Properties

Label 2016.2.s.a.289.1
Level $2016$
Weight $2$
Character 2016.289
Analytic conductor $16.098$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2016.289
Dual form 2016.2.s.a.865.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.00000 + 3.46410i) q^{5} +(-2.50000 + 0.866025i) q^{7} +O(q^{10})\) \(q+(-2.00000 + 3.46410i) q^{5} +(-2.50000 + 0.866025i) q^{7} +(3.00000 + 5.19615i) q^{11} +5.00000 q^{13} +(1.00000 + 1.73205i) q^{17} +(-0.500000 + 0.866025i) q^{19} +(-3.00000 + 5.19615i) q^{23} +(-5.50000 - 9.52628i) q^{25} +(1.50000 + 2.59808i) q^{31} +(2.00000 - 10.3923i) q^{35} +(-1.50000 + 2.59808i) q^{37} +6.00000 q^{41} +5.00000 q^{43} +(-2.00000 + 3.46410i) q^{47} +(5.50000 - 4.33013i) q^{49} +(-3.00000 - 5.19615i) q^{53} -24.0000 q^{55} +(-3.00000 - 5.19615i) q^{59} +(1.00000 - 1.73205i) q^{61} +(-10.0000 + 17.3205i) q^{65} +(-3.50000 - 6.06218i) q^{67} -16.0000 q^{71} +(1.50000 + 2.59808i) q^{73} +(-12.0000 - 10.3923i) q^{77} +(-5.50000 + 9.52628i) q^{79} -12.0000 q^{83} -8.00000 q^{85} +(2.00000 - 3.46410i) q^{89} +(-12.5000 + 4.33013i) q^{91} +(-2.00000 - 3.46410i) q^{95} -6.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} - 5q^{7} + O(q^{10}) \) \( 2q - 4q^{5} - 5q^{7} + 6q^{11} + 10q^{13} + 2q^{17} - q^{19} - 6q^{23} - 11q^{25} + 3q^{31} + 4q^{35} - 3q^{37} + 12q^{41} + 10q^{43} - 4q^{47} + 11q^{49} - 6q^{53} - 48q^{55} - 6q^{59} + 2q^{61} - 20q^{65} - 7q^{67} - 32q^{71} + 3q^{73} - 24q^{77} - 11q^{79} - 24q^{83} - 16q^{85} + 4q^{89} - 25q^{91} - 4q^{95} - 12q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00000 + 3.46410i −0.894427 + 1.54919i −0.0599153 + 0.998203i \(0.519083\pi\)
−0.834512 + 0.550990i \(0.814250\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 + 5.19615i 0.904534 + 1.56670i 0.821541 + 0.570149i \(0.193114\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i \(-0.0886875\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) −5.50000 9.52628i −1.10000 1.90526i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 1.50000 + 2.59808i 0.269408 + 0.466628i 0.968709 0.248199i \(-0.0798387\pi\)
−0.699301 + 0.714827i \(0.746505\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 10.3923i 0.338062 1.75662i
\(36\) 0 0
\(37\) −1.50000 + 2.59808i −0.246598 + 0.427121i −0.962580 0.270998i \(-0.912646\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.00000 + 3.46410i −0.291730 + 0.505291i −0.974219 0.225605i \(-0.927564\pi\)
0.682489 + 0.730896i \(0.260898\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.00000 5.19615i −0.412082 0.713746i 0.583036 0.812447i \(-0.301865\pi\)
−0.995117 + 0.0987002i \(0.968532\pi\)
\(54\) 0 0
\(55\) −24.0000 −3.23616
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.0000 + 17.3205i −1.24035 + 2.14834i
\(66\) 0 0
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) 1.50000 + 2.59808i 0.175562 + 0.304082i 0.940356 0.340193i \(-0.110493\pi\)
−0.764794 + 0.644275i \(0.777159\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.0000 10.3923i −1.36753 1.18431i
\(78\) 0 0
\(79\) −5.50000 + 9.52628i −0.618798 + 1.07179i 0.370907 + 0.928670i \(0.379047\pi\)
−0.989705 + 0.143120i \(0.954286\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.00000 3.46410i 0.212000 0.367194i −0.740341 0.672232i \(-0.765336\pi\)
0.952340 + 0.305038i \(0.0986691\pi\)
\(90\) 0 0
\(91\) −12.5000 + 4.33013i −1.31036 + 0.453921i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.00000 3.46410i −0.205196 0.355409i
