Properties

Label 2000.2.c.j.1249.4
Level $2000$
Weight $2$
Character 2000.1249
Analytic conductor $15.970$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2000,2,Mod(1249,2000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2000.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2000 = 2^{4} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2000.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.9700804043\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.309760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 8x^{6} - 2x^{5} - x^{4} - 2x^{3} + 18x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 1000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.4
Root \(-0.748606 - 0.748606i\) of defining polynomial
Character \(\chi\) \(=\) 2000.1249
Dual form 2000.2.c.j.1249.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.543362i q^{3} +2.11525i q^{7} +2.70476 q^{9} +4.99442 q^{11} -6.32279i q^{13} +3.75836i q^{17} +1.90770 q^{19} +1.14934 q^{21} +9.35131i q^{23} -3.09975i q^{27} -7.22705 q^{29} -0.994424 q^{31} -2.71378i q^{33} -6.37984i q^{37} -3.43556 q^{39} +4.18247 q^{41} +1.45664i q^{43} -2.78501i q^{47} +2.52573 q^{49} +2.04215 q^{51} -1.52786i q^{53} -1.03657i q^{57} +1.47771 q^{59} +8.79148 q^{61} +5.72123i q^{63} +12.0811i q^{67} +5.08115 q^{69} +12.3798 q^{71} -9.09362i q^{73} +10.5644i q^{77} -8.91328 q^{79} +6.42999 q^{81} +12.1964i q^{83} +3.92690i q^{87} -3.08328 q^{89} +13.3743 q^{91} +0.540332i q^{93} +10.1382i q^{97} +13.5087 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{9} + 16 q^{21} - 20 q^{29} + 32 q^{31} - 48 q^{39} + 4 q^{41} - 4 q^{49} + 16 q^{59} + 12 q^{61} - 24 q^{69} + 48 q^{71} - 96 q^{79} + 32 q^{81} - 20 q^{89} + 16 q^{91} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2000\mathbb{Z}\right)^\times\).

\(n\) \(501\) \(751\) \(1377\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.543362i − 0.313710i −0.987622 0.156855i \(-0.949864\pi\)
0.987622 0.156855i \(-0.0501356\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.11525i 0.799488i 0.916627 + 0.399744i \(0.130901\pi\)
−0.916627 + 0.399744i \(0.869099\pi\)
\(8\) 0 0
\(9\) 2.70476 0.901586
\(10\) 0 0
\(11\) 4.99442 1.50588 0.752938 0.658092i \(-0.228636\pi\)
0.752938 + 0.658092i \(0.228636\pi\)
\(12\) 0 0
\(13\) − 6.32279i − 1.75363i −0.480831 0.876813i \(-0.659665\pi\)
0.480831 0.876813i \(-0.340335\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.75836i 0.911535i 0.890099 + 0.455768i \(0.150635\pi\)
−0.890099 + 0.455768i \(0.849365\pi\)
\(18\) 0 0
\(19\) 1.90770 0.437656 0.218828 0.975763i \(-0.429777\pi\)
0.218828 + 0.975763i \(0.429777\pi\)
\(20\) 0 0
\(21\) 1.14934 0.250807
\(22\) 0 0
\(23\) 9.35131i 1.94988i 0.222460 + 0.974942i \(0.428591\pi\)
−0.222460 + 0.974942i \(0.571409\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 3.09975i − 0.596547i
\(28\) 0 0
\(29\) −7.22705 −1.34203 −0.671014 0.741444i \(-0.734141\pi\)
−0.671014 + 0.741444i \(0.734141\pi\)
\(30\) 0 0
\(31\) −0.994424 −0.178604 −0.0893019 0.996005i \(-0.528464\pi\)
−0.0893019 + 0.996005i \(0.528464\pi\)
\(32\) 0 0
\(33\) − 2.71378i − 0.472408i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.37984i − 1.04884i −0.851460 0.524419i \(-0.824282\pi\)
0.851460 0.524419i \(-0.175718\pi\)
\(38\) 0 0
\(39\) −3.43556 −0.550131
\(40\) 0 0
\(41\) 4.18247 0.653192 0.326596 0.945164i \(-0.394098\pi\)
0.326596 + 0.945164i \(0.394098\pi\)
\(42\) 0 0
\(43\) 1.45664i 0.222135i 0.993813 + 0.111068i \(0.0354270\pi\)
−0.993813 + 0.111068i \(0.964573\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 2.78501i − 0.406235i −0.979154 0.203117i \(-0.934893\pi\)
0.979154 0.203117i \(-0.0651073\pi\)
\(48\) 0 0
\(49\) 2.52573 0.360819
\(50\) 0 0
\(51\) 2.04215 0.285958
\(52\) 0 0
\(53\) − 1.52786i − 0.209868i −0.994479 0.104934i \(-0.966537\pi\)
0.994479 0.104934i \(-0.0334632\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 1.03657i − 0.137297i
\(58\) 0 0
\(59\) 1.47771 0.192382 0.0961908 0.995363i \(-0.469334\pi\)
0.0961908 + 0.995363i \(0.469334\pi\)
\(60\) 0 0
\(61\) 8.79148 1.12563 0.562817 0.826582i \(-0.309718\pi\)
0.562817 + 0.826582i \(0.309718\pi\)
\(62\) 0 0
\(63\) 5.72123i 0.720807i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0811i 1.47595i 0.674830 + 0.737974i \(0.264217\pi\)
