Properties

Label 20070.2.a
Level $20070$
Weight $2$
Character orbit 20070.a
Rep. character $\chi_{20070}(1,\cdot)$
Character field $\Q$
Dimension $370$
Newform subspaces $83$
Sturm bound $8064$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 20070 = 2 \cdot 3^{2} \cdot 5 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 20070.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 83 \)
Sturm bound: \(8064\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(20070))\).

Total New Old
Modular forms 4048 370 3678
Cusp forms 4017 370 3647
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(223\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(234\)\(16\)\(218\)\(233\)\(16\)\(217\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(270\)\(21\)\(249\)\(268\)\(21\)\(247\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(256\)\(21\)\(235\)\(254\)\(21\)\(233\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(252\)\(16\)\(236\)\(250\)\(16\)\(234\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(256\)\(28\)\(228\)\(254\)\(28\)\(226\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(251\)\(28\)\(223\)\(249\)\(28\)\(221\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(250\)\(28\)\(222\)\(248\)\(28\)\(220\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(255\)\(28\)\(227\)\(253\)\(28\)\(225\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(256\)\(21\)\(235\)\(254\)\(21\)\(233\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(250\)\(16\)\(234\)\(248\)\(16\)\(232\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(266\)\(16\)\(250\)\(264\)\(16\)\(248\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(240\)\(21\)\(219\)\(238\)\(21\)\(217\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(250\)\(25\)\(225\)\(248\)\(25\)\(223\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(255\)\(30\)\(225\)\(253\)\(30\)\(223\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(256\)\(30\)\(226\)\(254\)\(30\)\(224\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(251\)\(25\)\(226\)\(249\)\(25\)\(224\)\(2\)\(0\)\(2\)
Plus space\(+\)\(2004\)\(170\)\(1834\)\(1989\)\(170\)\(1819\)\(15\)\(0\)\(15\)
Minus space\(-\)\(2044\)\(200\)\(1844\)\(2028\)\(200\)\(1828\)\(16\)\(0\)\(16\)