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00000 + 1.73205i 0.0995037 + 0.172345i 0.911479 0.411346i \(-0.134941\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) 5.50000 9.52628i 0.541931 0.938652i −0.456862 0.889538i \(-0.651027\pi\)
0.998793 0.0491146i \(-0.0156400\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.00000 8.66025i 0.483368 0.837218i −0.516449 0.856318i \(-0.672747\pi\)
0.999818 + 0.0190994i \(0.00607989\pi\)
\(108\) 0 0
\(109\) 7.50000 + 12.9904i 0.718370 + 1.24425i 0.961645 + 0.274296i \(0.0884447\pi\)
−0.243276 + 0.969957i \(0.578222\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 0 0
\(115\) −12.0000 20.7846i −1.11901 1.93817i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 3.46410i −0.366679 0.317554i
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.00000 5.19615i 0.262111 0.453990i −0.704692 0.709514i \(-0.748915\pi\)
0.966803 + 0.255524i \(0.0822479\pi\)
\(132\) 0 0
\(133\) 0.500000 2.59808i 0.0433555 0.225282i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 10.3923i −0.512615 0.887875i −0.999893 0.0146279i \(-0.995344\pi\)
0.487278 0.873247i \(-0.337990\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 15.0000 + 25.9808i 1.25436 + 2.17262i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.00000 + 3.46410i −0.163846 + 0.283790i −0.936245 0.351348i \(-0.885723\pi\)
0.772399 + 0.635138i \(0.219057\pi\)
\(150\) 0 0
\(151\) 4.00000 + 6.92820i 0.325515 + 0.563809i 0.981617 0.190864i \(-0.0611289\pi\)
−0.656101 + 0.754673i \(0.727796\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) −5.00000 8.66025i −0.399043 0.691164i 0.594565 0.804048i \(-0.297324\pi\)
−0.993608 + 0.112884i \(0.963991\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.00000 15.5885i 0.236433 1.22854i
\(162\) 0 0
\(163\) −10.0000 + 17.3205i −0.783260 + 1.35665i 0.146772 + 0.989170i \(0.453112\pi\)
−0.930033 + 0.367477i \(0.880222\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.0000 19.0526i 0.836315 1.44854i −0.0566411 0.998395i \(-0.518039\pi\)
0.892956 0.450145i \(-0.148628\pi\)
\(174\) 0 0
\(175\) 22.0000 + 19.0526i 1.66304 + 1.44024i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 25.0000 1.85824 0.929118 0.369784i \(-0.120568\pi\)
0.929118 + 0.369784i \(0.120568\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.00000 10.3923i −0.441129 0.764057i
\(186\) 0 0
\(187\) −6.00000 + 10.3923i −0.438763 + 0.759961i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) 0.500000 + 0.866025i 0.0359908 + 0.0623379i 0.883460 0.468507i \(-0.155208\pi\)
−0.847469 + 0.530845i \(0.821875\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −10.0000 17.3205i −0.708881 1.22782i −0.965272 0.261245i \(-0.915867\pi\)
0.256391 0.966573i \(-0.417466\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −12.0000 + 20.7846i −0.838116 + 1.45166i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −10.0000 + 17.3205i −0.681994 + 1.18125i
\(216\) 0 0
\(217\) −6.00000 5.19615i −0.407307 0.352738i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.00000 + 8.66025i 0.336336 + 0.582552i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.0000 + 19.0526i 0.730096 + 1.26456i 0.956842 + 0.290609i \(0.0938578\pi\)
−0.226746 + 0.973954i \(0.572809\pi\)
\(228\) 0 0
\(229\) 5.50000 9.52628i 0.363450 0.629514i −0.625076 0.780564i \(-0.714932\pi\)