−0.674830 + 0.737974i \(0.735783\pi\)
\(68\) 0 0
\(69\) 5.08115 0.611698
\(70\) 0 0
\(71\) 12.3798 1.46922 0.734608 0.678492i \(-0.237366\pi\)
0.734608 + 0.678492i \(0.237366\pi\)
\(72\) 0 0
\(73\) − 9.09362i − 1.06433i −0.846642 0.532164i \(-0.821379\pi\)
0.846642 0.532164i \(-0.178621\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.5644i 1.20393i
\(78\) 0 0
\(79\) −8.91328 −1.00282 −0.501411 0.865209i \(-0.667186\pi\)
−0.501411 + 0.865209i \(0.667186\pi\)
\(80\) 0 0
\(81\) 6.42999 0.714443
\(82\) 0 0
\(83\) 12.1964i 1.33873i 0.742935 + 0.669364i \(0.233433\pi\)
−0.742935 + 0.669364i \(0.766567\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.92690i 0.421008i
\(88\) 0 0
\(89\) −3.08328 −0.326827 −0.163413 0.986558i \(-0.552250\pi\)
−0.163413 + 0.986558i \(0.552250\pi\)
\(90\) 0 0
\(91\) 13.3743 1.40200
\(92\) 0 0
\(93\) 0.540332i 0.0560298i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.1382i 1.02938i 0.857377 + 0.514689i \(0.172093\pi\)
−0.857377 + 0.514689i \(0.827907\pi\)
\(98\) 0 0
\(99\) 13.5087 1.35768
\(100\) 0 0
\(101\) 11.5202 1.14630 0.573149 0.819451i \(-0.305722\pi\)
0.573149 + 0.819451i \(0.305722\pi\)
\(102\) 0 0
\(103\) − 6.20639i − 0.611534i −0.952106 0.305767i \(-0.901087\pi\)
0.952106 0.305767i \(-0.0989128\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.7168i − 1.22938i −0.788769 0.614690i \(-0.789281\pi\)
0.788769 0.614690i \(-0.210719\pi\)
\(108\) 0 0
\(109\) −0.381966 −0.0365857 −0.0182929 0.999833i \(-0.505823\pi\)
−0.0182929 + 0.999833i \(0.505823\pi\)
\(110\) 0 0
\(111\) −3.46656 −0.329031
\(112\) 0 0
\(113\) 8.31164i 0.781893i 0.920413 + 0.390947i \(0.127852\pi\)
−0.920413 + 0.390947i \(0.872148\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 17.1016i − 1.58105i
\(118\) 0 0
\(119\) −7.94985 −0.728761
\(120\) 0 0
\(121\) 13.9443 1.26766
\(122\) 0 0
\(123\) − 2.27259i − 0.204913i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 10.3017i − 0.914130i −0.889433 0.457065i \(-0.848901\pi\)
0.889433 0.457065i \(-0.151099\pi\)
\(128\) 0 0
\(129\) 0.791482 0.0696861
\(130\) 0 0
\(131\) −3.08672 −0.269688 −0.134844 0.990867i \(-0.543053\pi\)
−0.134844 + 0.990867i \(0.543053\pi\)
\(132\) 0 0
\(133\) 4.03526i 0.349901i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 16.1053i − 1.37596i −0.725728 0.687982i \(-0.758497\pi\)
0.725728 0.687982i \(-0.241503\pi\)
\(138\) 0 0
\(139\) 15.5477 1.31874 0.659370 0.751819i \(-0.270823\pi\)
0.659370 + 0.751819i \(0.270823\pi\)
\(140\) 0 0
\(141\) −1.51327 −0.127440
\(142\) 0 0
\(143\) − 31.5787i − 2.64074i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1.37239i − 0.113193i
\(148\) 0 0
\(149\) 15.2636 1.25044 0.625222 0.780447i \(-0.285008\pi\)
0.625222 + 0.780447i \(0.285008\pi\)
\(150\) 0 0
\(151\) 16.1313 1.31275 0.656373 0.754436i \(-0.272090\pi\)
0.656373 + 0.754436i \(0.272090\pi\)
\(152\) 0 0
\(153\) 10.1654i 0.821827i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 0.241644i − 0.0192853i −0.999954 0.00964264i \(-0.996931\pi\)
0.999954 0.00964264i \(-0.00306940\pi\)
\(158\) 0 0
\(159\) −0.830183 −0.0658378
\(160\) 0 0
\(161\) −19.7803 −1.55891
\(162\) 0 0
\(163\) 0.314742i 0.0246525i 0.999924 + 0.0123263i \(0.00392367\pi\)
−0.999924 + 0.0123263i \(0.996076\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 7.71813i − 0.597247i −0.954371 0.298623i \(-0.903473\pi\)
0.954371 0.298623i \(-0.0965274\pi\)
\(168\) 0 0
\(169\) −26.9777 −2.07521
\(170\) 0 0
\(171\) 5.15987 0.394585
\(172\) 0 0
\(173\) − 13.7472i − 1.04518i −0.852584 0.522590i \(-0.824966\pi\)
0.852584 0.522590i \(-0.175034\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 0.802932i − 0.0603521i
\(178\) 0 0
\(179\) 1.29311 0.0966518 0.0483259 0.998832i \(-0.484611\pi\)
0.0483259 + 0.998832i \(0.484611\pi\)
\(180\) 0 0
\(181\) −18.4589 −1.37204 −0.686018 0.727585i \(-0.740643\pi\)
−0.686018 + 0.727585i \(0.740643\pi\)
\(182\) 0 0
\(183\) − 4.77696i − 0.353123i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 18.7708i 1.37266i
\(188\) 0 0
\(189\) 6.55673 0.476932
\(190\) 0 0
\(191\) −5.90770 −0.427466 −0.213733 0.976892i \(-0.568562\pi\)
−0.213733 + 0.976892i \(0.568562\pi\)
\(192\) 0 0
