Properties

Label 2016.2.cp.b.17.19
Level $2016$
Weight $2$
Character 2016.17
Analytic conductor $16.098$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,2,Mod(17,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.cp (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.19
Character \(\chi\) \(=\) 2016.17
Dual form 2016.2.cp.b.593.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00441 - 0.579896i) q^{5} +(-1.24394 - 2.33508i) q^{7} +(-1.41560 + 2.45188i) q^{11} -3.11725 q^{13} +(-0.782206 + 1.35482i) q^{17} +(2.15042 + 3.72463i) q^{19} +(-4.05782 + 2.34278i) q^{23} +(-1.82744 + 3.16522i) q^{25} +4.08861 q^{29} +(-2.40452 - 1.38825i) q^{31} +(-2.60353 - 1.62402i) q^{35} +(-4.96358 + 2.86572i) q^{37} +2.19421 q^{41} +6.52977i q^{43} +(5.34609 + 9.25971i) q^{47} +(-3.90521 + 5.80942i) q^{49} +(5.61902 - 9.73242i) q^{53} +3.28359i q^{55} +(11.9042 + 6.87289i) q^{59} +(5.09458 + 8.82407i) q^{61} +(-3.13100 + 1.80768i) q^{65} +(5.01037 + 2.89274i) q^{67} -4.72781i q^{71} +(-14.0619 - 8.11863i) q^{73} +(7.48627 + 0.255528i) q^{77} +(-2.89324 - 5.01124i) q^{79} +5.93150i q^{83} +1.81439i q^{85} +(-1.33902 - 2.31925i) q^{89} +(3.87769 + 7.27904i) q^{91} +(4.31980 + 2.49404i) q^{95} -11.2024i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 20 q^{7} + 8 q^{25} + 36 q^{31} - 28 q^{49} + 72 q^{73} + 12 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00441 0.579896i 0.449185 0.259337i −0.258301 0.966065i \(-0.583163\pi\)
0.707486 + 0.706727i \(0.249829\pi\)
\(6\) 0 0
\(7\) −1.24394 2.33508i −0.470166 0.882578i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.41560 + 2.45188i −0.426818 + 0.739271i −0.996588 0.0825332i \(-0.973699\pi\)
0.569770 + 0.821804i \(0.307032\pi\)
\(12\) 0 0
\(13\) −3.11725 −0.864571 −0.432285 0.901737i \(-0.642293\pi\)
−0.432285 + 0.901737i \(0.642293\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.782206 + 1.35482i −0.189713 + 0.328592i −0.945154 0.326624i \(-0.894089\pi\)
0.755442 + 0.655216i \(0.227422\pi\)
\(18\) 0 0
\(19\) 2.15042 + 3.72463i 0.493340 + 0.854489i 0.999971 0.00767364i \(-0.00244262\pi\)
−0.506631 + 0.862163i \(0.669109\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.05782 + 2.34278i −0.846114 + 0.488504i −0.859338 0.511408i \(-0.829124\pi\)
0.0132237 + 0.999913i \(0.495791\pi\)
\(24\) 0 0
\(25\) −1.82744 + 3.16522i −0.365488 + 0.633044i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.08861 0.759235 0.379618 0.925143i \(-0.376056\pi\)
0.379618 + 0.925143i \(0.376056\pi\)
\(30\) 0 0
\(31\) −2.40452 1.38825i −0.431865 0.249337i 0.268276 0.963342i \(-0.413546\pi\)
−0.700141 + 0.714005i \(0.746879\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.60353 1.62402i −0.440077 0.274509i
\(36\) 0 0
\(37\) −4.96358 + 2.86572i −0.816008 + 0.471122i −0.849038 0.528332i \(-0.822818\pi\)
0.0330302 + 0.999454i \(0.489484\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.19421 0.342678 0.171339 0.985212i \(-0.445191\pi\)
0.171339 + 0.985212i \(0.445191\pi\)
\(42\) 0 0
\(43\) 6.52977i 0.995781i 0.867240 + 0.497891i \(0.165892\pi\)
−0.867240 + 0.497891i \(0.834108\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.34609 + 9.25971i 0.779808 + 1.35067i 0.932052 + 0.362324i \(0.118017\pi\)
−0.152244 + 0.988343i \(0.548650\pi\)
\(48\) 0 0
\(49\) −3.90521 + 5.80942i −0.557887 + 0.829917i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.61902 9.73242i 0.771831 1.33685i −0.164727 0.986339i \(-0.552674\pi\)
0.936558 0.350512i \(-0.113992\pi\)
\(54\) 0 0
\(55\) 3.28359i 0.442760i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.9042 + 6.87289i 1.54980 + 0.894775i 0.998157 + 0.0606912i \(0.0193305\pi\)
0.551638 + 0.834083i \(0.314003\pi\)
\(60\) 0 0
\(61\) 5.09458 + 8.82407i 0.652294 + 1.12981i 0.982565 + 0.185920i \(0.0595265\pi\)
−0.330271 + 0.943886i \(0.607140\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.13100 + 1.80768i −0.388352 + 0.224215i
\(66\) 0 0
\(67\) 5.01037 + 2.89274i 0.612114 + 0.353404i 0.773793 0.633439i \(-0.218357\pi\)
−0.161678 + 0.986844i \(0.551691\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.72781i 0.561088i −0.959841 0.280544i \(-0.909485\pi\)
0.959841 0.280544i \(-0.0905149\pi\)
\(72\) 0 0
\(73\) −14.0619 8.11863i −1.64582 0.950213i −0.978709 0.205254i \(-0.934198\pi\)
−0.667109 0.744960i \(-0.732469\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.48627 + 0.255528i 0.853140 + 0.0291201i
\(78\) 0 0
\(79\) −2.89324 5.01124i −0.325515 0.563809i 0.656101 0.754673i \(-0.272204\pi\)
−0.981617 + 0.190864i \(0.938871\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.93150i 0.651066i 0.945531 + 0.325533i \(0.105544\pi\)
−0.945531 + 0.325533i \(0.894456\pi\)
\(84\) 0 0
