272350i \(0.912199\pi\)
\(564\) 0 0
\(565\) 429.663 0.760465
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 736.974i − 1.29521i −0.761977 0.647605i \(-0.775771\pi\)
0.761977 0.647605i \(-0.224229\pi\)
\(570\) 0 0
\(571\) 501.899 0.878982 0.439491 0.898247i \(-0.355159\pi\)
0.439491 + 0.898247i \(0.355159\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 260.701i − 0.453392i
\(576\) 0 0
\(577\) 644.392 1.11680 0.558399 0.829573i \(-0.311416\pi\)
0.558399 + 0.829573i \(0.311416\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 297.037i − 0.511251i
\(582\) 0 0
\(583\) −608.262 −1.04333
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 272.221i − 0.463750i −0.972746 0.231875i \(-0.925514\pi\)
0.972746 0.231875i \(-0.0744860\pi\)
\(588\) 0 0
\(589\) 702.192 1.19218
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 90.7452i − 0.153027i −0.997069 0.0765137i \(-0.975621\pi\)
0.997069 0.0765137i \(-0.0243789\pi\)
\(594\) 0 0
\(595\) 647.987 1.08905
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 763.189i − 1.27411i −0.770820 0.637053i \(-0.780153\pi\)
0.770820 0.637053i \(-0.219847\pi\)
\(600\) 0 0
\(601\) −243.581 −0.405292 −0.202646 0.979252i \(-0.564954\pi\)
−0.202646 + 0.979252i \(0.564954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1022.88i 1.69071i
\(606\) 0 0
\(607\) −234.356 −0.386089 −0.193045 0.981190i \(-0.561836\pi\)
−0.193045 + 0.981190i \(0.561836\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 237.929i − 0.389410i
\(612\) 0 0
\(613\) 1032.32 1.68405 0.842024 0.539440i \(-0.181364\pi\)
0.842024 + 0.539440i \(0.181364\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 290.151i − 0.470262i −0.971964 0.235131i \(-0.924448\pi\)
0.971964 0.235131i \(-0.0755519\pi\)
\(618\) 0 0
\(619\) 272.201 0.439743 0.219871 0.975529i \(-0.429436\pi\)
0.219871 + 0.975529i \(0.429436\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 125.709i 0.201780i
\(624\) 0 0
\(625\) −372.022 −0.595236
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 886.196i − 1.40890i
\(630\) 0 0
\(631\) −986.769 −1.56382 −0.781909 0.623393i \(-0.785754\pi\)
−0.781909 + 0.623393i \(0.785754\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 900.328i − 1.41784i
\(636\) 0 0
\(637\) 95.7115 0.150254
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 43.7459i − 0.0682464i −0.999418 0.0341232i \(-0.989136\pi\)
0.999418 0.0341232i \(-0.0108639\pi\)
\(642\) 0 0
\(643\) 45.0634 0.0700830 0.0350415 0.999386i \(-0.488844\pi\)
0.0350415 + 0.999386i \(0.488844\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 374.803i 0.579294i 0.957134 + 0.289647i \(0.0935379\pi\)
−0.957134 + 0.289647i \(0.906462\pi\)
\(648\) 0 0
\(649\) 1742.24 2.68450
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 582.059i 0.891361i 0.895192 + 0.445681i \(0.147038\pi\)
−0.895192 + 0.445681i \(0.852962\pi\)
\(654\) 0 0
\(655\) 1393.99 2.12823
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1067.83i 1.62038i 0.586168 + 0.810190i \(0.300636\pi\)
−0.586168 + 0.810190i \(0.699364\pi\)
\(660\) 0 0
\(661\) 867.759 1.31280 0.656399 0.754414i \(-0.272079\pi\)
0.656399 + 0.754414i \(0.272079\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 470.808i 0.707982i
\(666\) 0 0
\(667\) 183.640 0.275323
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 582.328i − 0.867851i
\(672\) 0 0