\(193\) 20.8520i 1.50096i 0.660894 + 0.750479i \(0.270177\pi\)
−0.660894 + 0.750479i \(0.729823\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.4735i 1.38743i 0.720252 + 0.693713i \(0.244026\pi\)
−0.720252 + 0.693713i \(0.755974\pi\)
\(198\) 0 0
\(199\) −23.1989 −1.64452 −0.822262 0.569109i \(-0.807288\pi\)
−0.822262 + 0.569109i \(0.807288\pi\)
\(200\) 0 0
\(201\) 6.56444 0.463020
\(202\) 0 0
\(203\) − 15.2870i − 1.07294i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 25.2930i 1.75799i
\(208\) 0 0
\(209\) 9.52786 0.659056
\(210\) 0 0
\(211\) −23.7323 −1.63380 −0.816900 0.576780i \(-0.804309\pi\)
−0.816900 + 0.576780i \(0.804309\pi\)
\(212\) 0 0
\(213\) − 6.72673i − 0.460908i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 2.10345i − 0.142792i
\(218\) 0 0
\(219\) −4.94112 −0.333890
\(220\) 0 0
\(221\) 23.7633 1.59849
\(222\) 0 0
\(223\) 10.6314i 0.711931i 0.934499 + 0.355966i \(0.115848\pi\)
−0.934499 + 0.355966i \(0.884152\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 25.0243i − 1.66092i −0.557079 0.830459i \(-0.688078\pi\)
0.557079 0.830459i \(-0.311922\pi\)
\(228\) 0 0
\(229\) −11.8962 −0.786126 −0.393063 0.919511i \(-0.628585\pi\)
−0.393063 + 0.919511i \(0.628585\pi\)
\(230\) 0 0
\(231\) 5.74031 0.377685
\(232\) 0 0
\(233\) 16.0347i 1.05047i 0.850957 + 0.525235i \(0.176023\pi\)
−0.850957 + 0.525235i \(0.823977\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.84313i 0.314595i
\(238\) 0 0
\(239\) −11.0867 −0.717141 −0.358570 0.933503i \(-0.616736\pi\)
−0.358570 + 0.933503i \(0.616736\pi\)
\(240\) 0 0
\(241\) 6.56473 0.422872 0.211436 0.977392i \(-0.432186\pi\)
0.211436 + 0.977392i \(0.432186\pi\)
\(242\) 0 0
\(243\) − 12.7931i − 0.820675i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 12.0620i − 0.767486i
\(248\) 0 0
\(249\) 6.62706 0.419973
\(250\) 0 0
\(251\) −1.22918 −0.0775849 −0.0387924 0.999247i \(-0.512351\pi\)
−0.0387924 + 0.999247i \(0.512351\pi\)
\(252\) 0 0
\(253\) 46.7044i 2.93628i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.52786i 0.344819i 0.985025 + 0.172409i \(0.0551552\pi\)
−0.985025 + 0.172409i \(0.944845\pi\)
\(258\) 0 0
\(259\) 13.4949 0.838534
\(260\) 0 0
\(261\) −19.5474 −1.20995
\(262\) 0 0
\(263\) 6.91631i 0.426478i 0.977000 + 0.213239i \(0.0684012\pi\)
−0.977000 + 0.213239i \(0.931599\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.67534i 0.102529i
\(268\) 0 0
\(269\) −2.94427 −0.179515 −0.0897577 0.995964i \(-0.528609\pi\)
−0.0897577 + 0.995964i \(0.528609\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) − 7.26706i − 0.439823i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.81408i 0.169082i 0.996420 + 0.0845410i \(0.0269424\pi\)
−0.996420 + 0.0845410i \(0.973058\pi\)
\(278\) 0 0
\(279\) −2.68968 −0.161027
\(280\) 0 0
\(281\) −2.59393 −0.154741 −0.0773705 0.997002i \(-0.524652\pi\)
−0.0773705 + 0.997002i \(0.524652\pi\)
\(282\) 0 0
\(283\) − 17.6090i − 1.04675i −0.852103 0.523374i \(-0.824673\pi\)
0.852103 0.523374i \(-0.175327\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.84695i 0.522219i
\(288\) 0 0
\(289\) 2.87476 0.169103
\(290\) 0 0
\(291\) 5.50871 0.322926
\(292\) 0 0
\(293\) 17.7392i 1.03634i 0.855279 + 0.518168i \(0.173386\pi\)
−0.855279 + 0.518168i \(0.826614\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 15.4815i − 0.898325i
\(298\) 0 0
\(299\) 59.1264 3.41937
\(300\) 0 0
\(301\) −3.08115 −0.177594
\(302\) 0 0
\(303\) − 6.25962i − 0.359606i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.4770i 0.712102i 0.934466 + 0.356051i \(0.115877\pi\)
−0.934466 + 0.356051i \(0.884123\pi\)
\(308\) 0 0
\(309\) −3.37232 −0.191844
\(310\) 0 0
\(311\) −20.2262 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(312\) 0 0
\(313\) − 12.6456i − 0.714771i −0.933957 0.357385i \(-0.883668\pi\)
0.933957 0.357385i \(-0.116332\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.67852i 0.375103i 0.982255 + 0.187552i \(0.0600552\pi\)
−0.982255 + 0.187552i \(0.939945\pi\)
\(318\) 0 0
\(319\) −36.0949 −2.02093
\(320\) 0 0
\(321\) −6.90983 −0.385669
\(322\) 0 0
\(323\) 7.16982i 0.398939i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.207546i 0.0114773i
\(328\) 0 0
\(329\) 5.89097 0.324780
\(330\) 0 0
\(331\) −27.2628 −1.49850 −0.749250 0.662288i \(-0.769586\pi\)
