Properties

Label 2016.2.bs.a.1711.5
Level $2016$
Weight $2$
Character 2016.1711
Analytic conductor $16.098$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,2,Mod(271,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.271"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.144054149089536.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1711.5
Root \(2.00233 - 0.854000i\) of defining polynomial
Character \(\chi\) \(=\) 2016.1711
Dual form 2016.2.bs.a.271.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03926 + 1.80005i) q^{5} +(1.25203 + 2.33076i) q^{7} +(-0.669938 + 1.16037i) q^{11} +2.50406 q^{13} +(2.78212 + 1.60626i) q^{17} +(-3.55442 + 2.05215i) q^{19} +(5.54952 - 3.20402i) q^{23} +(0.339877 - 0.588684i) q^{25} +4.66151i q^{29} +(2.21897 - 3.84337i) q^{31} +(-2.89430 + 4.67598i) q^{35} +(-5.50178 + 3.17646i) q^{37} +5.55076i q^{41} +(0.565988 + 0.980320i) q^{47} +(-3.86485 + 5.83634i) q^{49} +(-7.43567 - 4.29299i) q^{53} -2.78496 q^{55} +(6.29193 + 3.63265i) q^{59} +(-2.57219 - 4.45517i) q^{61} +(2.60236 + 4.50743i) q^{65} +(-3.93243 + 6.81116i) q^{67} -5.29150i q^{71} +(0.480369 + 0.277341i) q^{73} +(-3.54332 - 0.108651i) q^{77} +(5.26862 - 3.04184i) q^{79} +0.503175i q^{83} +6.67728i q^{85} +(-1.50000 + 0.866025i) q^{89} +(3.13515 + 5.83634i) q^{91} +(-7.38794 - 4.26543i) q^{95} +17.2234i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{11} + 6 q^{17} + 6 q^{19} + 18 q^{35} - 12 q^{49} + 42 q^{59} + 12 q^{65} - 30 q^{67} + 18 q^{73} - 18 q^{89} + 72 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.03926 + 1.80005i 0.464771 + 0.805007i 0.999191 0.0402117i \(-0.0128032\pi\)
−0.534420 + 0.845219i \(0.679470\pi\)
\(6\) 0 0
\(7\) 1.25203 + 2.33076i 0.473222 + 0.880943i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.669938 + 1.16037i −0.201994 + 0.349864i −0.949171 0.314761i \(-0.898075\pi\)
0.747177 + 0.664625i \(0.231409\pi\)
\(12\) 0 0
\(13\) 2.50406 0.694500 0.347250 0.937773i \(-0.387116\pi\)
0.347250 + 0.937773i \(0.387116\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.78212 + 1.60626i 0.674763 + 0.389575i 0.797879 0.602818i \(-0.205955\pi\)
−0.123116 + 0.992392i \(0.539289\pi\)
\(18\) 0 0
\(19\) −3.55442 + 2.05215i −0.815440 + 0.470795i −0.848842 0.528647i \(-0.822699\pi\)
0.0334012 + 0.999442i \(0.489366\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.54952 3.20402i 1.15716 0.668084i 0.206535 0.978439i \(-0.433781\pi\)
0.950621 + 0.310355i \(0.100448\pi\)
\(24\) 0 0
\(25\) 0.339877 0.588684i 0.0679754 0.117737i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.66151i 0.865621i 0.901485 + 0.432811i \(0.142478\pi\)
−0.901485 + 0.432811i \(0.857522\pi\)
\(30\) 0 0
\(31\) 2.21897 3.84337i 0.398539 0.690290i −0.595007 0.803721i \(-0.702851\pi\)
0.993546 + 0.113430i \(0.0361839\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.89430 + 4.67598i −0.489226 + 0.790384i
\(36\) 0 0
\(37\) −5.50178 + 3.17646i −0.904488 + 0.522206i −0.878653 0.477460i \(-0.841558\pi\)
−0.0258343 + 0.999666i \(0.508224\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.55076i 0.866882i 0.901182 + 0.433441i \(0.142701\pi\)
−0.901182 + 0.433441i \(0.857299\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.565988 + 0.980320i 0.0825579 + 0.142994i 0.904348 0.426796i \(-0.140358\pi\)
−0.821790 + 0.569790i \(0.807024\pi\)
\(48\) 0 0
\(49\) −3.86485 + 5.83634i −0.552122 + 0.833763i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.43567 4.29299i −1.02137 0.589687i −0.106868 0.994273i \(-0.534082\pi\)
−0.914500 + 0.404586i \(0.867416\pi\)
\(54\) 0 0
\(55\) −2.78496 −0.375524
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.29193 + 3.63265i 0.819140 + 0.472931i 0.850120 0.526589i \(-0.176529\pi\)
−0.0309798 + 0.999520i \(0.509863\pi\)
\(60\) 0 0
\(61\) −2.57219 4.45517i −0.329336 0.570426i 0.653045 0.757319i \(-0.273491\pi\)
−0.982380 + 0.186893i \(0.940158\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.60236 + 4.50743i 0.322784 + 0.559078i
\(66\) 0 0
\(67\) −3.93243 + 6.81116i −0.480422 + 0.832116i −0.999748 0.0224607i \(-0.992850\pi\)
0.519325 + 0.854577i \(0.326183\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.29150i 0.627986i −0.949425 0.313993i \(-0.898333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) 0 0
\(73\) 0.480369 + 0.277341i 0.0562230 + 0.0324604i 0.527848 0.849339i \(-0.322999\pi\)
−0.471625 + 0.881799i \(0.656332\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.54332 0.108651i −0.403798 0.0123820i
\(78\) 0 0
\(79\) 5.26862 3.04184i 0.592766 0.342233i −0.173425 0.984847i \(-0.555483\pi\)
0.766190 + 0.642614i \(0.222150\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.503175i 0.0552307i 0.999619 + 0.0276153i \(0.00879135\pi\)
−0.999619 + 0.0276153i \(0.991209\pi\)
\(84\) 0 0
