Properties

Label 200.3.u.b.33.7
Level $200$
Weight $3$
Character 200.33
Analytic conductor $5.450$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,3,Mod(17,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.17"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 13])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 200.u (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.44960528721\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 33.7
Character \(\chi\) \(=\) 200.33
Dual form 200.3.u.b.97.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.88880 + 0.615926i) q^{3} +(2.05707 + 4.55724i) q^{5} +(5.11305 - 5.11305i) q^{7} +(6.18393 + 2.00928i) q^{9} +(-0.0865225 - 0.266289i) q^{11} +(-5.04080 + 2.56841i) q^{13} +(5.19263 + 18.9892i) q^{15} +(9.22052 - 1.46039i) q^{17} +(-14.8832 + 20.4849i) q^{19} +(23.0329 - 16.7344i) q^{21} +(11.5801 - 22.7271i) q^{23} +(-16.5369 + 18.7492i) q^{25} +(-8.76274 - 4.46484i) q^{27} +(-26.1473 - 35.9887i) q^{29} +(44.2788 + 32.1704i) q^{31} +(-0.172455 - 1.08884i) q^{33} +(33.8193 + 12.7835i) q^{35} +(-17.6833 - 34.7055i) q^{37} +(-21.1846 + 6.88330i) q^{39} +(5.93471 - 18.2652i) q^{41} +(23.5671 + 23.5671i) q^{43} +(3.56401 + 32.3149i) q^{45} +(-2.94533 + 18.5961i) q^{47} -3.28662i q^{49} +36.7563 q^{51} +(-49.6251 - 7.85985i) q^{53} +(1.03556 - 0.942080i) q^{55} +(-70.4949 + 70.4949i) q^{57} +(-73.1755 - 23.7762i) q^{59} +(-32.1545 - 98.9614i) q^{61} +(41.8923 - 21.3452i) q^{63} +(-22.0742 - 17.6887i) q^{65} +(-29.9952 + 4.75077i) q^{67} +(59.0308 - 81.2490i) q^{69} +(18.4157 - 13.3798i) q^{71} +(-4.79456 + 9.40984i) q^{73} +(-75.8569 + 62.7263i) q^{75} +(-1.80394 - 0.919155i) q^{77} +(-71.4829 - 98.3877i) q^{79} +(-78.6699 - 57.1570i) q^{81} +(4.05019 + 25.5719i) q^{83} +(25.6226 + 39.0160i) q^{85} +(-79.5155 - 156.058i) q^{87} +(-19.5716 + 6.35919i) q^{89} +(-12.6414 + 38.9063i) q^{91} +(152.377 + 152.377i) q^{93} +(-123.970 - 25.6872i) q^{95} +(-23.4342 + 147.957i) q^{97} -1.82056i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 6 q^{5} - 4 q^{7} - 40 q^{9} + 16 q^{11} + 24 q^{13} + 82 q^{15} - 8 q^{17} - 50 q^{19} - 100 q^{21} - 48 q^{23} - 200 q^{25} + 90 q^{27} + 108 q^{31} + 260 q^{33} + 2 q^{35} - 94 q^{37} + 320 q^{39}+ \cdots - 544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.88880 + 0.615926i 1.29627 + 0.205309i 0.766176 0.642631i \(-0.222157\pi\)
0.530093 + 0.847940i \(0.322157\pi\)
\(4\) 0 0
\(5\) 2.05707 + 4.55724i 0.411414 + 0.911448i
\(6\) 0 0
\(7\) 5.11305 5.11305i 0.730436 0.730436i −0.240270 0.970706i \(-0.577236\pi\)
0.970706 + 0.240270i \(0.0772360\pi\)
\(8\) 0 0
\(9\) 6.18393 + 2.00928i 0.687103 + 0.223253i
\(10\) 0 0
\(11\) −0.0865225 0.266289i −0.00786568 0.0242081i 0.947047 0.321096i \(-0.104051\pi\)
−0.954912 + 0.296888i \(0.904051\pi\)
\(12\) 0 0
\(13\) −5.04080 + 2.56841i −0.387754 + 0.197570i −0.636990 0.770872i \(-0.719821\pi\)
0.249236 + 0.968443i \(0.419821\pi\)
\(14\) 0 0
\(15\) 5.19263 + 18.9892i 0.346175 + 1.26595i
\(16\) 0 0
\(17\) 9.22052 1.46039i 0.542384 0.0859051i 0.120770 0.992681i \(-0.461464\pi\)
0.421614 + 0.906775i \(0.361464\pi\)
\(18\) 0 0
\(19\) −14.8832 + 20.4849i −0.783324 + 1.07815i 0.211583 + 0.977360i \(0.432138\pi\)
−0.994907 + 0.100793i \(0.967862\pi\)
\(20\) 0 0
\(21\) 23.0329 16.7344i 1.09681 0.796876i
\(22\) 0 0
\(23\) 11.5801 22.7271i 0.503481 0.988136i −0.489737 0.871870i \(-0.662907\pi\)
0.993218 0.116266i \(-0.0370927\pi\)
\(24\) 0 0
\(25\) −16.5369 + 18.7492i −0.661476 + 0.749966i
\(26\) 0 0
\(27\) −8.76274 4.46484i −0.324546 0.165365i
\(28\) 0 0