−0.749250 + 0.662288i \(0.769586\pi\)
\(332\) 0 0
\(333\) − 17.2559i − 0.945618i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 29.3835i − 1.60062i −0.599587 0.800310i \(-0.704668\pi\)
0.599587 0.800310i \(-0.295332\pi\)
\(338\) 0 0
\(339\) 4.51623 0.245288
\(340\) 0 0
\(341\) −4.96658 −0.268955
\(342\) 0 0
\(343\) 20.1493i 1.08796i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 15.5007i − 0.832119i −0.909337 0.416059i \(-0.863411\pi\)
0.909337 0.416059i \(-0.136589\pi\)
\(348\) 0 0
\(349\) −5.98540 −0.320391 −0.160196 0.987085i \(-0.551213\pi\)
−0.160196 + 0.987085i \(0.551213\pi\)
\(350\) 0 0
\(351\) −19.5991 −1.04612
\(352\) 0 0
\(353\) − 22.8841i − 1.21800i −0.793171 0.608998i \(-0.791572\pi\)
0.793171 0.608998i \(-0.208428\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.31964i 0.228620i
\(358\) 0 0
\(359\) 11.3525 0.599161 0.299580 0.954071i \(-0.403153\pi\)
0.299580 + 0.954071i \(0.403153\pi\)
\(360\) 0 0
\(361\) −15.3607 −0.808457
\(362\) 0 0
\(363\) − 7.57679i − 0.397678i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.8123i 0.929794i 0.885365 + 0.464897i \(0.153909\pi\)
−0.885365 + 0.464897i \(0.846091\pi\)
\(368\) 0 0
\(369\) 11.3126 0.588909
\(370\) 0 0
\(371\) 3.23181 0.167787
\(372\) 0 0
\(373\) − 13.0366i − 0.675008i −0.941324 0.337504i \(-0.890417\pi\)
0.941324 0.337504i \(-0.109583\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 45.6951i 2.35342i
\(378\) 0 0
\(379\) −31.2800 −1.60675 −0.803373 0.595476i \(-0.796964\pi\)
−0.803373 + 0.595476i \(0.796964\pi\)
\(380\) 0 0
\(381\) −5.59756 −0.286772
\(382\) 0 0
\(383\) 13.3291i 0.681084i 0.940229 + 0.340542i \(0.110611\pi\)
−0.940229 + 0.340542i \(0.889389\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.93985i 0.200274i
\(388\) 0 0
\(389\) −2.66950 −0.135349 −0.0676746 0.997707i \(-0.521558\pi\)
−0.0676746 + 0.997707i \(0.521558\pi\)
\(390\) 0 0
\(391\) −35.1456 −1.77739
\(392\) 0 0
\(393\) 1.67721i 0.0846040i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 24.9572i − 1.25257i −0.779595 0.626284i \(-0.784575\pi\)
0.779595 0.626284i \(-0.215425\pi\)
\(398\) 0 0
\(399\) 2.19260 0.109768
\(400\) 0 0
\(401\) −28.3039 −1.41343 −0.706716 0.707498i \(-0.749824\pi\)
−0.706716 + 0.707498i \(0.749824\pi\)
\(402\) 0 0
\(403\) 6.28754i 0.313204i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 31.8636i − 1.57942i
\(408\) 0 0
\(409\) 14.5647 0.720180 0.360090 0.932918i \(-0.382746\pi\)
0.360090 + 0.932918i \(0.382746\pi\)
\(410\) 0 0
\(411\) −8.75098 −0.431654
\(412\) 0 0
\(413\) 3.12572i 0.153807i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 8.44803i − 0.413702i
\(418\) 0 0
\(419\) 28.4610 1.39041 0.695205 0.718811i \(-0.255314\pi\)
0.695205 + 0.718811i \(0.255314\pi\)
\(420\) 0 0
\(421\) −20.5443 −1.00127 −0.500633 0.865660i \(-0.666899\pi\)
−0.500633 + 0.865660i \(0.666899\pi\)
\(422\) 0 0
\(423\) − 7.53277i − 0.366256i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 18.5961i 0.899931i
\(428\) 0 0
\(429\) −17.1587 −0.828428
\(430\) 0 0
\(431\) −28.9753 −1.39569 −0.697845 0.716249i \(-0.745857\pi\)
−0.697845 + 0.716249i \(0.745857\pi\)
\(432\) 0 0
\(433\) − 20.9002i − 1.00440i −0.864752 0.502199i \(-0.832524\pi\)
0.864752 0.502199i \(-0.167476\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.8395i 0.853379i
\(438\) 0 0
\(439\) −30.2546 −1.44397 −0.721987 0.691907i \(-0.756771\pi\)
−0.721987 + 0.691907i \(0.756771\pi\)
\(440\) 0 0
\(441\) 6.83150 0.325309
\(442\) 0 0
\(443\) 6.09346i 0.289509i 0.989468 + 0.144754i \(0.0462392\pi\)
−0.989468 + 0.144754i \(0.953761\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 8.29367i − 0.392277i
\(448\) 0 0
\(449\) 19.3135 0.911459 0.455730 0.890118i \(-0.349378\pi\)
0.455730 + 0.890118i \(0.349378\pi\)
\(450\) 0 0
\(451\) 20.8890 0.983626
\(452\) 0 0
\(453\) − 8.76513i − 0.411822i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13.1289i 0.614143i 0.951686 + 0.307071i \(0.0993490\pi\)
−0.951686 + 0.307071i \(0.900651\pi\)
\(458\) 0 0
\(459\) 11.6500 0.543773
\(460\) 0 0
\(461\) −6.28409 −0.292679 −0.146340 0.989234i \(-0.546749\pi\)
−0.146340 + 0.989234i \(0.546749\pi\)
\(462\) 0 0
\(463\) 0.705730i 0.0327981i 0.999866 + 0.0163990i \(0.00522021\pi\)