\(85\) 6.67728i 0.724252i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.50000 + 0.866025i −0.159000 + 0.0917985i −0.577389 0.816469i \(-0.695928\pi\)
0.418389 + 0.908268i \(0.362595\pi\)
\(90\) 0 0
\(91\) 3.13515 + 5.83634i 0.328653 + 0.611815i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.38794 4.26543i −0.757986 0.437624i
\(96\) 0 0
\(97\) 17.2234i 1.74878i 0.485228 + 0.874388i \(0.338737\pi\)
−0.485228 + 0.874388i \(0.661263\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.613725 + 1.06300i −0.0610679 + 0.105773i −0.894943 0.446180i \(-0.852784\pi\)
0.833875 + 0.551953i \(0.186117\pi\)
\(102\) 0 0
\(103\) −7.62804 13.2122i −0.751613 1.30183i −0.947041 0.321114i \(-0.895943\pi\)
0.195427 0.980718i \(-0.437391\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.55442 9.62054i −0.536966 0.930053i −0.999065 0.0432246i \(-0.986237\pi\)
0.462099 0.886828i \(-0.347096\pi\)
\(108\) 0 0
\(109\) 10.9109 + 6.29938i 1.04507 + 0.603372i 0.921265 0.388935i \(-0.127157\pi\)
0.123805 + 0.992307i \(0.460490\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −20.0629 −1.88736 −0.943680 0.330860i \(-0.892661\pi\)
−0.943680 + 0.330860i \(0.892661\pi\)
\(114\) 0 0
\(115\) 11.5348 + 6.65961i 1.07562 + 0.621012i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.260504 + 8.49552i −0.0238804 + 0.778783i
\(120\) 0 0
\(121\) 4.60236 + 7.97153i 0.418397 + 0.724685i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.8055 1.05591
\(126\) 0 0
\(127\) 14.6145i 1.29683i 0.761287 + 0.648415i \(0.224568\pi\)
−0.761287 + 0.648415i \(0.775432\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.27230 + 3.04397i −0.460643 + 0.265953i −0.712315 0.701860i \(-0.752353\pi\)
0.251671 + 0.967813i \(0.419020\pi\)
\(132\) 0 0
\(133\) −9.23329 5.71515i −0.800628 0.495566i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.98685 12.1016i 0.596927 1.03391i −0.396345 0.918102i \(-0.629722\pi\)
0.993272 0.115806i \(-0.0369451\pi\)
\(138\) 0 0
\(139\) 0.503175i 0.0426788i 0.999772 + 0.0213394i \(0.00679305\pi\)
−0.999772 + 0.0213394i \(0.993207\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.67756 + 2.90562i −0.140285 + 0.242981i
\(144\) 0 0
\(145\) −8.39096 + 4.84452i −0.696832 + 0.402316i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.77077 2.75440i 0.390836 0.225649i −0.291686 0.956514i \(-0.594216\pi\)
0.682522 + 0.730865i \(0.260883\pi\)
\(150\) 0 0
\(151\) 6.09511 + 3.51901i 0.496013 + 0.286373i 0.727066 0.686568i \(-0.240884\pi\)
−0.231053 + 0.972941i \(0.574217\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.22436 0.740918
\(156\) 0 0
\(157\) 7.15477 12.3924i 0.571013 0.989023i −0.425450 0.904982i \(-0.639884\pi\)
0.996462 0.0840409i \(-0.0267827\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 14.4159 + 8.92306i 1.13614 + 0.703236i
\(162\) 0 0
\(163\) 4.15679 + 7.19977i 0.325585 + 0.563929i 0.981631 0.190792i \(-0.0611055\pi\)
−0.656046 + 0.754721i \(0.727772\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.50406 0.193770 0.0968848 0.995296i \(-0.469112\pi\)
0.0968848 + 0.995296i \(0.469112\pi\)
\(168\) 0 0
\(169\) −6.72971 −0.517670
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.71682 + 4.70568i 0.206556 + 0.357766i 0.950627 0.310334i \(-0.100441\pi\)
−0.744071 + 0.668100i \(0.767108\pi\)
\(174\) 0 0
\(175\) 1.79761 + 0.0551216i 0.135887 + 0.00416680i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.75915 + 3.04694i −0.131485 + 0.227739i −0.924249 0.381790i \(-0.875308\pi\)
0.792764 + 0.609529i \(0.208641\pi\)
\(180\) 0 0
\(181\) 22.1981 1.64997 0.824985 0.565154i \(-0.191183\pi\)
0.824985 + 0.565154i \(0.191183\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −11.4356 6.60233i −0.840760 0.485413i
\(186\) 0 0
\(187\) −3.72770 + 2.15219i −0.272596 + 0.157383i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.13615 0.655958i 0.0822091 0.0474635i −0.458332 0.888781i \(-0.651553\pi\)
0.540541 + 0.841318i \(0.318220\pi\)
\(192\) 0 0
\(193\) 5.64697 9.78084i 0.406478 0.704040i −0.588014 0.808851i \(-0.700090\pi\)
0.994492 + 0.104810i \(0.0334235\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.92149i 0.421889i −0.977498 0.210944i \(-0.932346\pi\)
0.977498 0.210944i \(-0.0676539\pi\)
\(198\) 0 0
\(199\) −9.30560 + 16.1178i −0.659657 + 1.14256i 0.321048 + 0.947063i \(0.395965\pi\)
−0.980704 + 0.195496i \(0.937368\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.8649 + 5.83634i −0.762563 + 0.409631i
\(204\) 0 0
\(205\) −9.99164 + 5.76868i −0.697847 + 0.402902i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.49925i 0.380391i
\(210\) 0 0
\(211\) −5.72971 −0.394449 −0.197225 0.980358i \(-0.563193\pi\)
−0.197225 + 0.980358i \(0.563193\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 11.7362 + 0.359875i 0.796704 + 0.0244299i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.96658 + 4.02216i 0.468623 + 0.270560i