0.988526 + 0.151050i \(0.0482653\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.00000 + 6.92820i −0.262049 + 0.453882i −0.966786 0.255586i \(-0.917731\pi\)
0.704737 + 0.709468i \(0.251065\pi\)
\(234\) 0 0
\(235\) −8.00000 13.8564i −0.521862 0.903892i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i \(-0.271048\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.00000 + 27.7128i 0.255551 + 1.77051i
\(246\) 0 0
\(247\) −2.50000 + 4.33013i −0.159071 + 0.275519i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) 0 0
\(253\) −36.0000 −2.26330
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) 0 0
\(259\) 1.50000 7.79423i 0.0932055 0.484310i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 24.0000 1.47431
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.00000 1.73205i −0.0609711 0.105605i 0.833929 0.551872i \(-0.186086\pi\)
−0.894900 + 0.446267i \(0.852753\pi\)
\(270\) 0 0
\(271\) −8.00000 + 13.8564i −0.485965 + 0.841717i −0.999870 0.0161307i \(-0.994865\pi\)
0.513905 + 0.857847i \(0.328199\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 33.0000 57.1577i 1.98997 3.44674i
\(276\) 0 0
\(277\) −0.500000 0.866025i −0.0300421 0.0520344i 0.850613 0.525792i \(-0.176231\pi\)
−0.880656 + 0.473757i \(0.842897\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 5.50000 + 9.52628i 0.326941 + 0.566279i 0.981903 0.189383i \(-0.0606488\pi\)
−0.654962 + 0.755662i \(0.727315\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.0000 + 5.19615i −0.885422 + 0.306719i
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) 24.0000 1.39733
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −15.0000 + 25.9808i −0.867472 + 1.50251i
\(300\) 0 0
\(301\) −12.5000 + 4.33013i −0.720488 + 0.249584i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 + 6.92820i 0.229039 + 0.396708i
\(306\) 0 0
\(307\) 11.0000 0.627803 0.313902 0.949456i \(-0.398364\pi\)
0.313902 + 0.949456i \(0.398364\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.00000 1.73205i −0.0567048 0.0982156i 0.836280 0.548303i \(-0.184726\pi\)
−0.892984 + 0.450088i \(0.851393\pi\)
\(312\) 0 0
\(313\) −15.5000 + 26.8468i −0.876112 + 1.51747i −0.0205381 + 0.999789i \(0.506538\pi\)
−0.855574 + 0.517681i \(0.826795\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.0000 + 17.3205i −0.561656 + 0.972817i 0.435696 + 0.900094i \(0.356502\pi\)
−0.997352 + 0.0727229i \(0.976831\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.00000 −0.111283
\(324\) 0 0
\(325\) −27.5000 47.6314i −1.52543 2.64211i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.00000 10.3923i 0.110264 0.572946i
\(330\) 0 0
\(331\) 2.50000 4.33013i 0.137412 0.238005i −0.789104 0.614260i \(-0.789455\pi\)
0.926516 + 0.376254i \(0.122788\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 28.0000 1.52980
\(336\) 0 0
\(337\) 1.00000 0.0544735 0.0272367 0.999629i \(-0.491329\pi\)
0.0272367 + 0.999629i \(0.491329\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.00000 + 15.5885i −0.487377 + 0.844162i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.0000 19.0526i −0.590511 1.02279i −0.994164 0.107883i \(-0.965593\pi\)
0.403653 0.914912i \(-0.367740\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.00000 3.46410i −0.106449 0.184376i 0.807880 0.589347i \(-0.200615\pi\)
−0.914329 + 0.404971i \(0.867282\pi\)
\(354\) 0 0
\(355\) 32.0000 55.4256i 1.69838 2.94169i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.0000 + 20.7846i −0.633336 + 1.09697i 0.353529 + 0.935423i \(0.384981\pi\)
