Defining parameters
Level: | \( N \) | \(=\) | \( 20070 = 2 \cdot 3^{2} \cdot 5 \cdot 223 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 20070.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 83 \) | ||
Sturm bound: | \(8064\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(20070))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4048 | 370 | 3678 |
Cusp forms | 4017 | 370 | 3647 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(223\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(234\) | \(16\) | \(218\) | \(233\) | \(16\) | \(217\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(270\) | \(21\) | \(249\) | \(268\) | \(21\) | \(247\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(256\) | \(21\) | \(235\) | \(254\) | \(21\) | \(233\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(252\) | \(16\) | \(236\) | \(250\) | \(16\) | \(234\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(256\) | \(28\) | \(228\) | \(254\) | \(28\) | \(226\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(251\) | \(28\) | \(223\) | \(249\) | \(28\) | \(221\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(250\) | \(28\) | \(222\) | \(248\) | \(28\) | \(220\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(255\) | \(28\) | \(227\) | \(253\) | \(28\) | \(225\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(256\) | \(21\) | \(235\) | \(254\) | \(21\) | \(233\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(250\) | \(16\) | \(234\) | \(248\) | \(16\) | \(232\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(266\) | \(16\) | \(250\) | \(264\) | \(16\) | \(248\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(240\) | \(21\) | \(219\) | \(238\) | \(21\) | \(217\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(250\) | \(25\) | \(225\) | \(248\) | \(25\) | \(223\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(255\) | \(30\) | \(225\) | \(253\) | \(30\) | \(223\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(256\) | \(30\) | \(226\) | \(254\) | \(30\) | \(224\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(251\) | \(25\) | \(226\) | \(249\) | \(25\) | \(224\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(2004\) | \(170\) | \(1834\) | \(1989\) | \(170\) | \(1819\) | \(15\) | \(0\) | \(15\) | ||||||
Minus space | \(-\) | \(2044\) | \(200\) | \(1844\) | \(2028\) | \(200\) | \(1828\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(20070))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 223 | |||||||
20070.2.a.a | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-5\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-5q^{7}-q^{8}+q^{10}+\cdots\) | |
20070.2.a.b | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-3\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-3q^{7}-q^{8}+q^{10}+\cdots\) | |
20070.2.a.c | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\) | |
20070.2.a.d | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-q^{7}-q^{8}+q^{10}+\cdots\) | |
20070.2.a.e | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}-q^{11}+\cdots\) | |
20070.2.a.f | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+5q^{11}+\cdots\) | |
20070.2.a.g | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\) | |
20070.2.a.h | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\) | |
20070.2.a.i | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\) | |
20070.2.a.j | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(4\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+4q^{7}-q^{8}+q^{10}+\cdots\) | |
20070.2.a.k | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.l | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.m | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-3\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-3q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.n | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.o | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.p | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.q | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}+q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.r | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(3\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}+3q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.s | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(4\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.t | $1$ | $160.260$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(4\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\) | |