\(85\) 1.81439i 0.196798i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.33902 2.31925i −0.141936 0.245840i 0.786290 0.617858i \(-0.211999\pi\)
−0.928226 + 0.372018i \(0.878666\pi\)
\(90\) 0 0
\(91\) 3.87769 + 7.27904i 0.406492 + 0.763051i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.31980 + 2.49404i 0.443202 + 0.255883i
\(96\) 0 0
\(97\) 11.2024i 1.13743i −0.822534 0.568716i \(-0.807440\pi\)
0.822534 0.568716i \(-0.192560\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.473259 0.273236i −0.0470911 0.0271880i 0.476270 0.879299i \(-0.341989\pi\)
−0.523361 + 0.852111i \(0.675322\pi\)
\(102\) 0 0
\(103\) −13.0391 + 7.52810i −1.28478 + 0.741766i −0.977718 0.209925i \(-0.932678\pi\)
−0.307059 + 0.951691i \(0.599345\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.42284 2.46443i −0.137551 0.238246i 0.789018 0.614370i \(-0.210590\pi\)
−0.926569 + 0.376125i \(0.877256\pi\)
\(108\) 0 0
\(109\) −0.806006 0.465348i −0.0772014 0.0445722i 0.460902 0.887451i \(-0.347526\pi\)
−0.538104 + 0.842879i \(0.680859\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.9228i 1.30974i 0.755741 + 0.654871i \(0.227277\pi\)
−0.755741 + 0.654871i \(0.772723\pi\)
\(114\) 0 0
\(115\) −2.71714 + 4.70623i −0.253375 + 0.438858i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.13663 + 0.141195i 0.379205 + 0.0129434i
\(120\) 0 0
\(121\) 1.49218 + 2.58452i 0.135652 + 0.234957i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.0379i 0.897813i
\(126\) 0 0
\(127\) 2.15135 0.190901 0.0954506 0.995434i \(-0.469571\pi\)
0.0954506 + 0.995434i \(0.469571\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.5792 6.10788i 0.924306 0.533648i 0.0392997 0.999227i \(-0.487487\pi\)
0.885006 + 0.465579i \(0.154154\pi\)
\(132\) 0 0
\(133\) 6.02233 9.65463i 0.522202 0.837163i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.51773 4.91771i −0.727718 0.420148i 0.0898684 0.995954i \(-0.471355\pi\)
−0.817587 + 0.575805i \(0.804689\pi\)
\(138\) 0 0
\(139\) −17.6445 −1.49658 −0.748292 0.663369i \(-0.769126\pi\)
−0.748292 + 0.663369i \(0.769126\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.41277 7.64315i 0.369015 0.639152i
\(144\) 0 0
\(145\) 4.10663 2.37097i 0.341037 0.196898i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.88010 + 8.45259i 0.399794 + 0.692463i 0.993700 0.112071i \(-0.0357484\pi\)
−0.593906 + 0.804534i \(0.702415\pi\)
\(150\) 0 0
\(151\) −2.13984 + 3.70631i −0.174138 + 0.301615i −0.939862 0.341553i \(-0.889047\pi\)
0.765725 + 0.643168i \(0.222380\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.22016 −0.258650
\(156\) 0 0
\(157\) −12.1053 + 20.9671i −0.966111 + 1.67335i −0.259512 + 0.965740i \(0.583562\pi\)
−0.706599 + 0.707614i \(0.749772\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.5183 + 6.56105i 0.828957 + 0.517083i
\(162\) 0 0
\(163\) −7.81820 + 4.51384i −0.612369 + 0.353551i −0.773892 0.633318i \(-0.781693\pi\)
0.161523 + 0.986869i \(0.448359\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −16.2972 −1.26112 −0.630559 0.776142i \(-0.717174\pi\)
−0.630559 + 0.776142i \(0.717174\pi\)
\(168\) 0 0
\(169\) −3.28273 −0.252518
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.0240052 0.0138594i 0.00182508 0.00105371i −0.499087 0.866552i \(-0.666331\pi\)
0.500912 + 0.865498i \(0.332998\pi\)
\(174\) 0 0
\(175\) 9.66429 + 0.329870i 0.730551 + 0.0249358i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.39577 4.14959i 0.179068 0.310155i −0.762493 0.646996i \(-0.776025\pi\)
0.941562 + 0.336841i \(0.109358\pi\)
\(180\) 0 0
\(181\) 7.03270 0.522736 0.261368 0.965239i \(-0.415826\pi\)
0.261368 + 0.965239i \(0.415826\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.32364 + 5.75672i −0.244359 + 0.423242i
\(186\) 0 0
\(187\) −2.21457 3.83576i −0.161946 0.280498i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.9817 + 6.91767i −0.866969 + 0.500545i −0.866340 0.499455i \(-0.833534\pi\)
−0.000629171 1.00000i \(0.500200\pi\)
\(192\) 0 0
\(193\) −2.10467 + 3.64540i −0.151498 + 0.262402i −0.931778 0.363028i \(-0.881743\pi\)
0.780280 + 0.625430i \(0.215076\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −24.3528 −1.73507 −0.867534 0.497378i \(-0.834296\pi\)
−0.867534 + 0.497378i \(0.834296\pi\)
\(198\) 0 0
\(199\) 1.63996 + 0.946831i 0.116254 + 0.0671191i 0.556999 0.830513i \(-0.311953\pi\)
−0.440746 + 0.897632i \(0.645286\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.08600 9.54723i −0.356967 0.670084i
\(204\) 0 0
\(205\) 2.20389 1.27241i 0.153926 0.0888692i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −12.1765 −0.842266
\(210\) 0 0
\(211\) 25.0597i 1.72518i −0.505901 0.862592i \(-0.668840\pi\)
0.505901 0.862592i \(-0.331160\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.78659 + 6.55856i 0.258243 + 0.447290i