−0.986865 + 0.161546i \(0.948352\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) −13.5000 23.3827i −0.704694 1.22057i −0.966802 0.255528i \(-0.917751\pi\)
0.262108 0.965039i \(-0.415582\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000 + 10.3923i 0.623009 + 0.539542i
\(372\) 0 0
\(373\) 14.5000 25.1147i 0.750782 1.30039i −0.196663 0.980471i \(-0.563010\pi\)
0.947444 0.319921i \(-0.103656\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 27.0000 1.38690 0.693448 0.720506i \(-0.256091\pi\)
0.693448 + 0.720506i \(0.256091\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.0000 22.5167i 0.664269 1.15055i −0.315214 0.949021i \(-0.602076\pi\)
0.979483 0.201527i \(-0.0645904\pi\)
\(384\) 0 0
\(385\) 60.0000 20.7846i 3.05788 1.05928i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.00000 3.46410i −0.101404 0.175637i 0.810859 0.585241i \(-0.199000\pi\)
−0.912263 + 0.409604i \(0.865667\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −22.0000 38.1051i −1.10694 1.91728i
\(396\) 0 0
\(397\) 10.5000 18.1865i 0.526980 0.912756i −0.472526 0.881317i \(-0.656658\pi\)
0.999506 0.0314391i \(-0.0100090\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.00000 + 1.73205i −0.0499376 + 0.0864945i −0.889914 0.456129i \(-0.849236\pi\)
0.839976 + 0.542623i \(0.182569\pi\)
\(402\) 0 0
\(403\) 7.50000 + 12.9904i 0.373602 + 0.647097i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −18.0000 −0.892227
\(408\) 0 0
\(409\) −6.50000 11.2583i −0.321404 0.556689i 0.659374 0.751815i \(-0.270822\pi\)
−0.980778 + 0.195127i \(0.937488\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.0000 + 10.3923i 0.590481 + 0.511372i
\(414\) 0 0
\(415\) 24.0000 41.5692i 1.17811 2.04055i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 26.0000 1.27018 0.635092 0.772437i \(-0.280962\pi\)
0.635092 + 0.772437i \(0.280962\pi\)
\(420\) 0 0
\(421\) 17.0000 0.828529 0.414265 0.910156i \(-0.364039\pi\)
0.414265 + 0.910156i \(0.364039\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11.0000 19.0526i 0.533578 0.924185i
\(426\) 0 0
\(427\) −1.00000 + 5.19615i −0.0483934 + 0.251459i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) 0 0
\(433\) −25.0000 −1.20142 −0.600712 0.799466i \(-0.705116\pi\)
−0.600712 + 0.799466i \(0.705116\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.00000 5.19615i −0.143509 0.248566i
\(438\) 0 0
\(439\) −12.0000 + 20.7846i −0.572729 + 0.991995i 0.423556 + 0.905870i \(0.360782\pi\)
−0.996284 + 0.0861252i \(0.972552\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.0000 + 22.5167i −0.617649 + 1.06980i 0.372265 + 0.928126i \(0.378581\pi\)
−0.989914 + 0.141672i \(0.954752\pi\)
\(444\) 0 0
\(445\) 8.00000 + 13.8564i 0.379236 + 0.656857i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 0 0
\(451\) 18.0000 + 31.1769i 0.847587 + 1.46806i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.0000 51.9615i 0.468807 2.43599i
\(456\) 0 0
\(457\) −12.5000 + 21.6506i −0.584725 + 1.01277i 0.410184 + 0.912003i \(0.365464\pi\)
−0.994910 + 0.100771i \(0.967869\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.00000 0.186299 0.0931493 0.995652i \(-0.470307\pi\)
0.0931493 + 0.995652i \(0.470307\pi\)
\(462\) 0 0
\(463\) −5.00000 −0.232370 −0.116185 0.993228i \(-0.537067\pi\)
−0.116185 + 0.993228i \(0.537067\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.00000 6.92820i 0.185098 0.320599i −0.758512 0.651660i \(-0.774073\pi\)