\(29\) −26.1473 35.9887i −0.901632 1.24099i −0.969945 0.243326i \(-0.921762\pi\)
0.0683127 0.997664i \(-0.478238\pi\)
\(30\) 0 0
\(31\) 44.2788 + 32.1704i 1.42835 + 1.03776i 0.990321 + 0.138794i \(0.0443226\pi\)
0.438027 + 0.898962i \(0.355677\pi\)
\(32\) 0 0
\(33\) −0.172455 1.08884i −0.00522591 0.0329951i
\(34\) 0 0
\(35\) 33.8193 + 12.7835i 0.966267 + 0.365243i
\(36\) 0 0
\(37\) −17.6833 34.7055i −0.477928 0.937987i −0.996551 0.0829838i \(-0.973555\pi\)
0.518623 0.855003i \(-0.326445\pi\)
\(38\) 0 0
\(39\) −21.1846 + 6.88330i −0.543196 + 0.176495i
\(40\) 0 0
\(41\) 5.93471 18.2652i 0.144749 0.445492i −0.852230 0.523168i \(-0.824750\pi\)
0.996979 + 0.0776760i \(0.0247500\pi\)
\(42\) 0 0
\(43\) 23.5671 + 23.5671i 0.548073 + 0.548073i 0.925883 0.377810i \(-0.123323\pi\)
−0.377810 + 0.925883i \(0.623323\pi\)
\(44\) 0 0
\(45\) 3.56401 + 32.3149i 0.0792003 + 0.718109i
\(46\) 0 0
\(47\) −2.94533 + 18.5961i −0.0626666 + 0.395661i 0.936340 + 0.351095i \(0.114191\pi\)
−0.999006 + 0.0445663i \(0.985809\pi\)
\(48\) 0 0
\(49\) 3.28662i 0.0670739i
\(50\) 0 0
\(51\) 36.7563 0.720712
\(52\) 0 0
\(53\) −49.6251 7.85985i −0.936323 0.148299i −0.330417 0.943835i \(-0.607189\pi\)
−0.605906 + 0.795536i \(0.707189\pi\)
\(54\) 0 0
\(55\) 1.03556 0.942080i 0.0188284 0.0171287i
\(56\) 0 0
\(57\) −70.4949 + 70.4949i −1.23675 + 1.23675i
\(58\) 0 0
\(59\) −73.1755 23.7762i −1.24026 0.402986i −0.385841 0.922565i \(-0.626089\pi\)
−0.854422 + 0.519580i \(0.826089\pi\)
\(60\) 0 0
\(61\) −32.1545 98.9614i −0.527123 1.62232i −0.760079 0.649831i \(-0.774840\pi\)
0.232955 0.972487i \(-0.425160\pi\)
\(62\) 0 0
\(63\) 41.8923 21.3452i 0.664957 0.338813i
\(64\) 0 0
\(65\) −22.0742 17.6887i −0.339603 0.272134i
\(66\) 0 0
\(67\) −29.9952 + 4.75077i −0.447690 + 0.0709071i −0.376209 0.926535i \(-0.622772\pi\)
−0.0714809 + 0.997442i \(0.522772\pi\)
\(68\) 0 0
\(69\) 59.0308 81.2490i 0.855519 1.17752i
\(70\) 0 0
\(71\) 18.4157 13.3798i 0.259377 0.188448i −0.450496 0.892779i \(-0.648753\pi\)
0.709872 + 0.704330i \(0.248753\pi\)
\(72\) 0 0
\(73\) −4.79456 + 9.40984i −0.0656788 + 0.128902i −0.921512 0.388350i \(-0.873045\pi\)
0.855833 + 0.517252i \(0.173045\pi\)
\(74\) 0 0
\(75\) −75.8569 + 62.7263i −1.01143 + 0.836350i
\(76\) 0 0
\(77\) −1.80394 0.919155i −0.0234278 0.0119371i
\(78\) 0 0
\(79\) −71.4829 98.3877i −0.904847 1.24541i −0.968896 0.247468i \(-0.920402\pi\)
0.0640496 0.997947i \(-0.479598\pi\)
\(80\) 0 0
\(81\) −78.6699 57.1570i −0.971233 0.705642i
\(82\) 0 0
\(83\) 4.05019 + 25.5719i 0.0487975 + 0.308095i 1.00000 0.000472307i \(-0.000150340\pi\)
−0.951202 + 0.308568i \(0.900150\pi\)
\(84\) 0 0
\(85\) 25.6226 + 39.0160i 0.301443 + 0.459012i
\(86\) 0 0
\(87\) −79.5155 156.058i −0.913971 1.79377i
\(88\) 0 0
\(89\) −19.5716 + 6.35919i −0.219905 + 0.0714516i −0.416898 0.908953i \(-0.636883\pi\)
0.196992 + 0.980405i \(0.436883\pi\)
\(90\) 0 0
\(91\) −12.6414 + 38.9063i −0.138917 + 0.427542i
\(92\) 0 0
\(93\) 152.377 + 152.377i 1.63846 + 1.63846i
\(94\) 0 0
\(95\) −123.970 25.6872i −1.30495 0.270392i
\(96\) 0 0
\(97\) −23.4342 + 147.957i −0.241589 + 1.52533i 0.506793 + 0.862068i \(0.330831\pi\)
−0.748383 + 0.663267i \(0.769169\pi\)
\(98\) 0 0
\(99\) 1.82056i 0.0183895i
\(100\) 0 0
\(101\) −48.4125 −0.479332 −0.239666 0.970855i \(-0.577038\pi\)
−0.239666 + 0.970855i \(0.577038\pi\)
\(102\) 0 0
\(103\) 120.042 + 19.0128i 1.16546 + 0.184590i 0.709035 0.705173i \(-0.249131\pi\)
0.456422 + 0.889763i \(0.349131\pi\)
\(104\) 0 0
\(105\) 123.643 + 70.5428i 1.17755 + 0.671836i
\(106\) 0 0