\(673\) 619.945 0.921166 0.460583 0.887617i \(-0.347640\pi\)
0.460583 + 0.887617i \(0.347640\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 98.7785i − 0.145906i −0.997335 0.0729531i \(-0.976758\pi\)
0.997335 0.0729531i \(-0.0232424\pi\)
\(678\) 0 0
\(679\) 415.413 0.611802
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 768.220i 1.12477i 0.826875 + 0.562386i \(0.190117\pi\)
−0.826875 + 0.562386i \(0.809883\pi\)
\(684\) 0 0
\(685\) 2070.96 3.02330
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 520.181i − 0.754980i
\(690\) 0 0
\(691\) −576.287 −0.833991 −0.416995 0.908909i \(-0.636917\pi\)
−0.416995 + 0.908909i \(0.636917\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 105.620i − 0.151971i
\(696\) 0 0
\(697\) 638.678 0.916324
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 156.372i 0.223070i 0.993761 + 0.111535i \(0.0355767\pi\)
−0.993761 + 0.111535i \(0.964423\pi\)
\(702\) 0 0
\(703\) 643.885 0.915910
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 493.088i 0.697438i
\(708\) 0 0
\(709\) 509.397 0.718472 0.359236 0.933247i \(-0.383037\pi\)
0.359236 + 0.933247i \(0.383037\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 238.816i 0.334946i
\(714\) 0 0
\(715\) −1660.99 −2.32306
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 1239.18i − 1.72348i −0.507354 0.861738i \(-0.669376\pi\)
0.507354 0.861738i \(-0.330624\pi\)
\(720\) 0 0
\(721\) −5.69886 −0.00790410
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 754.574i 1.04079i
\(726\) 0 0
\(727\) −274.267 −0.377258 −0.188629 0.982048i \(-0.560404\pi\)
−0.188629 + 0.982048i \(0.560404\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 641.853i 0.878048i
\(732\) 0 0
\(733\) −831.350 −1.13417 −0.567087 0.823658i \(-0.691930\pi\)
−0.567087 + 0.823658i \(0.691930\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 1410.68i − 1.91408i
\(738\) 0 0
\(739\) 558.704 0.756027 0.378014 0.925800i \(-0.376607\pi\)
0.378014 + 0.925800i \(0.376607\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 464.348i 0.624964i 0.949924 + 0.312482i \(0.101160\pi\)
−0.949924 + 0.312482i \(0.898840\pi\)
\(744\) 0 0
\(745\) 555.484 0.745616
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 279.006i 0.372505i
\(750\) 0 0
\(751\) 884.392 1.17762 0.588810 0.808272i \(-0.299597\pi\)
0.588810 + 0.808272i \(0.299597\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 1711.98i − 2.26752i
\(756\) 0 0
\(757\) 616.656 0.814605 0.407302 0.913293i \(-0.366469\pi\)
0.407302 + 0.913293i \(0.366469\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 432.071i − 0.567767i −0.958859 0.283884i \(-0.908377\pi\)
0.958859 0.283884i \(-0.0916229\pi\)
\(762\) 0 0
\(763\) 350.291 0.459097
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1489.95i 1.94257i
\(768\) 0 0
\(769\) −676.958 −0.880310 −0.440155 0.897922i \(-0.645076\pi\)
−0.440155 + 0.897922i \(0.645076\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 1505.43i − 1.94752i −0.227572 0.973761i \(-0.573079\pi\)
0.227572 0.973761i \(-0.426921\pi\)
\(774\) 0 0
\(775\) −981.290 −1.26618
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 464.045i 0.595693i
\(780\) 0 0
\(781\) −1498.74 −1.91900
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1770.11i 2.25492i
\(786\) 0 0
\(787\) −1421.31 −1.80599 −0.902995 0.429652i \(-0.858636\pi\)
−0.902995 + 0.429652i \(0.858636\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 149.616i − 0.189148i