\(222\) 0 0
\(223\) 20.8668 1.39734 0.698672 0.715442i \(-0.253775\pi\)
0.698672 + 0.715442i \(0.253775\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 14.2775 + 8.24309i 0.947628 + 0.547113i 0.892343 0.451357i \(-0.149060\pi\)
0.0552847 + 0.998471i \(0.482393\pi\)
\(228\) 0 0
\(229\) −4.24976 7.36079i −0.280832 0.486415i 0.690758 0.723086i \(-0.257277\pi\)
−0.971590 + 0.236671i \(0.923944\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.23751 + 3.87548i 0.146584 + 0.253891i 0.929963 0.367653i \(-0.119839\pi\)
−0.783379 + 0.621545i \(0.786505\pi\)
\(234\) 0 0
\(235\) −1.17642 + 2.03762i −0.0767410 + 0.132919i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.5675i 1.58914i 0.607171 + 0.794571i \(0.292304\pi\)
−0.607171 + 0.794571i \(0.707696\pi\)
\(240\) 0 0
\(241\) −5.02498 2.90117i −0.323687 0.186881i 0.329348 0.944209i \(-0.393171\pi\)
−0.653035 + 0.757328i \(0.726505\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.5223 0.891454i −0.927796 0.0569529i
\(246\) 0 0
\(247\) −8.90047 + 5.13869i −0.566323 + 0.326967i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.8010i 1.18671i −0.804942 0.593353i \(-0.797804\pi\)
0.804942 0.593353i \(-0.202196\pi\)
\(252\) 0 0
\(253\) 8.58598i 0.539796i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.9106 + 6.29923i −0.680584 + 0.392935i −0.800075 0.599900i \(-0.795207\pi\)
0.119491 + 0.992835i \(0.461874\pi\)
\(258\) 0 0
\(259\) −14.2919 8.84631i −0.888058 0.549683i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.27292 + 2.46697i 0.263479 + 0.152120i 0.625921 0.779887i \(-0.284723\pi\)
−0.362441 + 0.932007i \(0.618057\pi\)
\(264\) 0 0
\(265\) 17.8461i 1.09628i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.1502 22.7769i 0.801783 1.38873i −0.116658 0.993172i \(-0.537218\pi\)
0.918441 0.395558i \(-0.129449\pi\)
\(270\) 0 0
\(271\) −14.0490 24.3336i −0.853418 1.47816i −0.878105 0.478468i \(-0.841192\pi\)
0.0246868 0.999695i \(-0.492141\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.455393 + 0.788764i 0.0274612 + 0.0475643i
\(276\) 0 0
\(277\) −23.3982 13.5090i −1.40586 0.811675i −0.410876 0.911691i \(-0.634777\pi\)
−0.994986 + 0.100017i \(0.968110\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.0629 1.19685 0.598426 0.801178i \(-0.295793\pi\)
0.598426 + 0.801178i \(0.295793\pi\)
\(282\) 0 0
\(283\) 4.75248 + 2.74385i 0.282506 + 0.163105i 0.634557 0.772876i \(-0.281183\pi\)
−0.352052 + 0.935981i \(0.614516\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.9375 + 6.94970i −0.763674 + 0.410228i
\(288\) 0 0
\(289\) −3.33988 5.78484i −0.196463 0.340284i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.6931 −0.799957 −0.399978 0.916525i \(-0.630982\pi\)
−0.399978 + 0.916525i \(0.630982\pi\)
\(294\) 0 0
\(295\) 15.1011i 0.879218i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.8963 8.02304i 0.803644 0.463984i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.34636 9.26016i 0.306131 0.530235i
\(306\) 0 0
\(307\) 24.4197i 1.39371i −0.717213 0.696854i \(-0.754583\pi\)
0.717213 0.696854i \(-0.245417\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.61539 14.9223i 0.488534 0.846165i −0.511379 0.859355i \(-0.670865\pi\)
0.999913 + 0.0131898i \(0.00419856\pi\)
\(312\) 0 0
\(313\) 15.0446 8.68601i 0.850371 0.490962i −0.0104047 0.999946i \(-0.503312\pi\)
0.860776 + 0.508984i \(0.169979\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.7863 9.69155i 0.942810 0.544332i 0.0519701 0.998649i \(-0.483450\pi\)
0.890840 + 0.454317i \(0.150117\pi\)
\(318\) 0 0
\(319\) −5.40907 3.12293i −0.302850 0.174850i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −13.1851 −0.733639
\(324\) 0 0
\(325\) 0.851071 1.47410i 0.0472089 0.0817682i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.57625 + 2.54657i −0.0869018 + 0.140397i
\(330\) 0 0
\(331\) −10.4008 18.0147i −0.571678 0.990176i −0.996394 0.0848492i \(-0.972959\pi\)
0.424715 0.905327i \(-0.360374\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −16.3473 −0.893146
\(336\) 0 0
\(337\) 10.3332 0.562886 0.281443 0.959578i \(-0.409187\pi\)
0.281443 + 0.959578i \(0.409187\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.97315 + 5.14965i 0.161005 + 0.278869i
\(342\) 0 0
\(343\) −18.4420 1.70077i −0.995774 0.0918328i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.8169 + 29.1277i −0.902779 + 1.56366i −0.0789080 + 0.996882i \(0.525143\pi\)
−0.823871 + 0.566777i \(0.808190\pi\)
\(348\) 0 0
\(349\) 13.3546 0.714858 0.357429 0.933940i \(-0.383653\pi\)
0.357429 + 0.933940i \(0.383653\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.80175 3.92699i −0.362021 0.209013i 0.307946 0.951404i \(-0.400358\pi\)
−0.669967 + 0.742391i \(0.733692\pi\)