0.943610 + 0.331061i \(0.107406\pi\)
\(468\) 0 0
\(469\) 14.0000 + 12.1244i 0.646460 + 0.559851i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15.0000 + 25.9808i 0.689701 + 1.19460i
\(474\) 0 0
\(475\) 11.0000 0.504715
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.00000 + 1.73205i 0.0456912 + 0.0791394i 0.887967 0.459908i \(-0.152118\pi\)
−0.842275 + 0.539048i \(0.818784\pi\)
\(480\) 0 0
\(481\) −7.50000 + 12.9904i −0.341971 + 0.592310i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.0000 20.7846i 0.544892 0.943781i
\(486\) 0 0
\(487\) 0.500000 + 0.866025i 0.0226572 + 0.0392434i 0.877132 0.480250i \(-0.159454\pi\)
−0.854475 + 0.519493i \(0.826121\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.00000 −0.361035 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 40.0000 13.8564i 1.79425 0.621545i
\(498\) 0 0
\(499\) −14.5000 + 25.1147i −0.649109 + 1.12429i 0.334227 + 0.942493i \(0.391525\pi\)
−0.983336 + 0.181797i \(0.941809\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −18.0000 −0.802580 −0.401290 0.915951i \(-0.631438\pi\)
−0.401290 + 0.915951i \(0.631438\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.0000 + 20.7846i −0.531891 + 0.921262i 0.467416 + 0.884037i \(0.345185\pi\)
−0.999307 + 0.0372243i \(0.988148\pi\)
\(510\) 0 0
\(511\) −6.00000 5.19615i −0.265424 0.229864i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 22.0000 + 38.1051i 0.969436 + 1.67911i
\(516\) 0 0
\(517\) −24.0000 −1.05552
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0000 + 20.7846i 0.525730 + 0.910590i 0.999551 + 0.0299693i \(0.00954094\pi\)
−0.473821 + 0.880621i \(0.657126\pi\)
\(522\) 0 0
\(523\) 8.50000 14.7224i 0.371679 0.643767i −0.618145 0.786064i \(-0.712116\pi\)
0.989824 + 0.142297i \(0.0454489\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.00000 + 5.19615i −0.130682 + 0.226348i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 30.0000 1.29944
\(534\) 0 0
\(535\) 20.0000 + 34.6410i 0.864675 + 1.49766i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 39.0000 + 15.5885i 1.67985 + 0.671442i
\(540\) 0 0
\(541\) −18.5000 + 32.0429i −0.795377 + 1.37763i 0.127222 + 0.991874i \(0.459394\pi\)
−0.922599 + 0.385759i \(0.873939\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −60.0000 −2.57012
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 5.50000 28.5788i 0.233884 1.21530i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.00000 5.19615i −0.127114 0.220168i 0.795443 0.606028i \(-0.207238\pi\)
−0.922557 + 0.385860i \(0.873905\pi\)
\(558\) 0 0
\(559\) 25.0000 1.05739
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0000 + 20.7846i 0.505740 + 0.875967i 0.999978 + 0.00664037i \(0.00211371\pi\)
−0.494238 + 0.869326i \(0.664553\pi\)
\(564\) 0 0
\(565\) −32.0000 + 55.4256i −1.34625 + 2.33177i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.00000 15.5885i 0.377300 0.653502i −0.613369 0.789797i \(-0.710186\pi\)
0.990668 + 0.136295i \(0.0435194\pi\)
\(570\) 0 0
\(571\) −14.5000 25.1147i −0.606806 1.05102i −0.991763 0.128085i \(-0.959117\pi\)
0.384957 0.922934i \(-0.374216\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 66.0000 2.75239
\(576\) 0 0
\(577\) −11.5000 19.9186i −0.478751 0.829222i 0.520952 0.853586i \(-0.325577\pi\)
−0.999703 + 0.0243645i \(0.992244\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 30.0000 10.3923i 1.24461 0.431145i
\(582\) 0 0