\(107\) −104.833 + 104.833i −0.979751 + 0.979751i −0.999799 0.0200477i \(-0.993618\pi\)
0.0200477 + 0.999799i \(0.493618\pi\)
\(108\) 0 0
\(109\) 136.885 + 44.4765i 1.25582 + 0.408041i 0.860004 0.510287i \(-0.170461\pi\)
0.395818 + 0.918329i \(0.370461\pi\)
\(110\) 0 0
\(111\) −47.3910 145.855i −0.426946 1.31401i
\(112\) 0 0
\(113\) 122.130 62.2282i 1.08079 0.550692i 0.179438 0.983769i \(-0.442572\pi\)
0.901357 + 0.433077i \(0.142572\pi\)
\(114\) 0 0
\(115\) 127.394 + 6.02175i 1.10777 + 0.0523631i
\(116\) 0 0
\(117\) −36.3326 + 5.75452i −0.310535 + 0.0491839i
\(118\) 0 0
\(119\) 39.6780 54.6121i 0.333428 0.458925i
\(120\) 0 0
\(121\) 97.8276 71.0759i 0.808493 0.587404i
\(122\) 0 0
\(123\) 34.3289 67.3744i 0.279097 0.547759i
\(124\) 0 0
\(125\) −119.462 36.7943i −0.955696 0.294355i
\(126\) 0 0
\(127\) 108.864 + 55.4692i 0.857200 + 0.436765i 0.826616 0.562767i \(-0.190263\pi\)
0.0305846 + 0.999532i \(0.490263\pi\)
\(128\) 0 0
\(129\) 77.1324 + 106.164i 0.597925 + 0.822974i
\(130\) 0 0
\(131\) 146.603 + 106.513i 1.11911 + 0.813079i 0.984073 0.177762i \(-0.0568859\pi\)
0.135033 + 0.990841i \(0.456886\pi\)
\(132\) 0 0
\(133\) 28.6421 + 180.839i 0.215354 + 1.35969i
\(134\) 0 0
\(135\) 2.32176 49.1184i 0.0171983 0.363840i
\(136\) 0 0
\(137\) 16.0731 + 31.5452i 0.117322 + 0.230257i 0.942198 0.335056i \(-0.108755\pi\)
−0.824876 + 0.565313i \(0.808755\pi\)
\(138\) 0 0
\(139\) 54.9774 17.8632i 0.395521 0.128513i −0.104502 0.994525i \(-0.533325\pi\)
0.500023 + 0.866012i \(0.333325\pi\)
\(140\) 0 0
\(141\) −22.9076 + 70.5024i −0.162465 + 0.500017i
\(142\) 0 0
\(143\) 1.12008 + 1.12008i 0.00783275 + 0.00783275i
\(144\) 0 0
\(145\) 110.222 193.191i 0.760154 1.33235i
\(146\) 0 0
\(147\) 2.02432 12.7810i 0.0137709 0.0869458i
\(148\) 0 0
\(149\) 241.873i 1.62331i −0.584140 0.811653i \(-0.698568\pi\)
0.584140 0.811653i \(-0.301432\pi\)
\(150\) 0 0
\(151\) 94.4994 0.625824 0.312912 0.949782i \(-0.398696\pi\)
0.312912 + 0.949782i \(0.398696\pi\)
\(152\) 0 0
\(153\) 59.9534 + 9.49568i 0.391852 + 0.0620633i
\(154\) 0 0
\(155\) −55.5238 + 267.966i −0.358218 + 1.72881i
\(156\) 0 0
\(157\) −187.357 + 187.357i −1.19336 + 1.19336i −0.217241 + 0.976118i \(0.569706\pi\)
−0.976118 + 0.217241i \(0.930294\pi\)
\(158\) 0 0
\(159\) −188.141 61.1308i −1.18328 0.384471i
\(160\) 0 0
\(161\) −56.9956 175.415i −0.354010 1.08953i
\(162\) 0 0
\(163\) −39.7438 + 20.2505i −0.243827 + 0.124236i −0.571634 0.820509i \(-0.693690\pi\)
0.327807 + 0.944745i \(0.393690\pi\)
\(164\) 0 0
\(165\) 4.60734 3.02574i 0.0279233 0.0183378i
\(166\) 0 0
\(167\) 234.821 37.1920i 1.40612 0.222707i 0.593184 0.805067i \(-0.297871\pi\)
0.812931 + 0.582360i \(0.197871\pi\)
\(168\) 0 0
\(169\) −80.5228 + 110.830i −0.476466 + 0.655800i
\(170\) 0 0
\(171\) −133.196 + 96.7728i −0.778926 + 0.565923i
\(172\) 0 0
\(173\) −126.827 + 248.913i −0.733107 + 1.43880i 0.159140 + 0.987256i \(0.449128\pi\)
−0.892247 + 0.451547i \(0.850872\pi\)
\(174\) 0 0
\(175\) 11.3113 + 180.419i 0.0646361 + 1.03097i
\(176\) 0 0
\(177\) −269.921 137.532i −1.52498 0.777014i
\(178\) 0 0
\(179\) −54.7109 75.3030i −0.305647 0.420687i 0.628370 0.777914i \(-0.283722\pi\)
−0.934018 + 0.357227i \(0.883722\pi\)
\(180\) 0 0
\(181\) 282.031 + 204.908i 1.55818 + 1.13209i 0.937479 + 0.348041i \(0.113153\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(182\) 0 0
\(183\) −64.0897 404.646i −0.350217 2.21118i
\(184\) 0 0
\(185\) 121.786 151.979i 0.658300 0.821508i
\(186\) 0 0
\(187\) −1.18667 2.32897i −0.00634582 0.0124544i
\(188\) 0 0
\(189\) −67.6333 + 21.9754i −0.357848 + 0.116272i
\(190\) 0 0