\(354\) 0 0
\(355\) 9.52498 5.49925i 0.505533 0.291870i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.140453 0.0810905i 0.00741282 0.00427979i −0.496289 0.868157i \(-0.665304\pi\)
0.503702 + 0.863878i \(0.331971\pi\)
\(360\) 0 0
\(361\) −1.07739 + 1.86609i −0.0567047 + 0.0982154i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.15292i 0.0603466i
\(366\) 0 0
\(367\) 10.1321 17.5493i 0.528891 0.916066i −0.470541 0.882378i \(-0.655941\pi\)
0.999432 0.0336883i \(-0.0107254\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.696241 22.7057i 0.0361470 1.17882i
\(372\) 0 0
\(373\) 5.78269 3.33864i 0.299416 0.172868i −0.342764 0.939421i \(-0.611363\pi\)
0.642181 + 0.766553i \(0.278030\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11.6727i 0.601174i
\(378\) 0 0
\(379\) 4.60350 0.236466 0.118233 0.992986i \(-0.462277\pi\)
0.118233 + 0.992986i \(0.462277\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.71038 9.89066i −0.291787 0.505389i 0.682446 0.730936i \(-0.260916\pi\)
−0.974232 + 0.225547i \(0.927583\pi\)
\(384\) 0 0
\(385\) −3.48685 6.49107i −0.177706 0.330815i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −26.0307 15.0288i −1.31981 0.761991i −0.336109 0.941823i \(-0.609111\pi\)
−0.983697 + 0.179832i \(0.942445\pi\)
\(390\) 0 0
\(391\) 20.5859 1.04107
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.9509 + 6.32252i 0.551001 + 0.318120i
\(396\) 0 0
\(397\) 2.17124 + 3.76069i 0.108971 + 0.188744i 0.915354 0.402651i \(-0.131911\pi\)
−0.806383 + 0.591394i \(0.798578\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.98685 17.2977i −0.498719 0.863807i 0.501279 0.865285i \(-0.332863\pi\)
−0.999999 + 0.00147805i \(0.999530\pi\)
\(402\) 0 0
\(403\) 5.55643 9.62402i 0.276786 0.479407i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.51212i 0.421930i
\(408\) 0 0
\(409\) −26.4356 15.2626i −1.30715 0.754686i −0.325534 0.945530i \(-0.605544\pi\)
−0.981620 + 0.190844i \(0.938878\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.589147 + 19.2131i −0.0289900 + 0.945417i
\(414\) 0 0
\(415\) −0.905741 + 0.522930i −0.0444611 + 0.0256696i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.08070i 0.101649i 0.998708 + 0.0508245i \(0.0161849\pi\)
−0.998708 + 0.0508245i \(0.983815\pi\)
\(420\) 0 0
\(421\) 30.4039i 1.48180i 0.671618 + 0.740898i \(0.265600\pi\)
−0.671618 + 0.740898i \(0.734400\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.89116 1.09186i 0.0917345 0.0529630i
\(426\) 0 0
\(427\) 7.16346 11.5732i 0.346664 0.560064i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.32280 1.34107i −0.111885 0.0645970i 0.443013 0.896515i \(-0.353910\pi\)
−0.554898 + 0.831918i \(0.687243\pi\)
\(432\) 0 0
\(433\) 29.4673i 1.41611i −0.706158 0.708054i \(-0.749573\pi\)
0.706158 0.708054i \(-0.250427\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13.1502 + 22.7769i −0.629061 + 1.08957i
\(438\) 0 0
\(439\) −3.77648 6.54106i −0.180242 0.312188i 0.761721 0.647905i \(-0.224355\pi\)
−0.941963 + 0.335717i \(0.891021\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.75915 + 6.51104i 0.178603 + 0.309349i 0.941402 0.337286i \(-0.109509\pi\)
−0.762799 + 0.646635i \(0.776176\pi\)
\(444\) 0 0
\(445\) −3.11778 1.80005i −0.147797 0.0853306i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.3332 0.676426 0.338213 0.941070i \(-0.390178\pi\)
0.338213 + 0.941070i \(0.390178\pi\)
\(450\) 0 0
\(451\) −6.44092 3.71866i −0.303291 0.175105i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.24749 + 11.7089i −0.339767 + 0.548922i
\(456\) 0 0
\(457\) −6.48037 11.2243i −0.303139 0.525052i 0.673706 0.738999i \(-0.264701\pi\)
−0.976845 + 0.213947i \(0.931368\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 33.3871 1.55499 0.777496 0.628888i \(-0.216490\pi\)
0.777496 + 0.628888i \(0.216490\pi\)
\(462\) 0 0
\(463\) 29.7739i 1.38371i 0.722036 + 0.691855i \(0.243206\pi\)
−0.722036 + 0.691855i \(0.756794\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 23.5399 13.5908i 1.08930 0.628907i 0.155909 0.987771i \(-0.450169\pi\)
0.933390 + 0.358865i \(0.116836\pi\)
\(468\) 0 0
\(469\) −20.7987 0.637765i −0.960393 0.0294492i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.78991i 0.128010i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.2187 29.8237i 0.786744 1.36268i −0.141208 0.989980i \(-0.545099\pi\)
0.927952 0.372700i \(-0.121568\pi\)
\(480\) 0 0
\(481\) −13.7768 + 7.95402i −0.628167 + 0.362672i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −31.0031 + 17.8996i −1.40778 + 0.812781i
\(486\) 0 0
\(487\) −6.82613 3.94107i −0.309321 0.178587i 0.337301 0.941397i \(-0.390486\pi\)
−0.646623 + 0.762810i \(0.723819\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.06291 −0.363874 −0.181937 0.983310i \(-0.558237\pi\)
−0.181937 + 0.983310i \(0.558237\pi\)