\(583\) 18.0000 31.1769i 0.745484 1.29122i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −40.0000 −1.65098 −0.825488 0.564419i \(-0.809100\pi\)
−0.825488 + 0.564419i \(0.809100\pi\)
\(588\) 0 0
\(589\) −3.00000 −0.123613
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.0000 + 22.5167i −0.533846 + 0.924648i 0.465372 + 0.885115i \(0.345920\pi\)
−0.999218 + 0.0395334i \(0.987413\pi\)
\(594\) 0 0
\(595\) 20.0000 6.92820i 0.819920 0.284029i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.0000 + 17.3205i 0.408589 + 0.707697i 0.994732 0.102511i \(-0.0326876\pi\)
−0.586143 + 0.810208i \(0.699354\pi\)
\(600\) 0 0
\(601\) −21.0000 −0.856608 −0.428304 0.903635i \(-0.640889\pi\)
−0.428304 + 0.903635i \(0.640889\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −50.0000 86.6025i −2.03279 3.52089i
\(606\) 0 0
\(607\) 2.50000 4.33013i 0.101472 0.175754i −0.810819 0.585296i \(-0.800978\pi\)
0.912291 + 0.409542i \(0.134311\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.0000 + 17.3205i −0.404557 + 0.700713i
\(612\) 0 0
\(613\) 23.0000 + 39.8372i 0.928961 + 1.60901i 0.785063 + 0.619416i \(0.212630\pi\)
0.143898 + 0.989593i \(0.454036\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.0000 0.563619 0.281809 0.959470i \(-0.409065\pi\)
0.281809 + 0.959470i \(0.409065\pi\)
\(618\) 0 0
\(619\) 12.5000 + 21.6506i 0.502417 + 0.870212i 0.999996 + 0.00279365i \(0.000889247\pi\)
−0.497579 + 0.867419i \(0.665777\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.00000 + 10.3923i −0.0801283 + 0.416359i
\(624\) 0 0
\(625\) −20.5000 + 35.5070i −0.820000 + 1.42028i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.00000 −0.239236
\(630\) 0 0
\(631\) 28.0000 1.11466 0.557331 0.830290i \(-0.311825\pi\)
0.557331 + 0.830290i \(0.311825\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.0000 24.2487i 0.555573 0.962281i
\(636\) 0 0
\(637\) 27.5000 21.6506i 1.08959 0.857829i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.0000 + 32.9090i 0.750455 + 1.29983i 0.947602 + 0.319452i \(0.103499\pi\)
−0.197148 + 0.980374i \(0.563168\pi\)
\(642\) 0 0
\(643\) −23.0000 −0.907031 −0.453516 0.891248i \(-0.649830\pi\)
−0.453516 + 0.891248i \(0.649830\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.00000 + 8.66025i 0.196570 + 0.340470i 0.947414 0.320010i \(-0.103686\pi\)
−0.750844 + 0.660480i \(0.770353\pi\)
\(648\) 0 0
\(649\) 18.0000 31.1769i 0.706562 1.22380i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.0000 29.4449i 0.665261 1.15227i −0.313953 0.949439i \(-0.601653\pi\)
0.979214 0.202828i \(-0.0650132\pi\)
\(654\) 0 0
\(655\) 12.0000 + 20.7846i 0.468879 + 0.812122i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) −1.50000 2.59808i −0.0583432 0.101053i 0.835379 0.549675i \(-0.185248\pi\)
−0.893722 + 0.448622i \(0.851915\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.00000 + 6.92820i 0.310227 + 0.268664i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) −29.0000 −1.11787 −0.558934 0.829212i \(-0.688789\pi\)
−0.558934 + 0.829212i \(0.688789\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.00000 + 10.3923i −0.230599 + 0.399409i −0.957984 0.286820i \(-0.907402\pi\)
0.727386 + 0.686229i \(0.240735\pi\)
\(678\) 0 0
\(679\) 15.0000 5.19615i 0.575647 0.199410i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.00000 + 15.5885i 0.344375 + 0.596476i 0.985240 0.171178i \(-0.0547574\pi\)
−0.640865 + 0.767654i \(0.721424\pi\)
\(684\) 0 0
\(685\) 48.0000 1.83399