−0.999866 + 0.0163990i \(0.994780\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.1190i 0.468251i 0.972206 + 0.234126i \(0.0752227\pi\)
−0.972206 + 0.234126i \(0.924777\pi\)
\(468\) 0 0
\(469\) −25.5546 −1.18000
\(470\) 0 0
\(471\) −0.131300 −0.00604999
\(472\) 0 0
\(473\) 7.27507i 0.334508i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 4.13250i − 0.189214i
\(478\) 0 0
\(479\) −29.0533 −1.32748 −0.663739 0.747964i \(-0.731031\pi\)
−0.663739 + 0.747964i \(0.731031\pi\)
\(480\) 0 0
\(481\) −40.3384 −1.83927
\(482\) 0 0
\(483\) 10.7479i 0.489045i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7.59798i 0.344297i 0.985071 + 0.172149i \(0.0550709\pi\)
−0.985071 + 0.172149i \(0.944929\pi\)
\(488\) 0 0
\(489\) 0.171019 0.00773375
\(490\) 0 0
\(491\) 11.6822 0.527208 0.263604 0.964631i \(-0.415089\pi\)
0.263604 + 0.964631i \(0.415089\pi\)
\(492\) 0 0
\(493\) − 27.1618i − 1.22331i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 26.1864i 1.17462i
\(498\) 0 0
\(499\) 4.21754 0.188803 0.0944015 0.995534i \(-0.469906\pi\)
0.0944015 + 0.995534i \(0.469906\pi\)
\(500\) 0 0
\(501\) −4.19374 −0.187362
\(502\) 0 0
\(503\) 8.12640i 0.362338i 0.983452 + 0.181169i \(0.0579881\pi\)
−0.983452 + 0.181169i \(0.942012\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 14.6587i 0.651014i
\(508\) 0 0
\(509\) 20.8190 0.922787 0.461394 0.887196i \(-0.347350\pi\)
0.461394 + 0.887196i \(0.347350\pi\)
\(510\) 0 0
\(511\) 19.2352 0.850917
\(512\) 0 0
\(513\) − 5.91339i − 0.261083i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 13.9095i − 0.611739i
\(518\) 0 0
\(519\) −7.46971 −0.327884
\(520\) 0 0
\(521\) 15.7390 0.689539 0.344769 0.938687i \(-0.387957\pi\)
0.344769 + 0.938687i \(0.387957\pi\)
\(522\) 0 0
\(523\) 39.6698i 1.73464i 0.497753 + 0.867319i \(0.334159\pi\)
−0.497753 + 0.867319i \(0.665841\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 3.73740i − 0.162804i
\(528\) 0 0
\(529\) −64.4471 −2.80205
\(530\) 0 0
\(531\) 3.99685 0.173449
\(532\) 0 0
\(533\) − 26.4449i − 1.14546i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 0.702628i − 0.0303206i
\(538\) 0 0
\(539\) 12.6146 0.543349
\(540\) 0 0
\(541\) 10.1162 0.434930 0.217465 0.976068i \(-0.430221\pi\)
0.217465 + 0.976068i \(0.430221\pi\)
\(542\) 0 0
\(543\) 10.0298i 0.430422i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3.91575i 0.167425i 0.996490 + 0.0837127i \(0.0266778\pi\)
−0.996490 + 0.0837127i \(0.973322\pi\)
\(548\) 0 0
\(549\) 23.7788 1.01486
\(550\) 0 0
\(551\) −13.7870 −0.587348
\(552\) 0 0
\(553\) − 18.8538i − 0.801744i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 25.9095i − 1.09782i −0.835881 0.548910i \(-0.815043\pi\)
0.835881 0.548910i \(-0.184957\pi\)
\(558\) 0 0
\(559\) 9.21002 0.389542
\(560\) 0 0
\(561\) 10.1994 0.430617
\(562\) 0 0
\(563\) 30.7156i 1.29451i 0.762275 + 0.647254i \(0.224083\pi\)
−0.762275 + 0.647254i \(0.775917\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 13.6010i 0.571189i
\(568\) 0 0
\(569\) 12.3448 0.517519 0.258760 0.965942i \(-0.416686\pi\)
0.258760 + 0.965942i \(0.416686\pi\)
\(570\) 0 0
\(571\) −33.9368 −1.42021 −0.710104 0.704096i \(-0.751352\pi\)
−0.710104 + 0.704096i \(0.751352\pi\)
\(572\) 0 0
\(573\) 3.21002i 0.134100i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 45.2207i − 1.88256i −0.337626 0.941280i \(-0.609624\pi\)
0.337626 0.941280i \(-0.390376\pi\)
\(578\) 0 0
\(579\) 11.3302 0.470866
\(580\) 0 0
\(581\) −25.7984 −1.07030
\(582\) 0 0
\(583\) − 7.63080i − 0.316035i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 37.6710i − 1.55485i −0.628976 0.777424i \(-0.716526\pi\)
0.628976 0.777424i \(-0.283474\pi\)
\(588\) 0 0
\(589\) −1.89706 −0.0781671
\(590\) 0 0
\(591\) 10.5811 0.435250
\(592\) 0 0
\(593\) − 6.19524i − 0.254408i −0.991877 0.127204i \(-0.959400\pi\)
0.991877 0.127204i \(-0.0406003\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 12.6054i 0.515904i
\(598\) 0 0
\(599\) −4.03100 −0.164702 −0.0823510 0.996603i \(-0.526243\pi\)
−0.0823510 + 0.996603i \(0.526243\pi\)
\(600\) 0 0
\(601\) 42.2631 1.72395 0.861974 0.506953i \(-0.169228\pi\)
0.861974 + 0.506953i \(0.169228\pi\)
\(602\) 0 0
\(603\) 32.6766i 1.33069i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 30.9920i − 1.25793i −0.777436 0.628963i \(-0.783480\pi\)