\(492\) 0 0
\(493\) −7.48759 + 12.9689i −0.337224 + 0.584089i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.3332 6.62511i 0.553220 0.297177i
\(498\) 0 0
\(499\) −12.0216 20.8221i −0.538163 0.932125i −0.999003 0.0446419i \(-0.985785\pi\)
0.460841 0.887483i \(-0.347548\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 40.8993 1.82361 0.911804 0.410626i \(-0.134690\pi\)
0.911804 + 0.410626i \(0.134690\pi\)
\(504\) 0 0
\(505\) −2.55128 −0.113530
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.02661 3.51019i −0.0898278 0.155586i 0.817610 0.575772i \(-0.195298\pi\)
−0.907438 + 0.420186i \(0.861965\pi\)
\(510\) 0 0
\(511\) −0.0449795 + 1.46686i −0.00198978 + 0.0648902i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.8550 27.4617i 0.698656 1.21011i
\(516\) 0 0
\(517\) −1.51671 −0.0667048
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −27.1927 15.6997i −1.19133 0.687817i −0.232725 0.972543i \(-0.574764\pi\)
−0.958609 + 0.284725i \(0.908098\pi\)
\(522\) 0 0
\(523\) 11.7132 6.76263i 0.512183 0.295709i −0.221547 0.975150i \(-0.571111\pi\)
0.733731 + 0.679440i \(0.237777\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.3469 7.12848i 0.537839 0.310522i
\(528\) 0 0
\(529\) 9.03146 15.6429i 0.392672 0.680128i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 13.8994i 0.602050i
\(534\) 0 0
\(535\) 11.5450 19.9965i 0.499133 0.864524i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.18309 8.39464i −0.180178 0.361583i
\(540\) 0 0
\(541\) 27.1543 15.6775i 1.16745 0.674030i 0.214375 0.976751i \(-0.431229\pi\)
0.953079 + 0.302722i \(0.0978953\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 26.1868i 1.12172i
\(546\) 0 0
\(547\) 44.7293 1.91249 0.956244 0.292571i \(-0.0945108\pi\)
0.956244 + 0.292571i \(0.0945108\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −9.56611 16.5690i −0.407530 0.705863i
\(552\) 0 0
\(553\) 13.6862 + 8.47140i 0.581998 + 0.360240i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.5345 + 6.08208i 0.446360 + 0.257706i 0.706292 0.707921i \(-0.250367\pi\)
−0.259932 + 0.965627i \(0.583700\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −31.4311 18.1468i −1.32466 0.764794i −0.340194 0.940355i \(-0.610493\pi\)
−0.984469 + 0.175561i \(0.943826\pi\)
\(564\) 0 0
\(565\) −20.8506 36.1143i −0.877191 1.51934i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.01830 + 10.4240i 0.252300 + 0.436997i 0.964159 0.265326i \(-0.0854795\pi\)
−0.711858 + 0.702323i \(0.752146\pi\)
\(570\) 0 0
\(571\) 4.10570 7.11128i 0.171818 0.297598i −0.767237 0.641363i \(-0.778369\pi\)
0.939056 + 0.343765i \(0.111702\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.35589i 0.181653i
\(576\) 0 0
\(577\) 14.5500 + 8.40042i 0.605722 + 0.349714i 0.771289 0.636485i \(-0.219612\pi\)
−0.165567 + 0.986199i \(0.552945\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.17278 + 0.629989i −0.0486551 + 0.0261364i
\(582\) 0 0
\(583\) 9.96289 5.75208i 0.412621 0.238227i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25.4261i 1.04945i −0.851273 0.524723i \(-0.824169\pi\)
0.851273 0.524723i \(-0.175831\pi\)
\(588\) 0 0
\(589\) 18.2146i 0.750521i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.0694 11.0097i 0.783086 0.452115i −0.0544368 0.998517i \(-0.517336\pi\)
0.837523 + 0.546402i \(0.184003\pi\)
\(594\) 0 0
\(595\) −15.5631 + 8.36013i −0.638025 + 0.342732i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.500607 + 0.289026i 0.0204543 + 0.0118093i 0.510192 0.860060i \(-0.329574\pi\)
−0.489738 + 0.871870i \(0.662908\pi\)
\(600\) 0 0
\(601\) 27.3186i 1.11435i 0.830395 + 0.557175i \(0.188115\pi\)
−0.830395 + 0.557175i \(0.811885\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.56611 + 16.5690i −0.388918 + 0.673625i
\(606\) 0 0
\(607\) 5.99963 + 10.3917i 0.243518 + 0.421785i 0.961714 0.274056i \(-0.0883653\pi\)
−0.718196 + 0.695841i \(0.755032\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.41727 + 2.45478i 0.0573364 + 0.0993096i
\(612\) 0 0
\(613\) 3.96050 + 2.28659i 0.159963 + 0.0923547i 0.577845 0.816147i \(-0.303894\pi\)
−0.417882 + 0.908501i \(0.637227\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.12621 −0.206373 −0.103187 0.994662i \(-0.532904\pi\)
−0.103187 + 0.994662i \(0.532904\pi\)
\(618\) 0 0
\(619\) −39.5293 22.8222i −1.58881 0.917303i −0.993503 0.113808i \(-0.963695\pi\)
−0.595312 0.803495i \(-0.702972\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.89654 2.41185i −0.156111 0.0966286i
\(624\) 0 0
\(625\) 10.5696 + 18.3071i 0.422783 + 0.732282i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −20.4088 −0.813753
\(630\) 0 0
\(631\) 17.1345i 0.682113i −0.940043 0.341057i \(-0.889215\pi\)
0.940043 0.341057i \(-0.110785\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −26.3069 + 15.1883i −1.04396 + 0.602729i
