Properties

Label 2016.2.s.a
Level $2016$
Weight $2$
Character orbit 2016.s
Analytic conductor $16.098$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -4 \zeta_{6} q^{5} + ( -2 - \zeta_{6} ) q^{7} +O(q^{10})\) \( q -4 \zeta_{6} q^{5} + ( -2 - \zeta_{6} ) q^{7} + ( 6 - 6 \zeta_{6} ) q^{11} + 5 q^{13} + ( 2 - 2 \zeta_{6} ) q^{17} -\zeta_{6} q^{19} -6 \zeta_{6} q^{23} + ( -11 + 11 \zeta_{6} ) q^{25} + ( 3 - 3 \zeta_{6} ) q^{31} + ( -4 + 12 \zeta_{6} ) q^{35} -3 \zeta_{6} q^{37} + 6 q^{41} + 5 q^{43} -4 \zeta_{6} q^{47} + ( 3 + 5 \zeta_{6} ) q^{49} + ( -6 + 6 \zeta_{6} ) q^{53} -24 q^{55} + ( -6 + 6 \zeta_{6} ) q^{59} + 2 \zeta_{6} q^{61} -20 \zeta_{6} q^{65} + ( -7 + 7 \zeta_{6} ) q^{67} -16 q^{71} + ( 3 - 3 \zeta_{6} ) q^{73} + ( -18 + 12 \zeta_{6} ) q^{77} -11 \zeta_{6} q^{79} -12 q^{83} -8 q^{85} + 4 \zeta_{6} q^{89} + ( -10 - 5 \zeta_{6} ) q^{91} + ( -4 + 4 \zeta_{6} ) q^{95} -6 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} - 5q^{7} + O(q^{10}) \) \( 2q - 4q^{5} - 5q^{7} + 6q^{11} + 10q^{13} + 2q^{17} - q^{19} - 6q^{23} - 11q^{25} + 3q^{31} + 4q^{35} - 3q^{37} + 12q^{41} + 10q^{43} - 4q^{47} + 11q^{49} - 6q^{53} - 48q^{55} - 6q^{59} + 2q^{61} - 20q^{65} - 7q^{67} - 32q^{71} + 3q^{73} - 24q^{77} - 11q^{79} - 24q^{83} - 16q^{85} + 4q^{89} - 25q^{91} - 4q^{95} - 12q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −2.00000 + 3.46410i 0 −2.50000 + 0.866025i 0 0 0
865.1 0 0 0 −2.00000 3.46410i 0 −2.50000 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2016.2.s.a 2
3.b odd 2 1 672.2.q.j yes 2
4.b odd 2 1 2016.2.s.b 2
7.c even 3 1 inner 2016.2.s.a 2
12.b even 2 1 672.2.q.e 2
21.g even 6 1 4704.2.a.bh 1
21.h odd 6 1 672.2.q.j yes 2
21.h odd 6 1 4704.2.a.a 1
24.f even 2 1 1344.2.q.l 2
24.h odd 2 1 1344.2.q.a 2
28.g odd 6 1 2016.2.s.b 2
84.j odd 6 1 4704.2.a.p 1
84.n even 6 1 672.2.q.e 2
84.n even 6 1 4704.2.a.r 1
168.s odd 6 1 1344.2.q.a 2
168.s odd 6 1 9408.2.a.dd 1
168.v even 6 1 1344.2.q.l 2
168.v even 6 1 9408.2.a.bp 1
168.ba even 6 1 9408.2.a.a 1
168.be odd 6 1 9408.2.a.bs 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.q.e 2 12.b even 2 1
672.2.q.e 2 84.n even 6 1
672.2.q.j yes 2 3.b odd 2 1
672.2.q.j yes 2 21.h odd 6 1
1344.2.q.a 2 24.h odd 2 1
1344.2.q.a 2 168.s odd 6 1
1344.2.q.l 2 24.f even 2 1
1344.2.q.l 2 168.v even 6 1
2016.2.s.a 2 1.a even 1 1 trivial
2016.2.s.a 2 7.c even 3 1 inner
2016.2.s.b 2 4.b odd 2 1
2016.2.s.b 2 28.g odd 6 1
4704.2.a.a 1 21.h odd 6 1
4704.2.a.p 1 84.j odd 6 1
4704.2.a.r 1 84.n even 6 1
4704.2.a.bh 1 21.g even 6 1
9408.2.a.a 1 168.ba even 6 1
9408.2.a.bp 1 168.v even 6 1
9408.2.a.bs 1 168.be odd 6 1
9408.2.a.dd 1 168.s odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2016, [\chi])\):

\( T_{5}^{2} + 4 T_{5} + 16 \)
\( T_{11}^{2} - 6 T_{11} + 36 \)
\( T_{13} - 5 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( 16 + 4 T + T^{2} \)
$7$ \( 7 + 5 T + T^{2} \)
$11$ \( 36 - 6 T + T^{2} \)
$13$ \( ( -5 + T )^{2} \)
$17$ \( 4 - 2 T + T^{2} \)
$19$ \( 1 + T + T^{2} \)
$23$ \( 36 + 6 T + T^{2} \)
$29$ \( T^{2} \)
$31$ \( 9 - 3 T + T^{2} \)
$37$ \( 9 + 3 T + T^{2} \)
$41$ \( ( -6 + T )^{2} \)
$43$ \( ( -5 + T )^{2} \)
$47$ \( 16 + 4 T + T^{2} \)
$53$ \( 36 + 6 T + T^{2} \)
$59$ \( 36 + 6 T + T^{2} \)
$61$ \( 4 - 2 T + T^{2} \)
$67$ \( 49 + 7 T + T^{2} \)
$71$ \( ( 16 + T )^{2} \)
$73$ \( 9 - 3 T + T^{2} \)
$79$ \( 121 + 11 T + T^{2} \)
$83$ \( ( 12 + T )^{2} \)
$89$ \( 16 - 4 T + T^{2} \)
$97$ \( ( 6 + T )^{2} \)
show more
show less