20070.2.a.u | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-3\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-3q^{7}+q^{8}-q^{10}+\cdots\) | |
20070.2.a.v | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-3\) | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}-3q^{7}+q^{8}-q^{10}+\cdots\) | |
20070.2.a.w | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-q^{10}+\cdots\) | |
20070.2.a.x | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+q^{7}+q^{8}-q^{10}+\cdots\) | |
20070.2.a.y | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(3\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+3q^{7}+q^{8}-q^{10}+\cdots\) | |
20070.2.a.z | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(3\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+3q^{7}+q^{8}-q^{10}+\cdots\) | |
20070.2.a.ba | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(4\) | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots\) | |
20070.2.a.bb | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-3\) | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-3q^{7}+q^{8}+q^{10}+\cdots\) | |
20070.2.a.bc | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) | |
20070.2.a.bd | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-1\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) | |
20070.2.a.be | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-4q^{11}+\cdots\) | |
20070.2.a.bf | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+q^{11}+\cdots\) | |
20070.2.a.bg | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\) | |
20070.2.a.bh | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\) | |
20070.2.a.bi | $1$ | $160.260$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\) | |
20070.2.a.bj | $2$ | $160.260$ | \(\Q(\sqrt{37}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | ||
20070.2.a.bk | $2$ | $160.260$ | \(\Q(\sqrt{13}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
20070.2.a.bl | $2$ | $160.260$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | ||
20070.2.a.bm | $2$ | $160.260$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(0\) | $+$ | $+$ | $+$ | $+$ | ||
20070.2.a.bn | $2$ | $160.260$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(-2\) | $+$ | $-$ | $-$ | $-$ | ||
20070.2.a.bo | $2$ | $160.260$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(-2\) | $+$ | $-$ | $-$ | $-$ | ||
20070.2.a.bp | $2$ | $160.260$ | \(\Q(\sqrt{13}) \) | None | \(2\) | \(0\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | $+$ | ||
20070.2.a.bq | $2$ | $160.260$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(0\) | \(2\) | \(-4\) | $-$ | $-$ | $-$ | $+$ | ||
20070.2.a.br | $2$ | $160.260$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | ||
20070.2.a.bs | $2$ | $160.260$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(0\) | $-$ | $+$ | $-$ | $+$ | ||
20070.2.a.bt | $2$ | $160.260$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(0\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | $-$ | ||
20070.2.a.bu | $3$ | $160.260$ | 3.3.1509.1 | None | \(-3\) | \(0\) | \(3\) | \(4\) | $+$ | $-$ | $-$ | $+$ | ||
20070.2.a.bv | $3$ | $160.260$ | 3.3.316.1 | None | \(3\) | \(0\) | \(3\) | \(-1\) | $-$ | $-$ | $-$ | $-$ | ||
20070.2.a.bw | $4$ | $160.260$ | 4.4.84677.1 | None | \(-4\) | \(0\) | \(-4\) | \(-6\) | $+$ | $-$ | $+$ | $+$ | ||
20070.2.a.bx | $4$ | $160.260$ | 4.4.725.1 | None | \(-4\) | \(0\) | \(-4\) | \(-5\) | $+$ | $-$ | $+$ | $-$ | ||
20070.2.a.by | $4$ | $160.260$ | 4.4.2225.1 | None | \(-4\) | \(0\) | \(4\) | \(-4\) | $+$ | $-$ | $-$ | $-$ | ||
20070.2.a.bz | $4$ | $160.260$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(-4\) | \(-6\) | $-$ | $-$ | $+$ | $-$ | ||
20070.2.a.ca | $4$ | $160.260$ | 4.4.48389.1 | None | \(4\) | \(0\) | \(4\) | \(5\) | $-$ | $-$ | $-$ | $+$ | ||
20070.2.a.cb | $5$ | $160.260$ | 5.5.2817605.1 | None | \(-5\) | \(0\) | \(5\) | \(0\) | $+$ | $-$ | $-$ | $+$ | ||
20070.2.a.cc | $5$ | $160.260$ | 5.5.8693777.1 | None | \(5\) | \(0\) | \(-5\) | \(3\) | $-$ | $-$ | $+$ | $-$ | ||
20070.2.a.cd | $5$ | $160.260$ | 5.5.504568.1 | None | \(5\) | \(0\) | \(-5\) | \(5\) | $-$ | $-$ | $+$ | $-$ | ||
20070.2.a.ce | $5$ | $160.260$ | 5.5.81589.1 | None | \(5\) | \(0\) | \(5\) | \(0\) | $-$ | $-$ | $-$ | $-$ | ||
