Properties

Label 20070.2.a.ca
Level $20070$
Weight $2$
Character orbit 20070.a
Self dual yes
Analytic conductor $160.260$
Dimension $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [20070,2,Mod(1,20070)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("20070.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(20070, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 20070 = 2 \cdot 3^{2} \cdot 5 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 20070.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,4,0,5,4,0,4,7,0,-4,5,0,4,-6,0,-1,4,0,7,9,0,4,-4,0,5, -6,0,-5,4,0,-6,5,0,24,-1,0,4,1,0,-11,7,0,9,-8,0,13,4,0,-4,7,0,7,5,0,-6, 0,0,0,-5,0,4,-4,0,26,-6,0,5,-8,0,-6,24,0,-1,27,0,42,4,0,1,6,0,-6,-11,0, 7,13,0,28,9,0,-8,-1,0,16,13,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(160.259756857\)
Dimension: \(4\)
Coefficient field: 4.4.48389.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 8x^{2} + 3x + 10 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{5} + 5 q^{7} + 4 q^{8} + 4 q^{10} + 7 q^{11} - 4 q^{13} + 5 q^{14} + 4 q^{16} - 6 q^{17} - q^{19} + 4 q^{20} + 7 q^{22} + 9 q^{23} + 4 q^{25} - 4 q^{26} + 5 q^{28} - 6 q^{29}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(223\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.