\(216\) 0 0
\(217\) −0.250592 + 7.34166i −0.0170113 + 0.498384i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.43833 4.22332i 0.164020 0.284091i
\(222\) 0 0
\(223\) 9.42532i 0.631166i −0.948898 0.315583i \(-0.897800\pi\)
0.948898 0.315583i \(-0.102200\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.0967 + 9.29346i 1.06838 + 0.616829i 0.927738 0.373232i \(-0.121750\pi\)
0.140641 + 0.990061i \(0.455084\pi\)
\(228\) 0 0
\(229\) 13.7016 + 23.7319i 0.905428 + 1.56825i 0.820342 + 0.571874i \(0.193783\pi\)
0.0850862 + 0.996374i \(0.472883\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.0326 12.1432i 1.37789 0.795526i 0.385987 0.922504i \(-0.373861\pi\)
0.991906 + 0.126978i \(0.0405278\pi\)
\(234\) 0 0
\(235\) 10.7393 + 6.20035i 0.700556 + 0.404466i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.35413i 0.152276i 0.997097 + 0.0761380i \(0.0242590\pi\)
−0.997097 + 0.0761380i \(0.975741\pi\)
\(240\) 0 0
\(241\) 11.2904 + 6.51850i 0.727277 + 0.419893i 0.817425 0.576035i \(-0.195401\pi\)
−0.0901483 + 0.995928i \(0.528734\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.553574 + 8.09964i −0.0353665 + 0.517467i
\(246\) 0 0
\(247\) −6.70340 11.6106i −0.426527 0.738767i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.0484i 1.51792i −0.651136 0.758961i \(-0.725707\pi\)
0.651136 0.758961i \(-0.274293\pi\)
\(252\) 0 0
\(253\) 13.2657i 0.834010i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.72517 + 11.6483i 0.419504 + 0.726603i 0.995890 0.0905752i \(-0.0288706\pi\)
−0.576385 + 0.817178i \(0.695537\pi\)
\(258\) 0 0
\(259\) 12.8661 + 8.02557i 0.799461 + 0.498684i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.35260 0.780923i −0.0834048 0.0481538i 0.457718 0.889098i \(-0.348667\pi\)
−0.541122 + 0.840944i \(0.682000\pi\)
\(264\) 0 0
\(265\) 13.0338i 0.800658i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.3499 8.28490i −0.874927 0.505139i −0.00594471 0.999982i \(-0.501892\pi\)
−0.868982 + 0.494843i \(0.835226\pi\)
\(270\) 0 0
\(271\) −11.9658 + 6.90846i −0.726871 + 0.419659i −0.817276 0.576246i \(-0.804517\pi\)
0.0904054 + 0.995905i \(0.471184\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.17384 8.96135i −0.311994 0.540390i
\(276\) 0 0
\(277\) −11.6351 6.71750i −0.699083 0.403616i 0.107923 0.994159i \(-0.465580\pi\)
−0.807006 + 0.590544i \(0.798913\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 27.9830i 1.66933i −0.550761 0.834663i \(-0.685662\pi\)
0.550761 0.834663i \(-0.314338\pi\)
\(282\) 0 0
\(283\) 9.68568 16.7761i 0.575754 0.997235i −0.420205 0.907429i \(-0.638042\pi\)
0.995959 0.0898063i \(-0.0286248\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.72947 5.12366i −0.161116 0.302440i
\(288\) 0 0
\(289\) 7.27631 + 12.6029i 0.428018 + 0.741349i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 24.4475i 1.42824i 0.700024 + 0.714119i \(0.253173\pi\)
−0.700024 + 0.714119i \(0.746827\pi\)
\(294\) 0 0
\(295\) 15.9422 0.928193
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.6493 7.30305i 0.731525 0.422346i
\(300\) 0 0
\(301\) 15.2476 8.12267i 0.878855 0.468183i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.2341 + 5.90865i 0.586001 + 0.338328i
\(306\) 0 0
\(307\) −27.0446 −1.54352 −0.771758 0.635917i \(-0.780622\pi\)
−0.771758 + 0.635917i \(0.780622\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.276139 0.478286i 0.0156584 0.0271211i −0.858090 0.513499i \(-0.828349\pi\)
0.873748 + 0.486378i \(0.161682\pi\)
\(312\) 0 0
\(313\) −13.5478 + 7.82183i −0.765768 + 0.442116i −0.831363 0.555730i \(-0.812439\pi\)
0.0655951 + 0.997846i \(0.479105\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.33699 + 10.9760i 0.355921 + 0.616472i 0.987275 0.159022i \(-0.0508340\pi\)
−0.631355 + 0.775494i \(0.717501\pi\)
\(318\) 0 0
\(319\) −5.78782 + 10.0248i −0.324056 + 0.561281i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.72828 −0.374371
\(324\) 0 0
\(325\) 5.69660 9.86680i 0.315991 0.547312i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 14.9719 24.0021i 0.825429 1.32328i
\(330\) 0 0
\(331\) 2.26793 1.30939i 0.124657 0.0719706i −0.436375 0.899765i \(-0.643738\pi\)
0.561032 + 0.827794i \(0.310405\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.70995 0.366604
\(336\) 0 0
\(337\) 34.9446 1.90356 0.951778 0.306788i \(-0.0992542\pi\)
0.951778 + 0.306788i \(0.0992542\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.80766 3.93040i 0.368656 0.212843i
\(342\) 0 0
\(343\) 18.4233 + 1.89241i 0.994766 + 0.102180i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.7205 + 28.9607i −0.897602 + 1.55469i −0.0670515 + 0.997750i \(0.521359\pi\)
−0.830551 + 0.556943i \(0.811974\pi\)
\(348\) 0 0