\(191\) 29.5335 90.8949i 0.154626 0.475890i −0.843497 0.537134i \(-0.819507\pi\)
0.998123 + 0.0612445i \(0.0195069\pi\)
\(192\) 0 0
\(193\) −45.2300 45.2300i −0.234352 0.234352i 0.580154 0.814507i \(-0.302992\pi\)
−0.814507 + 0.580154i \(0.802992\pi\)
\(194\) 0 0
\(195\) −74.9472 82.3840i −0.384345 0.422482i
\(196\) 0 0
\(197\) 20.3420 128.434i 0.103259 0.651950i −0.880716 0.473644i \(-0.842938\pi\)
0.983975 0.178306i \(-0.0570617\pi\)
\(198\) 0 0
\(199\) 165.880i 0.833568i 0.909006 + 0.416784i \(0.136843\pi\)
−0.909006 + 0.416784i \(0.863157\pi\)
\(200\) 0 0
\(201\) −119.572 −0.594884
\(202\) 0 0
\(203\) −317.705 50.3195i −1.56505 0.247879i
\(204\) 0 0
\(205\) 95.4470 10.5268i 0.465595 0.0513505i
\(206\) 0 0
\(207\) 117.275 117.275i 0.566548 0.566548i
\(208\) 0 0
\(209\) 6.74263 + 2.19081i 0.0322614 + 0.0104824i
\(210\) 0 0
\(211\) −34.9729 107.635i −0.165748 0.510121i 0.833342 0.552757i \(-0.186424\pi\)
−0.999091 + 0.0426364i \(0.986424\pi\)
\(212\) 0 0
\(213\) 79.8562 40.6888i 0.374912 0.191027i
\(214\) 0 0
\(215\) −58.9218 + 155.880i −0.274055 + 0.725025i
\(216\) 0 0
\(217\) 390.889 61.9107i 1.80133 0.285303i
\(218\) 0 0
\(219\) −24.4409 + 33.6400i −0.111602 + 0.153607i
\(220\) 0 0
\(221\) −42.7279 + 31.0436i −0.193339 + 0.140469i
\(222\) 0 0
\(223\) −76.8865 + 150.898i −0.344782 + 0.676674i −0.996661 0.0816497i \(-0.973981\pi\)
0.651879 + 0.758323i \(0.273981\pi\)
\(224\) 0 0
\(225\) −139.935 + 82.7162i −0.621935 + 0.367627i
\(226\) 0 0
\(227\) 354.121 + 180.434i 1.56001 + 0.794863i 0.999447 0.0332522i \(-0.0105864\pi\)
0.560559 + 0.828115i \(0.310586\pi\)
\(228\) 0 0
\(229\) 108.078 + 148.756i 0.471955 + 0.649590i 0.976934 0.213542i \(-0.0684999\pi\)
−0.504979 + 0.863131i \(0.668500\pi\)
\(230\) 0 0
\(231\) −6.44905 4.68551i −0.0279180 0.0202836i
\(232\) 0 0
\(233\) −45.9121 289.878i −0.197048 1.24411i −0.865711 0.500545i \(-0.833133\pi\)
0.668663 0.743566i \(-0.266867\pi\)
\(234\) 0 0
\(235\) −90.8056 + 24.8309i −0.386407 + 0.105663i
\(236\) 0 0
\(237\) −217.383 426.639i −0.917229 1.80016i
\(238\) 0 0
\(239\) 17.8751 5.80798i 0.0747913 0.0243012i −0.271382 0.962472i \(-0.587481\pi\)
0.346174 + 0.938170i \(0.387481\pi\)
\(240\) 0 0
\(241\) −107.483 + 330.799i −0.445989 + 1.37261i 0.435408 + 0.900233i \(0.356604\pi\)
−0.881396 + 0.472378i \(0.843396\pi\)
\(242\) 0 0
\(243\) −208.140 208.140i −0.856543 0.856543i
\(244\) 0 0
\(245\) 14.9779 6.76082i 0.0611344 0.0275952i
\(246\) 0 0
\(247\) 22.4092 141.486i 0.0907257 0.572819i
\(248\) 0 0
\(249\) 101.939i 0.409393i
\(250\) 0 0
\(251\) 358.291 1.42746 0.713728 0.700423i \(-0.247005\pi\)
0.713728 + 0.700423i \(0.247005\pi\)
\(252\) 0 0
\(253\) −7.05392 1.11723i −0.0278811 0.00441593i
\(254\) 0 0
\(255\) 75.6104 + 167.507i 0.296511 + 0.656892i
\(256\) 0 0
\(257\) −93.9152 + 93.9152i −0.365429 + 0.365429i −0.865807 0.500378i \(-0.833194\pi\)
0.500378 + 0.865807i \(0.333194\pi\)
\(258\) 0 0
\(259\) −267.867 87.0353i −1.03424 0.336044i
\(260\) 0 0
\(261\) −89.3818 275.089i −0.342459 1.05398i
\(262\) 0 0
\(263\) 32.3684 16.4925i 0.123074 0.0627092i −0.391370 0.920234i \(-0.627999\pi\)
0.514443 + 0.857524i \(0.327999\pi\)
\(264\) 0 0
\(265\) −66.2633 242.322i −0.250050 0.914423i
\(266\) 0 0
\(267\) −80.0269 + 12.6750i −0.299726 + 0.0474719i
\(268\) 0 0
\(269\) −126.562 + 174.198i −0.470491 + 0.647575i −0.976643 0.214869i \(-0.931068\pi\)
0.506152 + 0.862444i \(0.331068\pi\)
\(270\) 0 0
\(271\) −152.245 + 110.612i −0.561789 + 0.408164i −0.832113 0.554606i \(-0.812869\pi\)
0.270324 + 0.962769i \(0.412869\pi\)
\(272\) 0 0
\(273\) −73.1234 + 143.513i −0.267851 + 0.525688i