\(636\) 0 0
\(637\) −9.67781 + 14.6145i −0.383449 + 0.579049i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.02498 6.97146i 0.158977 0.275356i −0.775523 0.631319i \(-0.782514\pi\)
0.934500 + 0.355963i \(0.115847\pi\)
\(642\) 0 0
\(643\) 22.2710i 0.878283i 0.898418 + 0.439142i \(0.144717\pi\)
−0.898418 + 0.439142i \(0.855283\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.9125 + 32.7574i −0.743528 + 1.28783i 0.207352 + 0.978266i \(0.433516\pi\)
−0.950879 + 0.309561i \(0.899818\pi\)
\(648\) 0 0
\(649\) −8.43042 + 4.86730i −0.330923 + 0.191058i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.6130 14.7877i 1.00231 0.578686i 0.0933818 0.995630i \(-0.470232\pi\)
0.908932 + 0.416944i \(0.136899\pi\)
\(654\) 0 0
\(655\) −10.9586 6.32694i −0.428188 0.247214i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.3961 0.716611 0.358305 0.933604i \(-0.383355\pi\)
0.358305 + 0.933604i \(0.383355\pi\)
\(660\) 0 0
\(661\) −5.92732 + 10.2664i −0.230546 + 0.399317i −0.957969 0.286872i \(-0.907385\pi\)
0.727423 + 0.686189i \(0.240718\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.691771 22.5599i 0.0268257 0.874836i
\(666\) 0 0
\(667\) 14.9356 + 25.8692i 0.578308 + 1.00166i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.89285 0.266095
\(672\) 0 0
\(673\) 10.8738 0.419154 0.209577 0.977792i \(-0.432791\pi\)
0.209577 + 0.977792i \(0.432791\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.7163 39.3458i −0.873060 1.51218i −0.858815 0.512285i \(-0.828799\pi\)
−0.0142443 0.999899i \(-0.504534\pi\)
\(678\) 0 0
\(679\) −40.1437 + 21.5642i −1.54057 + 0.827559i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.3693 + 21.4243i −0.473299 + 0.819778i −0.999533 0.0305620i \(-0.990270\pi\)
0.526234 + 0.850340i \(0.323604\pi\)
\(684\) 0 0
\(685\) 29.0446 1.10974
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.6193 10.7499i −0.709340 0.409538i
\(690\) 0 0
\(691\) 4.10457 2.36977i 0.156145 0.0901504i −0.419892 0.907574i \(-0.637932\pi\)
0.576037 + 0.817424i \(0.304599\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.905741 + 0.522930i −0.0343567 + 0.0198359i
\(696\) 0 0
\(697\) −8.91594 + 15.4429i −0.337715 + 0.584940i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 39.8121i 1.50368i 0.659345 + 0.751840i \(0.270834\pi\)
−0.659345 + 0.751840i \(0.729166\pi\)
\(702\) 0 0
\(703\) 13.0371 22.5809i 0.491704 0.851656i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.24600 0.0995345i −0.122078 0.00374338i
\(708\) 0 0
\(709\) −4.97242 + 2.87083i −0.186743 + 0.107816i −0.590457 0.807069i \(-0.701052\pi\)
0.403714 + 0.914885i \(0.367719\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 28.4385i 1.06503i
\(714\) 0 0
\(715\) −6.97370 −0.260801
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.62804 + 13.2122i 0.284478 + 0.492730i 0.972482 0.232976i \(-0.0748464\pi\)
−0.688005 + 0.725706i \(0.741513\pi\)
\(720\) 0 0
\(721\) 21.2438 34.3211i 0.791160 1.27818i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.74416 + 1.58434i 0.101915 + 0.0588409i
\(726\) 0 0
\(727\) 40.8993 1.51687 0.758435 0.651749i \(-0.225964\pi\)
0.758435 + 0.651749i \(0.225964\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −12.2037 21.1374i −0.450753 0.780728i 0.547680 0.836688i \(-0.315511\pi\)
−0.998433 + 0.0559605i \(0.982178\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.26897 9.12612i −0.194085 0.336165i
\(738\) 0 0
\(739\) −15.3996 + 26.6730i −0.566485 + 0.981181i 0.430425 + 0.902626i \(0.358364\pi\)
−0.996910 + 0.0785545i \(0.974970\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23.9376i 0.878184i 0.898442 + 0.439092i \(0.144700\pi\)
−0.898442 + 0.439092i \(0.855300\pi\)
\(744\) 0 0
\(745\) 9.91613 + 5.72508i 0.363299 + 0.209751i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15.4689 24.9912i 0.565219 0.913158i
\(750\) 0 0
\(751\) −11.9543 + 6.90181i −0.436218 + 0.251851i −0.701992 0.712185i \(-0.747706\pi\)
0.265774 + 0.964035i \(0.414373\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.6287i 0.532392i
\(756\) 0 0
\(757\) 2.14156i 0.0778362i 0.999242 + 0.0389181i \(0.0123911\pi\)
−0.999242 + 0.0389181i \(0.987609\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −36.8321 + 21.2650i −1.33516 + 0.770856i −0.986086 0.166239i \(-0.946838\pi\)
−0.349076 + 0.937094i \(0.613504\pi\)
\(762\) 0 0
\(763\) −1.02164 + 33.3175i −0.0369859 + 1.20618i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.7554 + 9.09636i 0.568893 + 0.328450i
\(768\) 0 0
\(769\) 15.6459i 0.564206i −0.959384 0.282103i \(-0.908968\pi\)
0.959384 0.282103i \(-0.0910320\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 15.2125 26.3489i 0.547156 0.947703i −0.451311 0.892367i \(-0.649044\pi\)
0.998468 0.0553362i \(-0.0176230\pi\)
\(774\) 0 0