Trace form

\( 370 q - 2 q^{2} + 370 q^{4} - 2 q^{8} + 4 q^{11} + 8 q^{13} + 370 q^{16} - 4 q^{17} + 12 q^{19} + 12 q^{22} - 16 q^{23} + 370 q^{25} - 16 q^{26} + 8 q^{29} + 8 q^{31} - 2 q^{32} - 12 q^{34} + 8 q^{35} - 12 q^{37}+ \cdots - 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(20070))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 223
20070.2.a.a 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(-5\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-5q^{7}-q^{8}+q^{10}+\cdots\)
20070.2.a.b 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(-3\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-3q^{7}-q^{8}+q^{10}+\cdots\)
20070.2.a.c 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\)
20070.2.a.d 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(-1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{7}-q^{8}+q^{10}+\cdots\)
20070.2.a.e 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(0\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}-q^{11}+\cdots\)
20070.2.a.f 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(0\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+5q^{11}+\cdots\)
20070.2.a.g 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\)
20070.2.a.h 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\)
20070.2.a.i 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\)
20070.2.a.j 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(-1\) \(4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+4q^{7}-q^{8}+q^{10}+\cdots\)
20070.2.a.k 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(-4\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.l 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(-4\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.m 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(-3\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-3q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.n 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(-1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.o 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(-1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.p 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(-1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.q 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.r 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(3\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+3q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.s 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(4\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.t 20070.a 1.a $1$ $160.260$ \(\Q\) None \(-1\) \(0\) \(1\) \(4\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\)
20070.2.a.u 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(-1\) \(-3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-3q^{7}+q^{8}-q^{10}+\cdots\)
20070.2.a.v 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(-1\) \(-3\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-3q^{7}+q^{8}-q^{10}+\cdots\)
20070.2.a.w 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(-1\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-q^{10}+\cdots\)
20070.2.a.x 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(-1\) \(1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+q^{7}+q^{8}-q^{10}+\cdots\)
20070.2.a.y 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(-1\) \(3\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+3q^{7}+q^{8}-q^{10}+\cdots\)
20070.2.a.z 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(-1\) \(3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+3q^{7}+q^{8}-q^{10}+\cdots\)
20070.2.a.ba 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(-1\) \(4\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots\)
20070.2.a.bb 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(1\) \(-3\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}-3q^{7}+q^{8}+q^{10}+\cdots\)
20070.2.a.bc 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(1\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\)
20070.2.a.bd 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(1\) \(-1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\)
20070.2.a.be 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(1\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-4q^{11}+\cdots\)
20070.2.a.bf 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(1\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+q^{11}+\cdots\)
20070.2.a.bg 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(1\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\)
20070.2.a.bh 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(1\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\)
20070.2.a.bi 20070.a 1.a $1$ $160.260$ \(\Q\) None \(1\) \(0\) \(1\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\)
20070.2.a.bj 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{37}) \) None \(-2\) \(0\) \(-2\) \(-4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.bk 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{13}) \) None \(-2\) \(0\) \(-2\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.bl 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{5}) \) None \(-2\) \(0\) \(-2\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.bm 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{5}) \) None \(-2\) \(0\) \(-2\) \(0\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.bn 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{5}) \) None \(-2\) \(0\) \(2\) \(-2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.bo 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{5}) \) None \(-2\) \(0\) \(2\) \(-2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.bp 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{13}) \) None \(2\) \(0\) \(-2\) \(0\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.bq 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{2}) \) None \(2\) \(0\) \(2\) \(-4\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.br 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(2\) \(-1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.bs 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{5}) \) None \(2\) \(0\) \(2\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.bt 20070.a 1.a $2$ $160.260$ \(\Q(\sqrt{17}) \) None \(2\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.bu 20070.a 1.a $3$ $160.260$ 3.3.1509.1 None \(-3\) \(0\) \(3\) \(4\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.bv 20070.a 1.a $3$ $160.260$ 3.3.316.1 None \(3\) \(0\) \(3\) \(-1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.bw 20070.a 1.a $4$ $160.260$ 4.4.84677.1 None \(-4\) \(0\) \(-4\) \(-6\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.bx 20070.a 1.a $4$ $160.260$ 4.4.725.1 None \(-4\) \(0\) \(-4\) \(-5\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.by 20070.a 1.a $4$ $160.260$ 4.4.2225.1 None \(-4\) \(0\) \(4\) \(-4\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.bz 20070.a 1.a $4$ $160.260$ \(\Q(\zeta_{20})^+\) None \(4\) \(0\) \(-4\) \(-6\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.ca 20070.a 1.a $4$ $160.260$ 4.4.48389.1 None \(4\) \(0\) \(4\) \(5\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.cb 20070.a 1.a $5$ $160.260$ 5.5.2817605.1 None \(-5\) \(0\) \(5\) \(0\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.cc 20070.a 1.a $5$ $160.260$ 5.5.8693777.1 None \(5\) \(0\) \(-5\) \(3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.cd 20070.a 1.a $5$ $160.260$ 5.5.504568.1 None \(5\) \(0\) \(-5\) \(5\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.ce 20070.a 1.a $5$ $160.260$ 5.5.81589.1 None \(5\) \(0\) \(5\) \(0\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.cf 20070.a 1.a $5$ $160.260$ 5.5.1052869.1 None \(5\) \(0\) \(5\) \(8\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.cg 20070.a 1.a $6$ $160.260$ 6.6.6848593.1 None \(-6\) \(0\) \(-6\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.ch 20070.a 1.a $6$ $160.260$ 6.6.5224841.1 None \(-6\) \(0\) \(6\) \(-5\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.ci 20070.a 1.a $6$ $160.260$ 6.6.5173625.1 None \(-6\) \(0\) \(6\) \(5\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.cj 20070.a 1.a $6$ $160.260$ 6.6.11623961.1 None \(6\) \(0\) \(-6\) \(-6\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.ck 20070.a 1.a $6$ $160.260$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(6\) \(0\) \(-6\) \(3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.cl 20070.a 1.a $6$ $160.260$ 6.6.67955408.1 None \(6\) \(0\) \(6\) \(-6\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.cm 20070.a 1.a $7$ $160.260$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(7\) \(0\) \(-7\) \(3\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.cn 20070.a 1.a $7$ $160.260$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(7\) \(0\) \(7\) \(9\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.co 20070.a 1.a $8$ $160.260$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-8\) \(0\) \(-8\) \(-6\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.cp 20070.a 1.a $8$ $160.260$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(8\) \(0\) \(-8\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.cq 20070.a 1.a $8$ $160.260$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(8\) \(0\) \(8\) \(-8\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.cr 20070.a 1.a $8$ $160.260$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(8\) \(0\) \(8\) \(-6\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.cs 20070.a 1.a $9$ $160.260$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(-9\) \(0\) \(-9\) \(8\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.ct 20070.a 1.a $9$ $160.260$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(9\) \(0\) \(-9\) \(-7\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.cu 20070.a 1.a $10$ $160.260$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(-10\) \(0\) \(10\) \(-2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.cv 20070.a 1.a $10$ $160.260$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(10\) \(0\) \(10\) \(-2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.cw 20070.a 1.a $11$ $160.260$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None \(-11\) \(0\) \(-11\) \(7\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.cx 20070.a 1.a $12$ $160.260$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(-12\) \(0\) \(12\) \(11\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.cy 20070.a 1.a $13$ $160.260$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None \(-13\) \(0\) \(-13\) \(3\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.cz 20070.a 1.a $15$ $160.260$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(-15\) \(0\) \(15\) \(-7\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
20070.2.a.da 20070.a 1.a $15$ $160.260$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(15\) \(0\) \(-15\) \(-7\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.db 20070.a 1.a $18$ $160.260$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(-18\) \(0\) \(18\) \(6\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
20070.2.a.dc 20070.a 1.a $18$ $160.260$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(18\) \(0\) \(-18\) \(6\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
20070.2.a.dd 20070.a 1.a $20$ $160.260$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(-20\) \(0\) \(-20\) \(9\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
20070.2.a.de 20070.a 1.a $20$ $160.260$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(20\) \(0\) \(20\) \(9\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(20070))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(20070)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(223))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(446))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(669))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1115))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1338))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2007))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2230))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3345))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4014))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6690))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(10035))\)\(^{\oplus 2}\)