\(349\) −7.32611 −0.392158 −0.196079 0.980588i \(-0.562821\pi\)
−0.196079 + 0.980588i \(0.562821\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.9297 + 24.1269i −0.741402 + 1.28415i 0.210454 + 0.977604i \(0.432506\pi\)
−0.951857 + 0.306543i \(0.900828\pi\)
\(354\) 0 0
\(355\) −2.74164 4.74866i −0.145511 0.252033i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.6201 9.01825i 0.824396 0.475965i −0.0275343 0.999621i \(-0.508766\pi\)
0.851930 + 0.523656i \(0.175432\pi\)
\(360\) 0 0
\(361\) 0.251405 0.435447i 0.0132319 0.0229182i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −18.8318 −0.985703
\(366\) 0 0
\(367\) −4.16683 2.40572i −0.217507 0.125578i 0.387288 0.921959i \(-0.373412\pi\)
−0.604795 + 0.796381i \(0.706745\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −29.7157 1.01428i −1.54276 0.0526590i
\(372\) 0 0
\(373\) −0.589575 + 0.340391i −0.0305270 + 0.0176248i −0.515186 0.857078i \(-0.672277\pi\)
0.484659 + 0.874703i \(0.338944\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.7452 −0.656413
\(378\) 0 0
\(379\) 23.7081i 1.21780i −0.793245 0.608902i \(-0.791610\pi\)
0.793245 0.608902i \(-0.208390\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −16.7429 28.9996i −0.855522 1.48181i −0.876160 0.482021i \(-0.839903\pi\)
0.0206373 0.999787i \(-0.493430\pi\)
\(384\) 0 0
\(385\) 7.66746 4.08460i 0.390770 0.208171i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.7772 20.3988i 0.597130 1.03426i −0.396113 0.918202i \(-0.629641\pi\)
0.993243 0.116057i \(-0.0370256\pi\)
\(390\) 0 0
\(391\) 7.33015i 0.370702i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.81200 3.35556i −0.292433 0.168836i
\(396\) 0 0
\(397\) −12.7489 22.0817i −0.639849 1.10825i −0.985466 0.169875i \(-0.945664\pi\)
0.345617 0.938376i \(-0.387670\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.2818 + 5.93623i −0.513451 + 0.296441i −0.734251 0.678878i \(-0.762467\pi\)
0.220800 + 0.975319i \(0.429133\pi\)
\(402\) 0 0
\(403\) 7.49550 + 4.32753i 0.373378 + 0.215570i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.2268i 0.804334i
\(408\) 0 0
\(409\) −4.46727 2.57918i −0.220892 0.127532i 0.385471 0.922720i \(-0.374039\pi\)
−0.606363 + 0.795188i \(0.707372\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.24062 36.3468i 0.0610469 1.78851i
\(414\) 0 0
\(415\) 3.43965 + 5.95765i 0.168846 + 0.292449i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.63546i 0.421870i 0.977500 + 0.210935i \(0.0676508\pi\)
−0.977500 + 0.210935i \(0.932349\pi\)
\(420\) 0 0
\(421\) 37.2303i 1.81449i −0.420599 0.907247i \(-0.638180\pi\)
0.420599 0.907247i \(-0.361820\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.85887 4.95171i −0.138676 0.240193i
\(426\) 0 0
\(427\) 14.2676 22.8729i 0.690455 1.10690i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.24374 + 4.18217i 0.348919 + 0.201448i 0.664209 0.747547i \(-0.268769\pi\)
−0.315290 + 0.948995i \(0.602102\pi\)
\(432\) 0 0
\(433\) 7.63673i 0.366998i −0.983020 0.183499i \(-0.941258\pi\)
0.983020 0.183499i \(-0.0587424\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −17.4520 10.0759i −0.834843 0.481997i
\(438\) 0 0
\(439\) 8.42793 4.86587i 0.402243 0.232235i −0.285208 0.958466i \(-0.592063\pi\)
0.687451 + 0.726230i \(0.258729\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.9352 + 18.9404i 0.519549 + 0.899885i 0.999742 + 0.0227221i \(0.00723330\pi\)
−0.480193 + 0.877163i \(0.659433\pi\)
\(444\) 0 0
\(445\) −2.68985 1.55299i −0.127511 0.0736186i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.6555i 0.786020i −0.919534 0.393010i \(-0.871434\pi\)
0.919534 0.393010i \(-0.128566\pi\)
\(450\) 0 0
\(451\) −3.10612 + 5.37995i −0.146261 + 0.253332i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.11587 + 5.06248i 0.380478 + 0.237333i
\(456\) 0 0
\(457\) −10.3145 17.8652i −0.482490 0.835698i 0.517307 0.855800i \(-0.326934\pi\)
−0.999798 + 0.0201016i \(0.993601\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 31.5292i 1.46846i 0.678901 + 0.734230i \(0.262457\pi\)
−0.678901 + 0.734230i \(0.737543\pi\)
\(462\) 0 0
\(463\) 40.3843 1.87682 0.938409 0.345526i \(-0.112299\pi\)
0.938409 + 0.345526i \(0.112299\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.1585 + 5.86499i −0.470077 + 0.271399i −0.716272 0.697821i \(-0.754153\pi\)
0.246195 + 0.969220i \(0.420820\pi\)
\(468\) 0 0
\(469\) 0.522166 15.2980i 0.0241114 0.706398i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16.0103 9.24352i −0.736152 0.425018i
\(474\) 0 0
\(475\) −15.7191 −0.721240
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.299198 + 0.518227i −0.0136707 + 0.0236784i −0.872780 0.488114i \(-0.837685\pi\)
0.859109 + 0.511792i \(0.171018\pi\)
\(480\) 0 0