\(775\) −1.50836 2.61255i −0.0541817 0.0938455i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.3910 19.7297i −0.408124 0.706891i
\(780\) 0 0
\(781\) 6.14009 + 3.54498i 0.219710 + 0.126849i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 29.7427 1.06156
\(786\) 0 0
\(787\) 28.3722 + 16.3807i 1.01136 + 0.583909i 0.911590 0.411102i \(-0.134856\pi\)
0.0997704 + 0.995010i \(0.468189\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −25.1193 46.7618i −0.893140 1.66266i
\(792\) 0 0
\(793\) −6.44092 11.1560i −0.228724 0.396161i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.3790 1.00523 0.502617 0.864509i \(-0.332370\pi\)
0.502617 + 0.864509i \(0.332370\pi\)
\(798\) 0 0
\(799\) 3.63649i 0.128650i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.643636 + 0.371603i −0.0227134 + 0.0131136i
\(804\) 0 0
\(805\) −1.08006 + 35.2228i −0.0380672 + 1.24144i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.08387 + 7.07347i −0.143581 + 0.248690i −0.928843 0.370474i \(-0.879195\pi\)
0.785262 + 0.619164i \(0.212528\pi\)
\(810\) 0 0
\(811\) 22.2710i 0.782041i −0.920382 0.391021i \(-0.872122\pi\)
0.920382 0.391021i \(-0.127878\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.63997 + 14.9649i −0.302645 + 0.524196i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.52231 + 2.61096i −0.157830 + 0.0911230i −0.576835 0.816861i \(-0.695712\pi\)
0.419005 + 0.907984i \(0.362379\pi\)
\(822\) 0 0
\(823\) 8.29368 + 4.78836i 0.289099 + 0.166912i 0.637536 0.770421i \(-0.279954\pi\)
−0.348436 + 0.937333i \(0.613287\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 40.6664 1.41411 0.707055 0.707159i \(-0.250023\pi\)
0.707055 + 0.707159i \(0.250023\pi\)
\(828\) 0 0
\(829\) 16.6171 28.7816i 0.577134 0.999625i −0.418672 0.908137i \(-0.637504\pi\)
0.995806 0.0914880i \(-0.0291623\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −20.1271 + 10.0295i −0.697364 + 0.347500i
\(834\) 0 0
\(835\) 2.60236 + 4.50743i 0.0900586 + 0.155986i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −15.0243 −0.518698 −0.259349 0.965784i \(-0.583508\pi\)
−0.259349 + 0.965784i \(0.583508\pi\)
\(840\) 0 0
\(841\) 7.27029 0.250700
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6.99392 12.1138i −0.240598 0.416728i
\(846\) 0 0
\(847\) −12.8174 + 20.7076i −0.440411 + 0.711521i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.3548 + 35.2556i −0.697755 + 1.20855i
\(852\) 0 0
\(853\) −12.5203 −0.428686 −0.214343 0.976758i \(-0.568761\pi\)
−0.214343 + 0.976758i \(0.568761\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.8265 + 27.0353i 1.59956 + 0.923509i 0.991571 + 0.129566i \(0.0413585\pi\)
0.607993 + 0.793942i \(0.291975\pi\)
\(858\) 0 0
\(859\) −17.0990 + 9.87213i −0.583411 + 0.336833i −0.762488 0.647002i \(-0.776022\pi\)
0.179077 + 0.983835i \(0.442689\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.3755 + 15.2279i −0.897833 + 0.518364i −0.876497 0.481408i \(-0.840126\pi\)
−0.0213367 + 0.999772i \(0.506792\pi\)
\(864\) 0 0
\(865\) −5.64697 + 9.78084i −0.192003 + 0.332559i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8.15137i 0.276516i
\(870\) 0 0
\(871\) −9.84701 + 17.0555i −0.333653 + 0.577905i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 14.7808 + 27.5157i 0.499682 + 0.930201i
\(876\) 0 0
\(877\) 18.3275 10.5814i 0.618877 0.357309i −0.157555 0.987510i \(-0.550361\pi\)
0.776432 + 0.630201i \(0.217028\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 11.5367i 0.388681i 0.980934 + 0.194340i \(0.0622566\pi\)
−0.980934 + 0.194340i \(0.937743\pi\)
\(882\) 0 0
\(883\) −49.8555 −1.67777 −0.838886 0.544307i \(-0.816793\pi\)
−0.838886 + 0.544307i \(0.816793\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.56575 9.64015i −0.186879 0.323685i 0.757329 0.653034i \(-0.226504\pi\)
−0.944208 + 0.329349i \(0.893171\pi\)
\(888\) 0 0
\(889\) −34.0629 + 18.2978i −1.14243 + 0.613688i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.02352 2.32298i −0.134642 0.0777356i
\(894\) 0 0
\(895\) −7.31287 −0.244442
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 17.9159 + 10.3438i 0.597530 + 0.344984i
\(900\) 0 0
\(901\) −13.7913 23.8872i −0.459454 0.795798i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.0696 + 39.9577i 0.766859 + 1.32824i
\(906\) 0 0
\(907\) −7.20674 + 12.4824i −0.239296 + 0.414473i −0.960512 0.278237i \(-0.910250\pi\)
0.721217 + 0.692710i \(0.243583\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19.1909i 0.635823i 0.948120 + 0.317911i \(0.102981\pi\)
−0.948120 + 0.317911i \(0.897019\pi\)
\(912\) 0 0
\(913\) −0.583868 0.337096i −0.0193232 0.0111563i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −13.6958 8.47733i −0.452276 0.279946i
\(918\) 0 0
\(919\) 22.4285 12.9491i 0.739848 0.427151i −0.0821662 0.996619i \(-0.526184\pi\)