\(792\) 0 0
\(793\) 498.003 0.627999
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 311.357i − 0.390661i −0.980737 0.195331i \(-0.937422\pi\)
0.980737 0.195331i \(-0.0625780\pi\)
\(798\) 0 0
\(799\) −560.920 −0.702027
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 661.301i − 0.823538i
\(804\) 0 0
\(805\) −160.122 −0.198910
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 757.935i 0.936879i 0.883496 + 0.468440i \(0.155184\pi\)
−0.883496 + 0.468440i \(0.844816\pi\)
\(810\) 0 0
\(811\) −468.771 −0.578016 −0.289008 0.957327i \(-0.593325\pi\)
−0.289008 + 0.957327i \(0.593325\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1554.93i 1.90789i
\(816\) 0 0
\(817\) −466.352 −0.570810
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 344.371i 0.419453i 0.977760 + 0.209727i \(0.0672574\pi\)
−0.977760 + 0.209727i \(0.932743\pi\)
\(822\) 0 0
\(823\) −339.392 −0.412384 −0.206192 0.978512i \(-0.566107\pi\)
−0.206192 + 0.978512i \(0.566107\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 20.4474i − 0.0247248i −0.999924 0.0123624i \(-0.996065\pi\)
0.999924 0.0123624i \(-0.00393518\pi\)
\(828\) 0 0
\(829\) 1005.94 1.21343 0.606717 0.794918i \(-0.292486\pi\)
0.606717 + 0.794918i \(0.292486\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 225.640i − 0.270877i
\(834\) 0 0
\(835\) 265.489 0.317950
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 34.1308i − 0.0406803i −0.999793 0.0203401i \(-0.993525\pi\)
0.999793 0.0203401i \(-0.00647492\pi\)
\(840\) 0 0
\(841\) 309.470 0.367978
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 136.407i − 0.161428i
\(846\) 0 0
\(847\) 356.185 0.420525
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 218.986i 0.257327i
\(852\) 0 0
\(853\) −722.627 −0.847159 −0.423580 0.905859i \(-0.639227\pi\)
−0.423580 + 0.905859i \(0.639227\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 212.693i − 0.248183i −0.992271 0.124091i \(-0.960398\pi\)
0.992271 0.124091i \(-0.0396016\pi\)
\(858\) 0 0
\(859\) 241.343 0.280958 0.140479 0.990084i \(-0.455136\pi\)
0.140479 + 0.990084i \(0.455136\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 466.768i 0.540867i 0.962739 + 0.270434i \(0.0871670\pi\)
−0.962739 + 0.270434i \(0.912833\pi\)
\(864\) 0 0
\(865\) −552.013 −0.638166
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 941.097i 1.08297i
\(870\) 0 0
\(871\) 1206.40 1.38508
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 155.379i − 0.177576i
\(876\) 0 0
\(877\) 1211.14 1.38101 0.690504 0.723329i \(-0.257389\pi\)
0.690504 + 0.723329i \(0.257389\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 705.274i 0.800538i 0.916398 + 0.400269i \(0.131083\pi\)
−0.916398 + 0.400269i \(0.868917\pi\)
\(882\) 0 0
\(883\) −752.778 −0.852523 −0.426262 0.904600i \(-0.640170\pi\)
−0.426262 + 0.904600i \(0.640170\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 991.843i − 1.11820i −0.829100 0.559100i \(-0.811147\pi\)
0.829100 0.559100i \(-0.188853\pi\)
\(888\) 0 0
\(889\) −313.510 −0.352654
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 407.548i − 0.456381i
\(894\) 0 0
\(895\) 2130.33 2.38026
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 691.232i − 0.768889i
\(900\) 0 0
\(901\) −1226.33 −1.36108
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 510.124i 0.563673i
\(906\) 0 0
