Properties

Label 200.8.a.o
Level $200$
Weight $8$
Character orbit 200.a
Self dual yes
Analytic conductor $62.477$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,8,Mod(1,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-97,0,0,0,1630] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4770050968\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.40101.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 34x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 32) q^{3} + (\beta_{2} + 2 \beta_1 + 543) q^{7} + (\beta_{2} + 80 \beta_1 + 689) q^{9} + ( - \beta_{2} + 133 \beta_1 - 931) q^{11} + (\beta_{2} - 124 \beta_1 - 1061) q^{13} + (19 \beta_{2} + 200 \beta_1 + 8100) q^{17}+ \cdots + (8919 \beta_{2} + 235518 \beta_1 + 17696637) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 97 q^{3} + 1630 q^{7} + 2146 q^{9} - 2659 q^{11} - 3308 q^{13} + 24481 q^{17} + 55749 q^{19} - 61562 q^{21} - 56910 q^{23} - 300619 q^{27} + 65528 q^{29} - 144598 q^{31} - 657207 q^{33} - 204678 q^{37}+ \cdots + 53316510 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 34x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu^{2} + 4\nu - 47 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -48\nu^{2} + 224\nu + 1029 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 24\beta _1 + 99 ) / 320 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 56\beta _1 + 3661 ) / 160 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.29783
−5.41512
0.117290
0 −89.5167 0 0 0 1193.94 0 5826.24 0
1.2 0 −21.9866 0 0 0 −1068.54 0 −1703.59 0
1.3 0 14.5033 0 0 0 1504.61 0 −1976.65 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.8.a.o 3
4.b odd 2 1 400.8.a.bi 3
5.b even 2 1 200.8.a.p yes 3
5.c odd 4 2 200.8.c.j 6
20.d odd 2 1 400.8.a.bh 3
20.e even 4 2 400.8.c.u 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.8.a.o 3 1.a even 1 1 trivial
200.8.a.p yes 3 5.b even 2 1
200.8.c.j 6 5.c odd 4 2
400.8.a.bh 3 20.d odd 2 1
400.8.a.bi 3 4.b odd 2 1
400.8.c.u 6 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 97T_{3}^{2} + 351T_{3} - 28545 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(200))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 97 T^{2} + \cdots - 28545 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots + 1919541112 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 33910231899 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 62226542784 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 13545067874125 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 3636837484829 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 55015565119928 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 53\!\cdots\!52 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 46\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 162472248229752 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 63\!\cdots\!41 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 12\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 49\!\cdots\!32 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 29\!\cdots\!72 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 47\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 56\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 37\!\cdots\!89 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 49\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 35\!\cdots\!13 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 30\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 31\!\cdots\!77 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 39\!\cdots\!91 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 85\!\cdots\!48 \) Copy content Toggle raw display
show more
show less