\(274\) 0 0
\(275\) 6.42351 + 2.78137i 0.0233582 + 0.0101141i
\(276\) 0 0
\(277\) −181.467 92.4618i −0.655114 0.333797i 0.0946423 0.995511i \(-0.469829\pi\)
−0.749756 + 0.661714i \(0.769829\pi\)
\(278\) 0 0
\(279\) 209.178 + 287.908i 0.749740 + 1.03193i
\(280\) 0 0
\(281\) −259.573 188.591i −0.923747 0.671142i 0.0207066 0.999786i \(-0.493408\pi\)
−0.944454 + 0.328644i \(0.893408\pi\)
\(282\) 0 0
\(283\) −16.3976 103.531i −0.0579422 0.365833i −0.999574 0.0291880i \(-0.990708\pi\)
0.941632 0.336645i \(-0.109292\pi\)
\(284\) 0 0
\(285\) −466.275 176.249i −1.63605 0.618418i
\(286\) 0 0
\(287\) −63.0463 123.735i −0.219673 0.431134i
\(288\) 0 0
\(289\) −191.970 + 62.3748i −0.664256 + 0.215830i
\(290\) 0 0
\(291\) −182.262 + 560.944i −0.626329 + 1.92764i
\(292\) 0 0
\(293\) −60.8637 60.8637i −0.207726 0.207726i 0.595574 0.803300i \(-0.296925\pi\)
−0.803300 + 0.595574i \(0.796925\pi\)
\(294\) 0 0
\(295\) −42.1736 382.388i −0.142961 1.29623i
\(296\) 0 0
\(297\) −0.430763 + 2.71973i −0.00145038 + 0.00915735i
\(298\) 0 0
\(299\) 144.305i 0.482626i
\(300\) 0 0
\(301\) 241.000 0.800665
\(302\) 0 0
\(303\) −188.267 29.8185i −0.621343 0.0984110i
\(304\) 0 0
\(305\) 384.847 350.107i 1.26179 1.14789i
\(306\) 0 0
\(307\) 382.682 382.682i 1.24652 1.24652i 0.289274 0.957246i \(-0.406586\pi\)
0.957246 0.289274i \(-0.0934137\pi\)
\(308\) 0 0
\(309\) 455.110 + 147.874i 1.47285 + 0.478557i
\(310\) 0 0
\(311\) −13.8868 42.7392i −0.0446521 0.137425i 0.926245 0.376922i \(-0.123018\pi\)
−0.970897 + 0.239497i \(0.923018\pi\)
\(312\) 0 0
\(313\) −2.01992 + 1.02920i −0.00645342 + 0.00328818i −0.457214 0.889357i \(-0.651153\pi\)
0.450761 + 0.892645i \(0.351153\pi\)
\(314\) 0 0
\(315\) 183.451 + 147.005i 0.582383 + 0.466682i
\(316\) 0 0
\(317\) 157.199 24.8979i 0.495896 0.0785422i 0.0965228 0.995331i \(-0.469228\pi\)
0.399373 + 0.916789i \(0.369228\pi\)
\(318\) 0 0
\(319\) −7.32106 + 10.0766i −0.0229500 + 0.0315880i
\(320\) 0 0
\(321\) −472.246 + 343.107i −1.47117 + 1.06887i
\(322\) 0 0
\(323\) −107.315 + 210.617i −0.332243 + 0.652064i
\(324\) 0 0
\(325\) 35.2036 136.984i 0.108319 0.421490i
\(326\) 0 0
\(327\) 504.923 + 257.271i 1.54411 + 0.786762i
\(328\) 0 0
\(329\) 80.0231 + 110.142i 0.243231 + 0.334779i
\(330\) 0 0
\(331\) 251.942 + 183.047i 0.761155 + 0.553011i 0.899264 0.437406i \(-0.144103\pi\)
−0.138110 + 0.990417i \(0.544103\pi\)
\(332\) 0 0
\(333\) −39.6194 250.147i −0.118977 0.751193i
\(334\) 0 0
\(335\) −83.3527 126.923i −0.248814 0.378874i
\(336\) 0 0
\(337\) 280.615 + 550.737i 0.832684 + 1.63423i 0.771605 + 0.636102i \(0.219454\pi\)
0.0610793 + 0.998133i \(0.480546\pi\)
\(338\) 0 0
\(339\) 513.267 166.770i 1.51406 0.491948i
\(340\) 0 0
\(341\) 4.73552 14.5744i 0.0138871 0.0427402i
\(342\) 0 0
\(343\) 233.735 + 233.735i 0.681443 + 0.681443i
\(344\) 0 0
\(345\) 491.702 + 101.883i 1.42522 + 0.295312i
\(346\) 0 0
\(347\) −60.4828 + 381.874i −0.174302 + 1.10050i 0.733064 + 0.680159i \(0.238089\pi\)
−0.907366 + 0.420341i \(0.861911\pi\)
\(348\) 0 0
\(349\) 324.359i 0.929396i −0.885469 0.464698i \(-0.846163\pi\)
0.885469 0.464698i \(-0.153837\pi\)
\(350\) 0 0
\(351\) 55.6388 0.158515
\(352\) 0 0
\(353\) −573.272 90.7973i −1.62400 0.257216i −0.722940 0.690911i \(-0.757210\pi\)
−0.901060 + 0.433695i \(0.857210\pi\)
\(354\) 0 0
\(355\) 98.8576 + 56.4017i 0.278472 + 0.158878i
\(356\) 0 0
\(357\) 187.937 187.937i 0.526434 0.526434i
\(358\) 0 0
\(359\) 348.589 + 113.264i 0.971001 + 0.315497i 0.751220 0.660052i \(-0.229466\pi\)
0.219781 + 0.975549i \(0.429466\pi\)
\(360\) 0 0