\(907\) −1339.55 −1.47690 −0.738451 0.674307i \(-0.764443\pi\)
−0.738451 + 0.674307i \(0.764443\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 206.322i 0.226479i 0.993568 + 0.113240i \(0.0361228\pi\)
−0.993568 + 0.113240i \(0.963877\pi\)
\(912\) 0 0
\(913\) 1795.00 1.96604
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 485.413i − 0.529349i
\(918\) 0 0
\(919\) −1293.69 −1.40772 −0.703859 0.710339i \(-0.748542\pi\)
−0.703859 + 0.710339i \(0.748542\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1281.71i − 1.38864i
\(924\) 0 0
\(925\) −899.806 −0.972764
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 721.666i − 0.776821i −0.921487 0.388410i \(-0.873024\pi\)
0.921487 0.388410i \(-0.126976\pi\)
\(930\) 0 0
\(931\) 163.944 0.176094
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3915.79i 4.18801i
\(936\) 0 0
\(937\) 30.7529 0.0328206 0.0164103 0.999865i \(-0.494776\pi\)
0.0164103 + 0.999865i \(0.494776\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 341.703i 0.363128i 0.983379 + 0.181564i \(0.0581159\pi\)
−0.983379 + 0.181564i \(0.941884\pi\)
\(942\) 0 0
\(943\) −157.822 −0.167362
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1882.00i − 1.98733i −0.112394 0.993664i \(-0.535852\pi\)
0.112394 0.993664i \(-0.464148\pi\)
\(948\) 0 0
\(949\) 565.541 0.595933
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 155.432i 0.163098i 0.996669 + 0.0815488i \(0.0259867\pi\)
−0.996669 + 0.0815488i \(0.974013\pi\)
\(954\) 0 0
\(955\) 1807.49 1.89266
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 721.145i − 0.751976i
\(960\) 0 0
\(961\) −62.0843 −0.0646038
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1014.53i 1.05133i
\(966\) 0 0
\(967\) −1488.38 −1.53917 −0.769585 0.638544i \(-0.779537\pi\)
−0.769585 + 0.638544i \(0.779537\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 506.143i − 0.521260i −0.965439 0.260630i \(-0.916070\pi\)
0.965439 0.260630i \(-0.0839302\pi\)
\(972\) 0 0
\(973\) −36.7787 −0.0377993
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 797.673i 0.816451i 0.912881 + 0.408226i \(0.133852\pi\)
−0.912881 + 0.408226i \(0.866148\pi\)
\(978\) 0 0
\(979\) −759.660 −0.775955
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 65.9444i 0.0670848i 0.999437 + 0.0335424i \(0.0106789\pi\)
−0.999437 + 0.0335424i \(0.989321\pi\)
\(984\) 0 0
\(985\) 346.212 0.351484
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 158.607i − 0.160371i
\(990\) 0 0
\(991\) 222.739 0.224762 0.112381 0.993665i \(-0.464152\pi\)
0.112381 + 0.993665i \(0.464152\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1279.13i − 1.28556i
\(996\) 0 0
\(997\) −1648.77 −1.65373 −0.826866 0.562398i \(-0.809879\pi\)
−0.826866 + 0.562398i \(0.809879\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.d.f.449.2 yes 12
3.2 odd 2 inner 2016.3.d.f.449.11 yes 12
4.3 odd 2 2016.3.d.e.449.2 12
8.3 odd 2 4032.3.d.o.449.11 12
8.5 even 2 4032.3.d.n.449.11 12
12.11 even 2 2016.3.d.e.449.11 yes 12
24.5 odd 2 4032.3.d.n.449.2 12
24.11 even 2 4032.3.d.o.449.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2016.3.d.e.449.2 12 4.3 odd 2
2016.3.d.e.449.11 yes 12 12.11 even 2
2016.3.d.f.449.2 yes 12 1.1 even 1 trivial
2016.3.d.f.449.11 yes 12 3.2 odd 2 inner
4032.3.d.n.449.2 12 24.5 odd 2
4032.3.d.n.449.11 12 8.5 even 2
4032.3.d.o.449.2 12 24.11 even 2
4032.3.d.o.449.11 12 8.3 odd 2