\(481\) 15.4727 8.93319i 0.705496 0.407318i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.49623 11.2518i −0.294979 0.510918i
\(486\) 0 0
\(487\) 10.3961 18.0065i 0.471090 0.815952i −0.528363 0.849019i \(-0.677194\pi\)
0.999453 + 0.0330665i \(0.0105273\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −22.4435 −1.01286 −0.506430 0.862281i \(-0.669035\pi\)
−0.506430 + 0.862281i \(0.669035\pi\)
\(492\) 0 0
\(493\) −3.19813 + 5.53933i −0.144037 + 0.249479i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.0398 + 5.88113i −0.495204 + 0.263805i
\(498\) 0 0
\(499\) 10.2264 5.90424i 0.457799 0.264310i −0.253320 0.967383i \(-0.581522\pi\)
0.711118 + 0.703072i \(0.248189\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.08281 0.137456 0.0687278 0.997635i \(-0.478106\pi\)
0.0687278 + 0.997635i \(0.478106\pi\)
\(504\) 0 0
\(505\) −0.633794 −0.0282035
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.99141 + 2.30444i −0.176916 + 0.102143i −0.585843 0.810425i \(-0.699236\pi\)
0.408927 + 0.912567i \(0.365903\pi\)
\(510\) 0 0
\(511\) −1.46549 + 42.9347i −0.0648293 + 1.89932i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.73103 + 15.1226i −0.384735 + 0.666381i
\(516\) 0 0
\(517\) −30.2716 −1.33135
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19.2542 33.3493i 0.843542 1.46106i −0.0433388 0.999060i \(-0.513799\pi\)
0.886881 0.461998i \(-0.152867\pi\)
\(522\) 0 0
\(523\) 19.3439 + 33.5046i 0.845849 + 1.46505i 0.884882 + 0.465815i \(0.154239\pi\)
−0.0390332 + 0.999238i \(0.512428\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.76166 2.17180i 0.163860 0.0946049i
\(528\) 0 0
\(529\) −0.522727 + 0.905390i −0.0227273 + 0.0393648i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.83991 −0.296270
\(534\) 0 0
\(535\) −2.85823 1.65020i −0.123572 0.0713443i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.71582 17.7989i −0.375417 0.766654i
\(540\) 0 0
\(541\) 24.9474 14.4034i 1.07257 0.619249i 0.143688 0.989623i \(-0.454104\pi\)
0.928883 + 0.370374i \(0.120770\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.07941 −0.0462370
\(546\) 0 0
\(547\) 26.0874i 1.11541i −0.830038 0.557707i \(-0.811681\pi\)
0.830038 0.557707i \(-0.188319\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.79222 + 15.2286i 0.374561 + 0.648759i
\(552\) 0 0
\(553\) −8.10263 + 12.9897i −0.344559 + 0.552377i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.2896 19.5542i 0.478357 0.828538i −0.521335 0.853352i \(-0.674566\pi\)
0.999692 + 0.0248137i \(0.00789926\pi\)
\(558\) 0 0
\(559\) 20.3550i 0.860923i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15.9160 + 9.18909i 0.670778 + 0.387274i 0.796371 0.604808i \(-0.206750\pi\)
−0.125593 + 0.992082i \(0.540083\pi\)
\(564\) 0 0
\(565\) 8.07374 + 13.9841i 0.339665 + 0.588317i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.3033 + 9.41272i −0.683470 + 0.394602i −0.801161 0.598449i \(-0.795784\pi\)
0.117691 + 0.993050i \(0.462451\pi\)
\(570\) 0 0
\(571\) 2.34839 + 1.35584i 0.0982770 + 0.0567403i 0.548333 0.836260i \(-0.315263\pi\)
−0.450056 + 0.893000i \(0.648596\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17.1252i 0.714170i
\(576\) 0 0
\(577\) 15.8080 + 9.12677i 0.658097 + 0.379952i 0.791551 0.611103i \(-0.209274\pi\)
−0.133455 + 0.991055i \(0.542607\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.8505 7.37844i 0.574617 0.306109i
\(582\) 0 0
\(583\) 15.9085 + 27.5544i 0.658863 + 1.14119i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.5679i 1.34422i 0.740451 + 0.672110i \(0.234612\pi\)
−0.740451 + 0.672110i \(0.765388\pi\)
\(588\) 0 0
\(589\) 11.9413i 0.492032i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.3152 + 26.5267i 0.628920 + 1.08932i 0.987769 + 0.155925i \(0.0498359\pi\)
−0.358849 + 0.933396i \(0.616831\pi\)
\(594\) 0 0
\(595\) 4.23675 2.25700i 0.173690 0.0925279i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 28.4250 + 16.4112i 1.16141 + 0.670543i 0.951643 0.307207i \(-0.0993944\pi\)
0.209772 + 0.977750i \(0.432728\pi\)
\(600\) 0 0
\(601\) 5.73393i 0.233892i 0.993138 + 0.116946i \(0.0373104\pi\)
−0.993138 + 0.116946i \(0.962690\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.99751 + 1.73061i 0.121866 + 0.0703594i
\(606\) 0 0
\(607\) −4.62054 + 2.66767i −0.187542 + 0.108277i −0.590831 0.806795i \(-0.701200\pi\)
0.403289 + 0.915073i \(0.367867\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.6651 28.8649i −0.674199 1.16775i
\(612\) 0 0
\(613\) −0.763004 0.440521i −0.0308174 0.0177925i 0.484512 0.874785i \(-0.338997\pi\)
−0.515330 + 0.856992i \(0.672330\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 33.3940i 1.34439i −0.740373 0.672196i \(-0.765351\pi\)
0.740373 0.672196i \(-0.234649\pi\)