0.777436 0.628963i \(-0.216520\pi\)
\(608\) 0 0
\(609\) −8.30636 −0.336591
\(610\) 0 0
\(611\) −17.6090 −0.712384
\(612\) 0 0
\(613\) 6.63443i 0.267962i 0.990984 + 0.133981i \(0.0427761\pi\)
−0.990984 + 0.133981i \(0.957224\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.2862i 0.856951i 0.903553 + 0.428475i \(0.140949\pi\)
−0.903553 + 0.428475i \(0.859051\pi\)
\(618\) 0 0
\(619\) 17.4244 0.700346 0.350173 0.936685i \(-0.386123\pi\)
0.350173 + 0.936685i \(0.386123\pi\)
\(620\) 0 0
\(621\) 28.9867 1.16320
\(622\) 0 0
\(623\) − 6.52189i − 0.261294i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 5.17708i − 0.206753i
\(628\) 0 0
\(629\) 23.9777 0.956053
\(630\) 0 0
\(631\) −11.5148 −0.458396 −0.229198 0.973380i \(-0.573610\pi\)
−0.229198 + 0.973380i \(0.573610\pi\)
\(632\) 0 0
\(633\) 12.8952i 0.512539i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 15.9697i − 0.632742i
\(638\) 0 0
\(639\) 33.4845 1.32462
\(640\) 0 0
\(641\) −45.2710 −1.78810 −0.894048 0.447970i \(-0.852147\pi\)
−0.894048 + 0.447970i \(0.852147\pi\)
\(642\) 0 0
\(643\) − 23.6449i − 0.932464i −0.884662 0.466232i \(-0.845611\pi\)
0.884662 0.466232i \(-0.154389\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.6264i 0.968165i 0.875022 + 0.484082i \(0.160846\pi\)
−0.875022 + 0.484082i \(0.839154\pi\)
\(648\) 0 0
\(649\) 7.38032 0.289703
\(650\) 0 0
\(651\) −1.14294 −0.0447952
\(652\) 0 0
\(653\) − 7.93000i − 0.310325i −0.987889 0.155163i \(-0.950410\pi\)
0.987889 0.155163i \(-0.0495901\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 24.5960i − 0.959582i
\(658\) 0 0
\(659\) −20.3575 −0.793017 −0.396508 0.918031i \(-0.629778\pi\)
−0.396508 + 0.918031i \(0.629778\pi\)
\(660\) 0 0
\(661\) −39.5617 −1.53877 −0.769385 0.638785i \(-0.779437\pi\)
−0.769385 + 0.638785i \(0.779437\pi\)
\(662\) 0 0
\(663\) − 12.9121i − 0.501463i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 67.5824i − 2.61680i
\(668\) 0 0
\(669\) 5.77670 0.223340
\(670\) 0 0
\(671\) 43.9084 1.69506
\(672\) 0 0
\(673\) − 1.46282i − 0.0563874i −0.999602 0.0281937i \(-0.991024\pi\)
0.999602 0.0281937i \(-0.00897552\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 13.0148i − 0.500199i −0.968220 0.250099i \(-0.919537\pi\)
0.968220 0.250099i \(-0.0804633\pi\)
\(678\) 0 0
\(679\) −21.4448 −0.822975
\(680\) 0 0
\(681\) −13.5972 −0.521047
\(682\) 0 0
\(683\) 2.11337i 0.0808660i 0.999182 + 0.0404330i \(0.0128737\pi\)
−0.999182 + 0.0404330i \(0.987126\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 6.46397i 0.246616i
\(688\) 0 0
\(689\) −9.66037 −0.368031
\(690\) 0 0
\(691\) 6.92443 0.263418 0.131709 0.991288i \(-0.457954\pi\)
0.131709 + 0.991288i \(0.457954\pi\)
\(692\) 0 0
\(693\) 28.5742i 1.08545i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 15.7192i 0.595408i
\(698\) 0 0
\(699\) 8.71267 0.329543
\(700\) 0 0
\(701\) 1.65310 0.0624369 0.0312185 0.999513i \(-0.490061\pi\)
0.0312185 + 0.999513i \(0.490061\pi\)
\(702\) 0 0
\(703\) − 12.1708i − 0.459031i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.3680i 0.916452i
\(708\) 0 0
\(709\) 1.67982 0.0630870 0.0315435 0.999502i \(-0.489958\pi\)
0.0315435 + 0.999502i \(0.489958\pi\)
\(710\) 0 0
\(711\) −24.1083 −0.904130
\(712\) 0 0
\(713\) − 9.29917i − 0.348257i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.02410i 0.224974i
\(718\) 0 0
\(719\) −50.2441 −1.87379 −0.936895 0.349611i \(-0.886314\pi\)
−0.936895 + 0.349611i \(0.886314\pi\)
\(720\) 0 0
\(721\) 13.1280 0.488914
\(722\) 0 0
\(723\) − 3.56703i − 0.132659i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.2324i 0.676203i 0.941110 + 0.338101i \(0.109785\pi\)
−0.941110 + 0.338101i \(0.890215\pi\)
\(728\) 0 0
\(729\) 12.3387 0.456989
\(730\) 0 0
\(731\) −5.47456 −0.202484
\(732\) 0 0
\(733\) 51.5137i 1.90270i 0.308112 + 0.951350i \(0.400303\pi\)
−0.308112 + 0.951350i \(0.599697\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 60.3384i 2.22259i
\(738\) 0 0
\(739\) −13.3261 −0.490207 −0.245103 0.969497i \(-0.578822\pi\)
−0.245103 + 0.969497i \(0.578822\pi\)
\(740\) 0 0
\(741\) −6.55403 −0.240768
\(742\) 0 0
\(743\) 23.9448i 0.878448i 0.898378 + 0.439224i \(0.144747\pi\)