20070.2.a.cf | $5$ | $160.260$ | 5.5.1052869.1 | None | \(5\) | \(0\) | \(5\) | \(8\) | $-$ | $-$ | $-$ | $+$ | ||
20070.2.a.cg | $6$ | $160.260$ | 6.6.6848593.1 | None | \(-6\) | \(0\) | \(-6\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | ||
20070.2.a.ch | $6$ | $160.260$ | 6.6.5224841.1 | None | \(-6\) | \(0\) | \(6\) | \(-5\) | $+$ | $-$ | $-$ | $+$ | ||
20070.2.a.ci | $6$ | $160.260$ | 6.6.5173625.1 | None | \(-6\) | \(0\) | \(6\) | \(5\) | $+$ | $-$ | $-$ | $-$ | ||
20070.2.a.cj | $6$ | $160.260$ | 6.6.11623961.1 | None | \(6\) | \(0\) | \(-6\) | \(-6\) | $-$ | $-$ | $+$ | $+$ | ||
20070.2.a.ck | $6$ | $160.260$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(6\) | \(0\) | \(-6\) | \(3\) | $-$ | $-$ | $+$ | $-$ | ||
20070.2.a.cl | $6$ | $160.260$ | 6.6.67955408.1 | None | \(6\) | \(0\) | \(6\) | \(-6\) | $-$ | $-$ | $-$ | $-$ | ||
20070.2.a.cm | $7$ | $160.260$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(7\) | \(0\) | \(-7\) | \(3\) | $-$ | $-$ | $+$ | $+$ | ||
20070.2.a.cn | $7$ | $160.260$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(7\) | \(0\) | \(7\) | \(9\) | $-$ | $-$ | $-$ | $+$ | ||
20070.2.a.co | $8$ | $160.260$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(0\) | \(-8\) | \(-6\) | $+$ | $+$ | $+$ | $+$ | ||
20070.2.a.cp | $8$ | $160.260$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(0\) | \(-8\) | \(0\) | $-$ | $-$ | $+$ | $-$ | ||
20070.2.a.cq | $8$ | $160.260$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(0\) | \(8\) | \(-8\) | $-$ | $-$ | $-$ | $-$ | ||
20070.2.a.cr | $8$ | $160.260$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(0\) | \(8\) | \(-6\) | $-$ | $+$ | $-$ | $+$ | ||
20070.2.a.cs | $9$ | $160.260$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(0\) | \(-9\) | \(8\) | $+$ | $-$ | $+$ | $+$ | ||
20070.2.a.ct | $9$ | $160.260$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(0\) | \(-9\) | \(-7\) | $-$ | $-$ | $+$ | $+$ | ||
20070.2.a.cu | $10$ | $160.260$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-10\) | \(0\) | \(10\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | ||
20070.2.a.cv | $10$ | $160.260$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(10\) | \(0\) | \(10\) | \(-2\) | $-$ | $-$ | $-$ | $+$ | ||
20070.2.a.cw | $11$ | $160.260$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(-11\) | \(0\) | \(-11\) | \(7\) | $+$ | $-$ | $+$ | $-$ | ||
20070.2.a.cx | $12$ | $160.260$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(12\) | \(11\) | $+$ | $-$ | $-$ | $-$ | ||
20070.2.a.cy | $13$ | $160.260$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(-13\) | \(0\) | \(-13\) | \(3\) | $+$ | $-$ | $+$ | $-$ | ||
20070.2.a.cz | $15$ | $160.260$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(-15\) | \(0\) | \(15\) | \(-7\) | $+$ | $+$ | $-$ | $-$ | ||
20070.2.a.da | $15$ | $160.260$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(15\) | \(0\) | \(-15\) | \(-7\) | $-$ | $+$ | $+$ | $-$ | ||
20070.2.a.db | $18$ | $160.260$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-18\) | \(0\) | \(18\) | \(6\) | $+$ | $+$ | $-$ | $+$ | ||
20070.2.a.dc | $18$ | $160.260$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(18\) | \(0\) | \(-18\) | \(6\) | $-$ | $+$ | $+$ | $+$ | ||
20070.2.a.dd | $20$ | $160.260$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(-20\) | \(0\) | \(-20\) | \(9\) | $+$ | $+$ | $+$ | $-$ | ||
20070.2.a.de | $20$ | $160.260$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(20\) | \(0\) | \(20\) | \(9\) | $-$ | $+$ | $-$ | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(20070))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(20070)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(223))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(446))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(669))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1115))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1338))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2007))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2230))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3345))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4014))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6690))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(10035))\)\(^{\oplus 2}\)