\(361\) −86.5680 266.429i −0.239801 0.738030i
\(362\) 0 0
\(363\) 424.210 216.146i 1.16862 0.595443i
\(364\) 0 0
\(365\) −52.7457 2.49322i −0.144509 0.00683074i
\(366\) 0 0
\(367\) −410.639 + 65.0389i −1.11891 + 0.177218i −0.688373 0.725357i \(-0.741675\pi\)
−0.430534 + 0.902574i \(0.641675\pi\)
\(368\) 0 0
\(369\) 73.3997 101.026i 0.198915 0.273783i
\(370\) 0 0
\(371\) −293.924 + 213.548i −0.792247 + 0.575601i
\(372\) 0 0
\(373\) 1.77772 3.48897i 0.00476600 0.00935381i −0.888611 0.458661i \(-0.848329\pi\)
0.893377 + 0.449307i \(0.148329\pi\)
\(374\) 0 0
\(375\) −441.902 216.666i −1.17841 0.577775i
\(376\) 0 0
\(377\) 224.237 + 114.255i 0.594794 + 0.303063i
\(378\) 0 0
\(379\) −155.189 213.599i −0.409470 0.563586i 0.553619 0.832770i \(-0.313246\pi\)
−0.963089 + 0.269183i \(0.913246\pi\)
\(380\) 0 0
\(381\) 389.188 + 282.761i 1.02149 + 0.742156i
\(382\) 0 0
\(383\) 78.4913 + 495.574i 0.204938 + 1.29393i 0.848770 + 0.528761i \(0.177343\pi\)
−0.643832 + 0.765167i \(0.722657\pi\)
\(384\) 0 0
\(385\) 0.477970 10.1118i 0.00124148 0.0262644i
\(386\) 0 0
\(387\) 98.3845 + 193.091i 0.254224 + 0.498942i
\(388\) 0 0
\(389\) 364.326 118.377i 0.936571 0.304310i 0.199324 0.979934i \(-0.436125\pi\)
0.737247 + 0.675623i \(0.236125\pi\)
\(390\) 0 0
\(391\) 73.5837 226.467i 0.188194 0.579201i
\(392\) 0 0
\(393\) 504.506 + 504.506i 1.28373 + 1.28373i
\(394\) 0 0
\(395\) 301.331 528.155i 0.762864 1.33710i
\(396\) 0 0
\(397\) −51.3528 + 324.229i −0.129352 + 0.816697i 0.834646 + 0.550787i \(0.185672\pi\)
−0.963998 + 0.265910i \(0.914328\pi\)
\(398\) 0 0
\(399\) 720.888i 1.80674i
\(400\) 0 0
\(401\) −54.4458 −0.135775 −0.0678875 0.997693i \(-0.521626\pi\)
−0.0678875 + 0.997693i \(0.521626\pi\)
\(402\) 0 0
\(403\) −305.827 48.4383i −0.758877 0.120194i
\(404\) 0 0
\(405\) 98.6487 476.094i 0.243577 1.17554i
\(406\) 0 0
\(407\) −7.71169 + 7.71169i −0.0189476 + 0.0189476i
\(408\) 0 0
\(409\) 149.018 + 48.4188i 0.364347 + 0.118383i 0.485468 0.874254i \(-0.338649\pi\)
−0.121122 + 0.992638i \(0.538649\pi\)
\(410\) 0 0
\(411\) 43.0756 + 132.573i 0.104807 + 0.322562i
\(412\) 0 0
\(413\) −495.719 + 252.581i −1.20029 + 0.611577i
\(414\) 0 0
\(415\) −108.206 + 71.0610i −0.260737 + 0.171231i
\(416\) 0 0
\(417\) 224.799 35.6046i 0.539086 0.0853828i
\(418\) 0 0
\(419\) 296.787 408.492i 0.708321 0.974920i −0.291510 0.956568i \(-0.594158\pi\)
0.999832 0.0183527i \(-0.00584217\pi\)
\(420\) 0 0
\(421\) −599.885 + 435.842i −1.42491 + 1.03525i −0.433969 + 0.900928i \(0.642887\pi\)
−0.990937 + 0.134327i \(0.957113\pi\)
\(422\) 0 0
\(423\) −55.5785 + 109.079i −0.131391 + 0.257870i
\(424\) 0 0
\(425\) −125.098 + 197.027i −0.294348 + 0.463594i
\(426\) 0 0
\(427\) −670.403 341.587i −1.57003 0.799970i
\(428\) 0 0
\(429\) 3.66590 + 5.04567i 0.00854521 + 0.0117615i
\(430\) 0 0
\(431\) −588.734 427.740i −1.36597 0.992437i −0.998040 0.0625850i \(-0.980066\pi\)
−0.367933 0.929852i \(-0.619934\pi\)
\(432\) 0 0
\(433\) −34.7237 219.237i −0.0801932 0.506320i −0.994789 0.101952i \(-0.967491\pi\)
0.914596 0.404369i \(-0.132509\pi\)
\(434\) 0 0
\(435\) 547.624 683.393i 1.25891 1.57102i
\(436\) 0 0
\(437\) 293.216 + 575.468i 0.670974 + 1.31686i
\(438\) 0 0
\(439\) −245.012 + 79.6092i −0.558113 + 0.181342i −0.574472 0.818524i \(-0.694793\pi\)
0.0163587 + 0.999866i \(0.494793\pi\)
\(440\) 0 0
\(441\) 6.60374 20.3242i 0.0149745 0.0460867i
\(442\) 0 0
\(443\) −60.0305 60.0305i −0.135509 0.135509i 0.636099 0.771608i \(-0.280547\pi\)
−0.771608 + 0.636099i \(0.780547\pi\)
\(444\) 0 0
\(445\) −69.2405 76.1111i −0.155597 0.171036i
\(446\) 0 0