−0.898378 + 0.439224i \(0.855253\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 32.9883i 1.20698i
\(748\) 0 0
\(749\) 26.8992 0.982875
\(750\) 0 0
\(751\) −0.0607894 −0.00221823 −0.00110912 0.999999i \(-0.500353\pi\)
−0.00110912 + 0.999999i \(0.500353\pi\)
\(752\) 0 0
\(753\) 0.667887i 0.0243392i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.3402i 1.06639i 0.845993 + 0.533194i \(0.179008\pi\)
−0.845993 + 0.533194i \(0.820992\pi\)
\(758\) 0 0
\(759\) 25.3774 0.921142
\(760\) 0 0
\(761\) 33.1931 1.20325 0.601625 0.798779i \(-0.294520\pi\)
0.601625 + 0.798779i \(0.294520\pi\)
\(762\) 0 0
\(763\) − 0.807952i − 0.0292498i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 9.34326i − 0.337366i
\(768\) 0 0
\(769\) −7.90557 −0.285082 −0.142541 0.989789i \(-0.545527\pi\)
−0.142541 + 0.989789i \(0.545527\pi\)
\(770\) 0 0
\(771\) 3.00363 0.108173
\(772\) 0 0
\(773\) 27.7151i 0.996843i 0.866935 + 0.498421i \(0.166087\pi\)
−0.866935 + 0.498421i \(0.833913\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 7.33263i − 0.263057i
\(778\) 0 0
\(779\) 7.97890 0.285874
\(780\) 0 0
\(781\) 61.8302 2.21246
\(782\) 0 0
\(783\) 22.4020i 0.800583i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 17.1468i 0.611217i 0.952157 + 0.305609i \(0.0988599\pi\)
−0.952157 + 0.305609i \(0.901140\pi\)
\(788\) 0 0
\(789\) 3.75806 0.133790
\(790\) 0 0
\(791\) −17.5812 −0.625114
\(792\) 0 0
\(793\) − 55.5867i − 1.97394i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 21.0575i − 0.745896i −0.927852 0.372948i \(-0.878347\pi\)
0.927852 0.372948i \(-0.121653\pi\)
\(798\) 0 0
\(799\) 10.4670 0.370297
\(800\) 0 0
\(801\) −8.33952 −0.294662
\(802\) 0 0
\(803\) − 45.4174i − 1.60274i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.59981i 0.0563158i
\(808\) 0 0
\(809\) −38.8466 −1.36577 −0.682887 0.730524i \(-0.739276\pi\)
−0.682887 + 0.730524i \(0.739276\pi\)
\(810\) 0 0
\(811\) −31.2820 −1.09846 −0.549229 0.835672i \(-0.685079\pi\)
−0.549229 + 0.835672i \(0.685079\pi\)
\(812\) 0 0
\(813\) − 8.69379i − 0.304905i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.77883i 0.0972189i
\(818\) 0 0
\(819\) 36.1741 1.26403
\(820\) 0 0
\(821\) 8.50658 0.296882 0.148441 0.988921i \(-0.452575\pi\)
0.148441 + 0.988921i \(0.452575\pi\)
\(822\) 0 0
\(823\) − 44.6746i − 1.55726i −0.627483 0.778630i \(-0.715915\pi\)
0.627483 0.778630i \(-0.284085\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.6536i 0.926836i 0.886140 + 0.463418i \(0.153377\pi\)
−0.886140 + 0.463418i \(0.846623\pi\)
\(828\) 0 0
\(829\) −4.21967 −0.146555 −0.0732776 0.997312i \(-0.523346\pi\)
−0.0732776 + 0.997312i \(0.523346\pi\)
\(830\) 0 0
\(831\) 1.52907 0.0530427
\(832\) 0 0
\(833\) 9.49261i 0.328899i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.08246i 0.106546i
\(838\) 0 0
\(839\) 17.1897 0.593453 0.296726 0.954963i \(-0.404105\pi\)
0.296726 + 0.954963i \(0.404105\pi\)
\(840\) 0 0
\(841\) 23.2302 0.801041
\(842\) 0 0
\(843\) 1.40944i 0.0485438i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 29.4956i 1.01348i
\(848\) 0 0
\(849\) −9.56807 −0.328375
\(850\) 0 0
\(851\) 59.6599 2.04511
\(852\) 0 0
\(853\) − 28.2243i − 0.966381i −0.875515 0.483191i \(-0.839478\pi\)
0.875515 0.483191i \(-0.160522\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 51.2310i − 1.75002i −0.484108 0.875008i \(-0.660856\pi\)
0.484108 0.875008i \(-0.339144\pi\)
\(858\) 0 0
\(859\) −53.1686 −1.81409 −0.907044 0.421036i \(-0.861667\pi\)
−0.907044 + 0.421036i \(0.861667\pi\)
\(860\) 0 0
\(861\) 4.80710 0.163825
\(862\) 0 0
\(863\) − 26.8953i − 0.915526i −0.889074 0.457763i \(-0.848651\pi\)
0.889074 0.457763i \(-0.151349\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.56203i − 0.0530495i
\(868\) 0 0
\(869\) −44.5167 −1.51012
\(870\) 0 0
\(871\) 76.3866 2.58826
\(872\) 0 0
\(873\) 27.4214i 0.928072i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 15.7008i 0.530178i 0.964224 + 0.265089i \(0.0854014\pi\)
−0.964224 + 0.265089i \(0.914599\pi\)
\(878\) 0 0
\(879\) 9.63881 0.325109
\(880\) 0 0
\(881\) 2.32804 0.0784336 0.0392168 0.999231i \(-0.487514\pi\)
0.0392168 + 0.999231i \(0.487514\pi\)
\(882\) 0 0
\(883\) − 45.0863i − 1.51727i −0.651514 0.758637i \(-0.725866\pi\)