\(618\) 0 0
\(619\) −0.347094 + 0.601184i −0.0139509 + 0.0241636i −0.872917 0.487870i \(-0.837774\pi\)
0.858966 + 0.512033i \(0.171108\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.74998 + 6.01174i −0.150240 + 0.240855i
\(624\) 0 0
\(625\) −3.31630 5.74400i −0.132652 0.229760i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.96634i 0.357511i
\(630\) 0 0
\(631\) −3.67584 −0.146333 −0.0731664 0.997320i \(-0.523310\pi\)
−0.0731664 + 0.997320i \(0.523310\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.16083 1.24756i 0.0857500 0.0495078i
\(636\) 0 0
\(637\) 12.1735 18.1094i 0.482333 0.717522i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.9407 + 12.0901i 0.827108 + 0.477531i 0.852862 0.522137i \(-0.174865\pi\)
−0.0257532 + 0.999668i \(0.508198\pi\)
\(642\) 0 0
\(643\) 7.82797 0.308705 0.154352 0.988016i \(-0.450671\pi\)
0.154352 + 0.988016i \(0.450671\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.30976 + 14.3929i −0.326690 + 0.565844i −0.981853 0.189644i \(-0.939267\pi\)
0.655163 + 0.755488i \(0.272600\pi\)
\(648\) 0 0
\(649\) −33.7031 + 19.4585i −1.32296 + 0.763812i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −10.0211 17.3571i −0.392158 0.679237i 0.600576 0.799568i \(-0.294938\pi\)
−0.992734 + 0.120331i \(0.961605\pi\)
\(654\) 0 0
\(655\) 7.08387 12.2696i 0.276790 0.479414i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.53973 −0.215797 −0.107899 0.994162i \(-0.534412\pi\)
−0.107899 + 0.994162i \(0.534412\pi\)
\(660\) 0 0
\(661\) −14.8650 + 25.7470i −0.578183 + 1.00144i 0.417505 + 0.908675i \(0.362905\pi\)
−0.995688 + 0.0927674i \(0.970429\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.450196 13.1895i 0.0174579 0.511468i
\(666\) 0 0
\(667\) −16.5908 + 9.57873i −0.642400 + 0.370890i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −28.8475 −1.11364
\(672\) 0 0
\(673\) 28.0307 1.08050 0.540252 0.841503i \(-0.318329\pi\)
0.540252 + 0.841503i \(0.318329\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.2739 5.93164i 0.394858 0.227971i −0.289405 0.957207i \(-0.593457\pi\)
0.684263 + 0.729235i \(0.260124\pi\)
\(678\) 0 0
\(679\) −26.1585 + 13.9352i −1.00387 + 0.534782i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.62606 13.2087i 0.291803 0.505418i −0.682433 0.730948i \(-0.739078\pi\)
0.974236 + 0.225530i \(0.0724114\pi\)
\(684\) 0 0
\(685\) −11.4070 −0.435841
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17.5159 + 30.3384i −0.667303 + 1.15580i
\(690\) 0 0
\(691\) 3.24122 + 5.61395i 0.123302 + 0.213565i 0.921068 0.389402i \(-0.127318\pi\)
−0.797766 + 0.602967i \(0.793985\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17.7223 + 10.2320i −0.672244 + 0.388120i
\(696\) 0 0
\(697\) −1.71632 + 2.97276i −0.0650104 + 0.112601i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4.86157 −0.183619 −0.0918096 0.995777i \(-0.529265\pi\)
−0.0918096 + 0.995777i \(0.529265\pi\)
\(702\) 0 0
\(703\) −21.3475 12.3250i −0.805138 0.464847i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.0493217 + 1.44499i −0.00185493 + 0.0543444i
\(708\) 0 0
\(709\) −21.3747 + 12.3407i −0.802744 + 0.463464i −0.844430 0.535667i \(-0.820060\pi\)
0.0416860 + 0.999131i \(0.486727\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.0095 0.487209
\(714\) 0 0
\(715\) 10.2358i 0.382797i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.2912 + 17.8248i 0.383796 + 0.664754i 0.991601 0.129332i \(-0.0412833\pi\)
−0.607806 + 0.794086i \(0.707950\pi\)
\(720\) 0 0
\(721\) 33.7986 + 21.0827i 1.25872 + 0.785162i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.47169 + 12.9414i −0.277492 + 0.480630i
\(726\) 0 0
\(727\) 27.0889i 1.00467i −0.864673 0.502336i \(-0.832474\pi\)
0.864673 0.502336i \(-0.167526\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.84667 5.10763i −0.327206 0.188912i
\(732\) 0 0
\(733\) 8.48261 + 14.6923i 0.313312 + 0.542673i 0.979077 0.203488i \(-0.0652279\pi\)
−0.665765 + 0.746162i \(0.731895\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.1853 + 8.18990i −0.522523 + 0.301679i
\(738\) 0 0
\(739\) 38.1107 + 22.0032i 1.40193 + 0.809402i 0.994590 0.103876i \(-0.0331245\pi\)
0.407336 + 0.913278i \(0.366458\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.5441i 1.12056i −0.828305 0.560278i \(-0.810694\pi\)
0.828305 0.560278i \(-0.189306\pi\)
\(744\) 0 0
\(745\) 9.80324 + 5.65990i 0.359163 + 0.207363i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.98472 + 6.38806i −0.145598 + 0.233415i
\(750\) 0 0
\(751\) −8.35120 14.4647i −0.304739 0.527824i 0.672464 0.740130i \(-0.265236\pi\)
−0.977203 + 0.212306i \(0.931903\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.96353i 0.180641i
\(756\) 0 0
\(757\) 1.36258i 0.0495237i −0.999693 0.0247618i \(-0.992117\pi\)