0.822014 + 0.569467i \(0.192850\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.2502i 0.436136i
\(924\) 0 0
\(925\) 4.31842i 0.141989i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 36.7480 21.2165i 1.20566 0.696090i 0.243854 0.969812i \(-0.421588\pi\)
0.961809 + 0.273722i \(0.0882548\pi\)
\(930\) 0 0
\(931\) 1.76029 28.6761i 0.0576910 0.939820i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7.74809 4.47336i −0.253390 0.146295i
\(936\) 0 0
\(937\) 46.5547i 1.52088i 0.649410 + 0.760439i \(0.275016\pi\)
−0.649410 + 0.760439i \(0.724984\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.48937 + 2.57967i −0.0485522 + 0.0840949i −0.889280 0.457363i \(-0.848794\pi\)
0.840728 + 0.541458i \(0.182127\pi\)
\(942\) 0 0
\(943\) 17.7847 + 30.8040i 0.579150 + 1.00312i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.5270 + 23.4294i 0.439568 + 0.761354i 0.997656 0.0684276i \(-0.0217982\pi\)
−0.558088 + 0.829782i \(0.688465\pi\)
\(948\) 0 0
\(949\) 1.20287 + 0.694478i 0.0390469 + 0.0225437i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −28.7293 −0.930634 −0.465317 0.885144i \(-0.654060\pi\)
−0.465317 + 0.885144i \(0.654060\pi\)
\(954\) 0 0
\(955\) 2.36152 + 1.36342i 0.0764169 + 0.0441193i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36.9536 + 1.13313i 1.19329 + 0.0365908i
\(960\) 0 0
\(961\) 5.65232 + 9.79010i 0.182333 + 0.315810i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 23.4747 0.755677
\(966\) 0 0
\(967\) 13.3546i 0.429453i 0.976674 + 0.214727i \(0.0688861\pi\)
−0.976674 + 0.214727i \(0.931114\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.71876 + 0.992325i −0.0551575 + 0.0318452i −0.527325 0.849664i \(-0.676805\pi\)
0.472168 + 0.881509i \(0.343472\pi\)
\(972\) 0 0
\(973\) −1.17278 + 0.629989i −0.0375976 + 0.0201965i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −31.2242 + 54.0818i −0.998950 + 1.73023i −0.459792 + 0.888027i \(0.652076\pi\)
−0.539158 + 0.842205i \(0.681257\pi\)
\(978\) 0 0
\(979\) 2.32073i 0.0741710i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.64021 6.30503i 0.116105 0.201099i −0.802116 0.597168i \(-0.796293\pi\)
0.918221 + 0.396069i \(0.129626\pi\)
\(984\) 0 0
\(985\) 10.6590 6.15397i 0.339624 0.196082i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −31.3345 18.0910i −0.995373 0.574679i −0.0884967 0.996076i \(-0.528206\pi\)
−0.906876 + 0.421398i \(0.861540\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −38.6838 −1.22636
\(996\) 0 0
\(997\) 17.1218 29.6559i 0.542254 0.939211i −0.456520 0.889713i \(-0.650904\pi\)
0.998774 0.0494984i \(-0.0157623\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.2.bs.a.1711.5 12
3.2 odd 2 224.2.q.a.143.5 12
4.3 odd 2 504.2.bk.a.451.5 12
7.5 odd 6 inner 2016.2.bs.a.271.2 12
8.3 odd 2 inner 2016.2.bs.a.1711.2 12
8.5 even 2 504.2.bk.a.451.2 12
12.11 even 2 56.2.m.a.3.2 12
21.2 odd 6 1568.2.q.g.1391.1 12
21.5 even 6 224.2.q.a.47.6 12
21.11 odd 6 1568.2.e.e.783.2 12
21.17 even 6 1568.2.e.e.783.11 12
21.20 even 2 1568.2.q.g.815.2 12
24.5 odd 2 56.2.m.a.3.5 yes 12
24.11 even 2 224.2.q.a.143.6 12
28.19 even 6 504.2.bk.a.19.1 12
56.5 odd 6 504.2.bk.a.19.6 12
56.19 even 6 inner 2016.2.bs.a.271.5 12
84.11 even 6 392.2.e.e.195.6 12
84.23 even 6 392.2.m.g.19.6 12
84.47 odd 6 56.2.m.a.19.6 yes 12
84.59 odd 6 392.2.e.e.195.5 12
84.83 odd 2 392.2.m.g.227.2 12
168.5 even 6 56.2.m.a.19.1 yes 12
168.11 even 6 1568.2.e.e.783.1 12
168.53 odd 6 392.2.e.e.195.8 12
168.59 odd 6 1568.2.e.e.783.12 12
168.83 odd 2 1568.2.q.g.815.1 12
168.101 even 6 392.2.e.e.195.7 12
168.107 even 6 1568.2.q.g.1391.2 12
168.125 even 2 392.2.m.g.227.5 12
168.131 odd 6 224.2.q.a.47.5 12
168.149 odd 6 392.2.m.g.19.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.m.a.3.2 12 12.11 even 2
56.2.m.a.3.5 yes 12 24.5 odd 2
56.2.m.a.19.1 yes 12 168.5 even 6
56.2.m.a.19.6 yes 12 84.47 odd 6
224.2.q.a.47.5 12 168.131 odd 6
224.2.q.a.47.6 12 21.5 even 6
224.2.q.a.143.5 12 3.2 odd 2
224.2.q.a.143.6 12 24.11 even 2
392.2.e.e.195.5 12 84.59 odd 6
392.2.e.e.195.6 12 84.11 even 6
392.2.e.e.195.7 12 168.101 even 6
392.2.e.e.195.8 12 168.53 odd 6
392.2.m.g.19.1 12 168.149 odd 6
392.2.m.g.19.6 12 84.23 even 6
392.2.m.g.227.2 12 84.83 odd 2
392.2.m.g.227.5 12 168.125 even 2
504.2.bk.a.19.1 12 28.19 even 6
504.2.bk.a.19.6 12 56.5 odd 6
504.2.bk.a.451.2 12 8.5 even 2
504.2.bk.a.451.5 12 4.3 odd 2
1568.2.e.e.783.1 12 168.11 even 6
1568.2.e.e.783.2 12 21.11 odd 6
1568.2.e.e.783.11 12 21.17 even 6
1568.2.e.e.783.12 12 168.59 odd 6
1568.2.q.g.815.1 12 168.83 odd 2
1568.2.q.g.815.2 12 21.20 even 2
1568.2.q.g.1391.1 12 21.2 odd 6
1568.2.q.g.1391.2 12 168.107 even 6
2016.2.bs.a.271.2 12 7.5 odd 6 inner
2016.2.bs.a.271.5 12 56.19 even 6 inner
2016.2.bs.a.1711.2 12 8.3 odd 2 inner
2016.2.bs.a.1711.5 12 1.1 even 1 trivial