0.651514 0.758637i \(-0.274134\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 45.9907i − 1.54422i −0.635491 0.772108i \(-0.719202\pi\)
0.635491 0.772108i \(-0.280798\pi\)
\(888\) 0 0
\(889\) 21.7907 0.730836
\(890\) 0 0
\(891\) 32.1141 1.07586
\(892\) 0 0
\(893\) − 5.31296i − 0.177791i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 32.1270i − 1.07269i
\(898\) 0 0
\(899\) 7.18675 0.239691
\(900\) 0 0
\(901\) 5.74226 0.191302
\(902\) 0 0
\(903\) 1.67418i 0.0557132i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 41.9462i − 1.39280i −0.717653 0.696401i \(-0.754784\pi\)
0.717653 0.696401i \(-0.245216\pi\)
\(908\) 0 0
\(909\) 31.1592 1.03349
\(910\) 0 0
\(911\) 38.6141 1.27934 0.639671 0.768649i \(-0.279071\pi\)
0.639671 + 0.768649i \(0.279071\pi\)
\(912\) 0 0
\(913\) 60.9140i 2.01596i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 6.52918i − 0.215613i
\(918\) 0 0
\(919\) −46.7156 −1.54100 −0.770502 0.637437i \(-0.779995\pi\)
−0.770502 + 0.637437i \(0.779995\pi\)
\(920\) 0 0
\(921\) 6.77955 0.223394
\(922\) 0 0
\(923\) − 78.2751i − 2.57646i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 16.7868i − 0.551350i
\(928\) 0 0
\(929\) 5.49036 0.180133 0.0900665 0.995936i \(-0.471292\pi\)
0.0900665 + 0.995936i \(0.471292\pi\)
\(930\) 0 0
\(931\) 4.81834 0.157915
\(932\) 0 0
\(933\) 10.9902i 0.359802i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 17.6902i 0.577912i 0.957342 + 0.288956i \(0.0933082\pi\)
−0.957342 + 0.288956i \(0.906692\pi\)
\(938\) 0 0
\(939\) −6.87113 −0.224231
\(940\) 0 0
\(941\) 41.0472 1.33810 0.669050 0.743217i \(-0.266701\pi\)
0.669050 + 0.743217i \(0.266701\pi\)
\(942\) 0 0
\(943\) 39.1116i 1.27365i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 26.6027i − 0.864472i −0.901760 0.432236i \(-0.857725\pi\)
0.901760 0.432236i \(-0.142275\pi\)
\(948\) 0 0
\(949\) −57.4970 −1.86643
\(950\) 0 0
\(951\) 3.62886 0.117674
\(952\) 0 0
\(953\) 22.1029i 0.715984i 0.933725 + 0.357992i \(0.116539\pi\)
−0.933725 + 0.357992i \(0.883461\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 19.6126i 0.633986i
\(958\) 0 0
\(959\) 34.0666 1.10007
\(960\) 0 0
\(961\) −30.0111 −0.968101
\(962\) 0 0
\(963\) − 34.3959i − 1.10839i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1.05390i − 0.0338912i −0.999856 0.0169456i \(-0.994606\pi\)
0.999856 0.0169456i \(-0.00539420\pi\)
\(968\) 0 0
\(969\) 3.89581 0.125151
\(970\) 0 0
\(971\) 1.47456 0.0473210 0.0236605 0.999720i \(-0.492468\pi\)
0.0236605 + 0.999720i \(0.492468\pi\)
\(972\) 0 0
\(973\) 32.8872i 1.05432i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 5.53670i − 0.177135i −0.996070 0.0885674i \(-0.971771\pi\)
0.996070 0.0885674i \(-0.0282289\pi\)
\(978\) 0 0
\(979\) −15.3992 −0.492160
\(980\) 0 0
\(981\) −1.03313 −0.0329852
\(982\) 0 0
\(983\) − 4.18145i − 0.133368i −0.997774 0.0666838i \(-0.978758\pi\)
0.997774 0.0666838i \(-0.0212419\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 3.20093i − 0.101887i
\(988\) 0 0
\(989\) −13.6215 −0.433138
\(990\) 0 0
\(991\) 21.5056 0.683147 0.341573 0.939855i \(-0.389040\pi\)
0.341573 + 0.939855i \(0.389040\pi\)
\(992\) 0 0
\(993\) 14.8136i 0.470094i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 26.3446i − 0.834341i −0.908828 0.417171i \(-0.863022\pi\)
0.908828 0.417171i \(-0.136978\pi\)
\(998\) 0 0
\(999\) −19.7759 −0.625681
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2000.2.c.j.1249.4 8
4.3 odd 2 1000.2.c.d.249.5 8
5.2 odd 4 2000.2.a.r.1.2 4
5.3 odd 4 2000.2.a.m.1.3 4
5.4 even 2 inner 2000.2.c.j.1249.5 8
20.3 even 4 1000.2.a.h.1.2 yes 4
20.7 even 4 1000.2.a.e.1.3 4
20.19 odd 2 1000.2.c.d.249.4 8
40.3 even 4 8000.2.a.ba.1.3 4
40.13 odd 4 8000.2.a.bq.1.2 4
40.27 even 4 8000.2.a.br.1.2 4
40.37 odd 4 8000.2.a.bb.1.3 4
60.23 odd 4 9000.2.a.ba.1.1 4
60.47 odd 4 9000.2.a.r.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.a.e.1.3 4 20.7 even 4
1000.2.a.h.1.2 yes 4 20.3 even 4
1000.2.c.d.249.4 8 20.19 odd 2
1000.2.c.d.249.5 8 4.3 odd 2
2000.2.a.m.1.3 4 5.3 odd 4
2000.2.a.r.1.2 4 5.2 odd 4
2000.2.c.j.1249.4 8 1.1 even 1 trivial
2000.2.c.j.1249.5 8 5.4 even 2 inner
8000.2.a.ba.1.3 4 40.3 even 4
8000.2.a.bb.1.3 4 40.37 odd 4
8000.2.a.bq.1.2 4 40.13 odd 4
8000.2.a.br.1.2 4 40.27 even 4
9000.2.a.r.1.4 4 60.47 odd 4
9000.2.a.ba.1.1 4 60.23 odd 4