0.999693 0.0247618i \(-0.00788275\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.30823 12.6582i −0.264923 0.458860i 0.702620 0.711565i \(-0.252013\pi\)
−0.967543 + 0.252705i \(0.918680\pi\)
\(762\) 0 0
\(763\) −0.0839995 + 2.46096i −0.00304099 + 0.0890926i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −37.1084 21.4246i −1.33991 0.773596i
\(768\) 0 0
\(769\) 1.23072i 0.0443809i 0.999754 + 0.0221904i \(0.00706402\pi\)
−0.999754 + 0.0221904i \(0.992936\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.4450 + 10.0719i 0.627452 + 0.362259i 0.779765 0.626073i \(-0.215339\pi\)
−0.152313 + 0.988332i \(0.548672\pi\)
\(774\) 0 0
\(775\) 8.78824 5.07390i 0.315683 0.182260i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.71847 + 8.17263i 0.169057 + 0.292815i
\(780\) 0 0
\(781\) 11.5921 + 6.69268i 0.414796 + 0.239483i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 28.0793i 1.00219i
\(786\) 0 0
\(787\) 0.411250 0.712307i 0.0146595 0.0253910i −0.858603 0.512642i \(-0.828667\pi\)
0.873262 + 0.487251i \(0.162000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 32.5108 17.3191i 1.15595 0.615797i
\(792\) 0 0
\(793\) −15.8811 27.5069i −0.563954 0.976797i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.0328i 0.567911i 0.958838 + 0.283955i \(0.0916468\pi\)
−0.958838 + 0.283955i \(0.908353\pi\)
\(798\) 0 0
\(799\) −16.7270 −0.591758
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 39.8119 22.9854i 1.40493 0.811137i
\(804\) 0 0
\(805\) 14.3694 + 0.490469i 0.506454 + 0.0172868i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19.0060 + 10.9731i 0.668215 + 0.385794i 0.795400 0.606085i \(-0.207261\pi\)
−0.127185 + 0.991879i \(0.540594\pi\)
\(810\) 0 0
\(811\) −40.5865 −1.42518 −0.712592 0.701579i \(-0.752479\pi\)
−0.712592 + 0.701579i \(0.752479\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.23511 + 9.06748i −0.183378 + 0.317620i
\(816\) 0 0
\(817\) −24.3210 + 14.0417i −0.850885 + 0.491258i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.9753 + 38.0623i 0.766942 + 1.32838i 0.939214 + 0.343333i \(0.111556\pi\)
−0.172272 + 0.985049i \(0.555111\pi\)
\(822\) 0 0
\(823\) 0.112859 0.195478i 0.00393403 0.00681394i −0.864052 0.503403i \(-0.832081\pi\)
0.867986 + 0.496589i \(0.165414\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −7.35761 −0.255849 −0.127925 0.991784i \(-0.540832\pi\)
−0.127925 + 0.991784i \(0.540832\pi\)
\(828\) 0 0
\(829\) −8.03760 + 13.9215i −0.279157 + 0.483515i −0.971176 0.238365i \(-0.923388\pi\)
0.692018 + 0.721880i \(0.256722\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.81603 9.83502i −0.166866 0.340763i
\(834\) 0 0
\(835\) −16.3691 + 9.45069i −0.566475 + 0.327055i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −50.6405 −1.74831 −0.874153 0.485651i \(-0.838583\pi\)
−0.874153 + 0.485651i \(0.838583\pi\)
\(840\) 0 0
\(841\) −12.2833 −0.423562
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.29720 + 1.90364i −0.113427 + 0.0654872i
\(846\) 0 0
\(847\) 4.17889 6.69935i 0.143588 0.230192i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13.4275 23.2572i 0.460290 0.797246i
\(852\) 0 0
\(853\) −8.65855 −0.296463 −0.148232 0.988953i \(-0.547358\pi\)
−0.148232 + 0.988953i \(0.547358\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17.1294 29.6691i 0.585130 1.01348i −0.409729 0.912207i \(-0.634377\pi\)
0.994859 0.101268i \(-0.0322900\pi\)
\(858\) 0 0
\(859\) 6.28537 + 10.8866i 0.214454 + 0.371445i 0.953104 0.302644i \(-0.0978694\pi\)
−0.738649 + 0.674090i \(0.764536\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.2622 20.9360i 1.23438 0.712669i 0.266440 0.963852i \(-0.414153\pi\)
0.967940 + 0.251182i \(0.0808193\pi\)
\(864\) 0 0
\(865\) 0.0160741 0.0278411i 0.000546534 0.000946625i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.3827 0.555744
\(870\) 0 0
\(871\) −15.6186 9.01741i −0.529216 0.305543i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 23.4392 12.4865i 0.792390 0.422122i
\(876\) 0 0
\(877\) −4.04807 + 2.33716i −0.136694 + 0.0789201i −0.566787 0.823864i \(-0.691814\pi\)
0.430094 + 0.902784i \(0.358481\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 13.7595 0.463569 0.231785 0.972767i \(-0.425544\pi\)
0.231785 + 0.972767i \(0.425544\pi\)
\(882\) 0 0
\(883\) 31.7680i 1.06908i −0.845144 0.534539i \(-0.820485\pi\)
0.845144 0.534539i \(-0.179515\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.28571 + 16.0833i 0.311784 + 0.540025i 0.978749 0.205064i \(-0.0657403\pi\)
−0.666965 + 0.745089i \(0.732407\pi\)
\(888\) 0 0
\(889\) −2.67615 5.02357i −0.0897553 0.168485i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −22.9927 + 39.8245i −0.769420 + 1.33268i
\(894\) 0 0