\(447\) 148.976 940.596i 0.333279 2.10424i
\(448\) 0 0
\(449\) 142.467i 0.317299i 0.987335 + 0.158649i \(0.0507139\pi\)
−0.987335 + 0.158649i \(0.949286\pi\)
\(450\) 0 0
\(451\) −5.37730 −0.0119231
\(452\) 0 0
\(453\) 367.490 + 58.2046i 0.811235 + 0.128487i
\(454\) 0 0
\(455\) −203.310 + 22.4230i −0.446835 + 0.0492814i
\(456\) 0 0
\(457\) 265.053 265.053i 0.579986 0.579986i −0.354914 0.934899i \(-0.615490\pi\)
0.934899 + 0.354914i \(0.115490\pi\)
\(458\) 0 0
\(459\) −87.3175 28.3712i −0.190234 0.0618108i
\(460\) 0 0
\(461\) −221.105 680.490i −0.479620 1.47612i −0.839624 0.543167i \(-0.817225\pi\)
0.360005 0.932950i \(-0.382775\pi\)
\(462\) 0 0
\(463\) 520.235 265.073i 1.12362 0.572512i 0.209439 0.977822i \(-0.432836\pi\)
0.914179 + 0.405310i \(0.132836\pi\)
\(464\) 0 0
\(465\) −380.968 + 1007.87i −0.819287 + 2.16746i
\(466\) 0 0
\(467\) −826.139 + 130.848i −1.76903 + 0.280187i −0.954126 0.299404i \(-0.903212\pi\)
−0.814907 + 0.579591i \(0.803212\pi\)
\(468\) 0 0
\(469\) −129.076 + 177.658i −0.275216 + 0.378802i
\(470\) 0 0
\(471\) −843.995 + 613.198i −1.79192 + 1.30191i
\(472\) 0 0
\(473\) 4.23658 8.31476i 0.00895683 0.0175788i
\(474\) 0 0
\(475\) −137.953 617.804i −0.290428 1.30064i
\(476\) 0 0
\(477\) −291.086 148.316i −0.610243 0.310934i
\(478\) 0 0
\(479\) −229.058 315.271i −0.478201 0.658187i 0.499957 0.866050i \(-0.333349\pi\)
−0.978158 + 0.207863i \(0.933349\pi\)
\(480\) 0 0
\(481\) 178.276 + 129.525i 0.370637 + 0.269283i
\(482\) 0 0
\(483\) −113.602 717.258i −0.235202 1.48501i
\(484\) 0 0
\(485\) −722.484 + 197.564i −1.48966 + 0.407349i
\(486\) 0 0
\(487\) 81.6474 + 160.242i 0.167654 + 0.329039i 0.959513 0.281665i \(-0.0908866\pi\)
−0.791859 + 0.610704i \(0.790887\pi\)
\(488\) 0 0
\(489\) −167.029 + 54.2709i −0.341572 + 0.110983i
\(490\) 0 0
\(491\) 147.768 454.783i 0.300953 0.926239i −0.680203 0.733024i \(-0.738108\pi\)
0.981156 0.193215i \(-0.0618916\pi\)
\(492\) 0 0
\(493\) −293.649 293.649i −0.595638 0.595638i
\(494\) 0 0
\(495\) 8.29673 3.74502i 0.0167611 0.00756571i
\(496\) 0 0
\(497\) 25.7489 162.572i 0.0518087 0.327107i
\(498\) 0 0
\(499\) 112.565i 0.225581i −0.993619 0.112791i \(-0.964021\pi\)
0.993619 0.112791i \(-0.0359789\pi\)
\(500\) 0 0
\(501\) 936.082 1.86843
\(502\) 0 0
\(503\) −211.275 33.4627i −0.420031 0.0665263i −0.0571582 0.998365i \(-0.518204\pi\)
−0.362872 + 0.931839i \(0.618204\pi\)
\(504\) 0 0
\(505\) −99.5880 220.628i −0.197204 0.436886i
\(506\) 0 0
\(507\) −381.401 + 381.401i −0.752270 + 0.752270i
\(508\) 0 0
\(509\) 295.169 + 95.9061i 0.579899 + 0.188421i 0.584255 0.811570i \(-0.301387\pi\)
−0.00435637 + 0.999991i \(0.501387\pi\)
\(510\) 0 0
\(511\) 23.5982 + 72.6278i 0.0461805 + 0.142129i
\(512\) 0 0
\(513\) 221.879 113.053i 0.432513 0.220376i
\(514\) 0 0
\(515\) 160.289 + 586.172i 0.311241 + 1.13820i
\(516\) 0 0
\(517\) 5.20677 0.824671i 0.0100711 0.00159511i
\(518\) 0 0
\(519\) −646.519 + 889.858i −1.24570 + 1.71456i
\(520\) 0 0
\(521\) 399.823 290.488i 0.767414 0.557559i −0.133761 0.991014i \(-0.542706\pi\)
0.901175 + 0.433455i \(0.142706\pi\)
\(522\) 0 0
\(523\) 34.6555 68.0152i 0.0662628 0.130048i −0.855499 0.517804i \(-0.826750\pi\)
0.921762 + 0.387756i \(0.126750\pi\)
\(524\) 0 0
\(525\) −67.1376 + 708.583i −0.127881 + 1.34968i
\(526\) 0 0
\(527\) 455.255 + 231.964i 0.863861 + 0.440159i
\(528\) 0 0
\(529\) −71.4868 98.3931i −0.135136 0.185998i
\(530\) 0 0
\(531\) −404.739 294.060i −0.762221 0.553786i
\(532\) 0 0
\(533\) 16.9968 + 107.314i 0.0318890 + 0.201339i
\(534\) 0 0
\(535\) −693.401 262.101i −1.29608 0.489909i
\(536\) 0 0