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.0000 25.9808i −0.571454 0.989788i
\(690\) 0 0
\(691\) −11.5000 + 19.9186i −0.437481 + 0.757739i −0.997494 0.0707446i \(-0.977462\pi\)
0.560014 + 0.828483i \(0.310796\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.0000 + 17.3205i −0.379322 + 0.657004i
\(696\) 0 0
\(697\) 6.00000 + 10.3923i 0.227266 + 0.393637i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 0 0
\(703\) −1.50000 2.59808i −0.0565736 0.0979883i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.00000 3.46410i −0.150435 0.130281i
\(708\) 0 0
\(709\) 3.00000 5.19615i 0.112667 0.195146i −0.804178 0.594389i \(-0.797394\pi\)
0.916845 + 0.399244i \(0.130727\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −18.0000 −0.674105
\(714\) 0 0
\(715\) −120.000 −4.48775
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.0000 25.9808i 0.559406 0.968919i −0.438141 0.898906i \(-0.644363\pi\)
0.997546 0.0700124i \(-0.0223039\pi\)
\(720\) 0 0
\(721\) −5.50000 + 28.5788i −0.204831 + 1.06433i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −41.0000 −1.52061 −0.760303 0.649569i \(-0.774949\pi\)
−0.760303 + 0.649569i \(0.774949\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.00000 + 8.66025i 0.184932 + 0.320311i
\(732\) 0 0
\(733\) −10.5000 + 18.1865i −0.387826 + 0.671735i −0.992157 0.124999i \(-0.960107\pi\)
0.604331 + 0.796734i \(0.293441\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.0000 36.3731i 0.773545 1.33982i
\(738\) 0 0
\(739\) 25.5000 + 44.1673i 0.938033 + 1.62472i 0.769135 + 0.639087i \(0.220687\pi\)
0.168898 + 0.985634i \(0.445979\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.0000 0.660356 0.330178 0.943919i \(-0.392891\pi\)
0.330178 + 0.943919i \(0.392891\pi\)
\(744\) 0 0
\(745\) −8.00000 13.8564i −0.293097 0.507659i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.00000 + 25.9808i −0.182696 + 0.949316i
\(750\) 0 0
\(751\) 3.50000 6.06218i 0.127717 0.221212i −0.795075 0.606511i \(-0.792568\pi\)
0.922792 + 0.385299i \(0.125902\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −32.0000 −1.16460
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.0000 43.3013i 0.906249 1.56967i 0.0870179 0.996207i \(-0.472266\pi\)
0.819231 0.573463i \(-0.194400\pi\)
\(762\) 0 0
\(763\) −30.0000 25.9808i −1.08607 0.940567i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −15.0000 25.9808i −0.541619 0.938111i
\(768\) 0 0
\(769\) 31.0000 1.11789 0.558944 0.829205i \(-0.311207\pi\)
0.558944 + 0.829205i \(0.311207\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11.0000 19.0526i −0.395643 0.685273i 0.597540 0.801839i \(-0.296145\pi\)
−0.993183 + 0.116566i \(0.962811\pi\)
\(774\) 0 0
\(775\) 16.5000 28.5788i 0.592697 1.02658i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.00000 + 5.19615i −0.107486 + 0.186171i
\(780\) 0 0
\(781\) −48.0000 83.1384i −1.71758 2.97493i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 40.0000 1.42766
\(786\) 0 0
\(787\) −16.0000 27.7128i −0.570338 0.987855i −0.996531 0.0832226i \(-0.973479\pi\)
0.426193 0.904632i \(-0.359855\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −40.0000 + 13.8564i −1.42224 + 0.492677i
\(792\) 0 0
\(793\) 5.00000 8.66025i 0.177555 0.307535i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.0000 1.62940 0.814702 0.579880i \(-0.196901\pi\)
0.814702 + 0.579880i \(0.196901\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.00000 +