\(895\) 5.55718i 0.185756i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.83114 5.67601i −0.327887 0.189306i
\(900\) 0 0
\(901\) 8.79045 + 15.2255i 0.292852 + 0.507235i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.06371 4.07823i 0.234806 0.135565i
\(906\) 0 0
\(907\) −18.8054 10.8573i −0.624423 0.360511i 0.154166 0.988045i \(-0.450731\pi\)
−0.778589 + 0.627534i \(0.784064\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 34.1200i 1.13044i 0.824939 + 0.565222i \(0.191210\pi\)
−0.824939 + 0.565222i \(0.808790\pi\)
\(912\) 0 0
\(913\) −14.5433 8.39660i −0.481314 0.277887i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −27.4223 17.1054i −0.905564 0.564869i
\(918\) 0 0
\(919\) 5.92493 + 10.2623i 0.195445 + 0.338521i 0.947046 0.321097i \(-0.104051\pi\)
−0.751601 + 0.659618i \(0.770718\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 14.7378i 0.485101i
\(924\) 0 0
\(925\) 20.9478i 0.688759i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 29.2652 + 50.6888i 0.960161 + 1.66305i 0.722090 + 0.691799i \(0.243182\pi\)
0.238071 + 0.971248i \(0.423485\pi\)
\(930\) 0 0
\(931\) −30.0358 2.05281i −0.984383 0.0672781i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.44868 2.56844i −0.145487 0.0839971i
\(936\) 0 0
\(937\) 58.2795i 1.90391i −0.306242 0.951954i \(-0.599072\pi\)
0.306242 0.951954i \(-0.400928\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 47.2322 + 27.2695i 1.53973 + 0.888961i 0.998854 + 0.0478564i \(0.0152390\pi\)
0.540872 + 0.841105i \(0.318094\pi\)
\(942\) 0 0
\(943\) −8.90372 + 5.14056i −0.289945 + 0.167400i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.3559 + 52.5780i 0.986435 + 1.70856i 0.635379 + 0.772200i \(0.280844\pi\)
0.351056 + 0.936355i \(0.385823\pi\)
\(948\) 0 0
\(949\) 43.8344 + 25.3078i 1.42293 + 0.821527i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.3879i 0.498463i −0.968444 0.249232i \(-0.919822\pi\)
0.968444 0.249232i \(-0.0801781\pi\)
\(954\) 0 0
\(955\) −8.02305 + 13.8963i −0.259620 + 0.449675i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.887692 + 26.0069i −0.0286651 + 0.839808i
\(960\) 0 0
\(961\) −11.6455 20.1706i −0.375662 0.650666i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.88197i 0.157156i
\(966\) 0 0
\(967\) −34.1030 −1.09668 −0.548339 0.836256i \(-0.684740\pi\)
−0.548339 + 0.836256i \(0.684740\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 33.1725 19.1521i 1.06456 0.614621i 0.137866 0.990451i \(-0.455976\pi\)
0.926689 + 0.375830i \(0.122642\pi\)
\(972\) 0 0
\(973\) 21.9487 + 41.2013i 0.703644 + 1.32085i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −19.4340 11.2202i −0.621749 0.358967i 0.155801 0.987788i \(-0.450204\pi\)
−0.777550 + 0.628822i \(0.783538\pi\)
\(978\) 0 0
\(979\) 7.58205 0.242323
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −14.0698 + 24.3695i −0.448756 + 0.777268i −0.998305 0.0581932i \(-0.981466\pi\)
0.549550 + 0.835461i \(0.314799\pi\)
\(984\) 0 0
\(985\) −24.4602 + 14.1221i −0.779367 + 0.449968i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −15.2979 26.4967i −0.486443 0.842545i
\(990\) 0 0
\(991\) −17.8187 + 30.8629i −0.566029 + 0.980391i 0.430924 + 0.902388i \(0.358188\pi\)
−0.996953 + 0.0780029i \(0.975146\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.19625 0.0696259
\(996\) 0 0
\(997\) −12.1376 + 21.0230i −0.384402 + 0.665804i −0.991686 0.128681i \(-0.958926\pi\)
0.607284 + 0.794485i \(0.292259\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.2.cp.b.17.19 56
3.2 odd 2 inner 2016.2.cp.b.17.9 56
4.3 odd 2 504.2.ch.b.269.25 yes 56
7.5 odd 6 inner 2016.2.cp.b.593.20 56
8.3 odd 2 504.2.ch.b.269.16 yes 56
8.5 even 2 inner 2016.2.cp.b.17.10 56
12.11 even 2 504.2.ch.b.269.4 56
21.5 even 6 inner 2016.2.cp.b.593.10 56
24.5 odd 2 inner 2016.2.cp.b.17.20 56
24.11 even 2 504.2.ch.b.269.13 yes 56
28.19 even 6 504.2.ch.b.341.13 yes 56
56.5 odd 6 inner 2016.2.cp.b.593.9 56
56.19 even 6 504.2.ch.b.341.4 yes 56
84.47 odd 6 504.2.ch.b.341.16 yes 56
168.5 even 6 inner 2016.2.cp.b.593.19 56
168.131 odd 6 504.2.ch.b.341.25 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.ch.b.269.4 56 12.11 even 2
504.2.ch.b.269.13 yes 56 24.11 even 2
504.2.ch.b.269.16 yes 56 8.3 odd 2
504.2.ch.b.269.25 yes 56 4.3 odd 2
504.2.ch.b.341.4 yes 56 56.19 even 6
504.2.ch.b.341.13 yes 56 28.19 even 6
504.2.ch.b.341.16 yes 56 84.47 odd 6
504.2.ch.b.341.25 yes 56 168.131 odd 6
2016.2.cp.b.17.9 56 3.2 odd 2 inner
2016.2.cp.b.17.10 56 8.5 even 2 inner
2016.2.cp.b.17.19 56 1.1 even 1 trivial
2016.2.cp.b.17.20 56 24.5 odd 2 inner
2016.2.cp.b.593.9 56 56.5 odd 6 inner
2016.2.cp.b.593.10 56 21.5 even 6 inner
2016.2.cp.b.593.19 56 168.5 even 6 inner
2016.2.cp.b.593.20 56 7.5 odd 6 inner