\(537\) −166.379 326.537i −0.309830 0.608076i
\(538\) 0 0
\(539\) −0.875191 + 0.284367i −0.00162373 + 0.000527582i
\(540\) 0 0
\(541\) −111.558 + 343.339i −0.206207 + 0.634639i 0.793455 + 0.608629i \(0.208280\pi\)
−0.999662 + 0.0260098i \(0.991720\pi\)
\(542\) 0 0
\(543\) 970.556 + 970.556i 1.78740 + 1.78740i
\(544\) 0 0
\(545\) 78.8913 + 715.308i 0.144755 + 1.31249i
\(546\) 0 0
\(547\) 80.2610 506.748i 0.146729 0.926413i −0.798970 0.601371i \(-0.794621\pi\)
0.945699 0.325042i \(-0.105379\pi\)
\(548\) 0 0
\(549\) 676.578i 1.23238i
\(550\) 0 0
\(551\) 1126.38 2.04425
\(552\) 0 0
\(553\) −868.557 137.566i −1.57063 0.248763i
\(554\) 0 0
\(555\) 567.208 516.006i 1.02200 0.929741i
\(556\) 0 0
\(557\) 633.877 633.877i 1.13802 1.13802i 0.149215 0.988805i \(-0.452325\pi\)
0.988805 0.149215i \(-0.0476747\pi\)
\(558\) 0 0
\(559\) −179.327 58.2670i −0.320800 0.104234i
\(560\) 0 0
\(561\) −3.18025 9.78780i −0.00566889 0.0174471i
\(562\) 0 0
\(563\) −554.252 + 282.405i −0.984462 + 0.501608i −0.870655 0.491895i \(-0.836305\pi\)
−0.113807 + 0.993503i \(0.536305\pi\)
\(564\) 0 0
\(565\) 534.819 + 428.567i 0.946582 + 0.758526i
\(566\) 0 0
\(567\) −694.490 + 109.996i −1.22485 + 0.193997i
\(568\) 0 0
\(569\) 448.044 616.680i 0.787423 1.08380i −0.207001 0.978341i \(-0.566370\pi\)
0.994424 0.105455i \(-0.0336297\pi\)
\(570\) 0 0
\(571\) 104.927 76.2337i 0.183760 0.133509i −0.492103 0.870537i \(-0.663771\pi\)
0.675862 + 0.737028i \(0.263771\pi\)
\(572\) 0 0
\(573\) 170.835 335.282i 0.298141 0.585135i
\(574\) 0 0
\(575\) 234.616 + 592.953i 0.408028 + 1.03122i
\(576\) 0 0
\(577\) −667.653 340.186i −1.15711 0.589578i −0.233292 0.972407i \(-0.574950\pi\)
−0.923819 + 0.382829i \(0.874950\pi\)
\(578\) 0 0
\(579\) −148.032 203.749i −0.255669 0.351898i
\(580\) 0 0
\(581\) 151.459 + 110.042i 0.260688 + 0.189401i
\(582\) 0 0
\(583\) 2.20070 + 13.8947i 0.00377479 + 0.0238331i
\(584\) 0 0
\(585\) −100.964 153.739i −0.172587 0.262802i
\(586\) 0 0
\(587\) 207.881 + 407.988i 0.354141 + 0.695040i 0.997511 0.0705153i \(-0.0224644\pi\)
−0.643370 + 0.765555i \(0.722464\pi\)
\(588\) 0 0
\(589\) −1318.02 + 428.250i −2.23772 + 0.727079i
\(590\) 0 0
\(591\) 158.212 486.926i 0.267702 0.823902i
\(592\) 0 0
\(593\) −142.290 142.290i −0.239950 0.239950i 0.576879 0.816829i \(-0.304270\pi\)
−0.816829 + 0.576879i \(0.804270\pi\)
\(594\) 0 0
\(595\) 330.501 + 68.4812i 0.555464 + 0.115094i
\(596\) 0 0
\(597\) −102.170 + 645.075i −0.171139 + 1.08053i
\(598\) 0 0
\(599\) 123.484i 0.206150i 0.994674 + 0.103075i \(0.0328682\pi\)
−0.994674 + 0.103075i \(0.967132\pi\)
\(600\) 0 0
\(601\) 512.898 0.853407 0.426704 0.904392i \(-0.359675\pi\)
0.426704 + 0.904392i \(0.359675\pi\)
\(602\) 0 0
\(603\) −195.034 30.8903i −0.323439 0.0512278i
\(604\) 0 0
\(605\) 525.149 + 299.616i 0.868014 + 0.495233i
\(606\) 0 0
\(607\) 164.317 164.317i 0.270703 0.270703i −0.558680 0.829383i \(-0.688692\pi\)
0.829383 + 0.558680i \(0.188692\pi\)
\(608\) 0 0
\(609\) −1204.50 391.365i −1.97783 0.642636i
\(610\) 0 0
\(611\) −32.9156 101.304i −0.0538717 0.165800i
\(612\) 0 0
\(613\) 794.593 404.865i 1.29624 0.660465i 0.336583 0.941654i \(-0.390729\pi\)
0.959653 + 0.281189i \(0.0907286\pi\)
\(614\) 0 0
\(615\) 377.658 + 17.8514i 0.614079 + 0.0290267i
\(616\) 0 0
\(617\) 430.183 68.1342i 0.697217 0.110428i 0.202242 0.979336i \(-0.435177\pi\)
0.494975 + 0.868907i \(0.335177\pi\)
\(618\) 0 0
\(619\) 446.704 614.835i 0.721654 0.993271i −0.277813 0.960635i \(-0.589610\pi\)
0.999467 0.0326364i \(-0.0103903\pi\)
\(620\) 0 0
\(621\) −202.946 + 147.449i −0.326805 + 0.237438i
\(622\) 0 0
\(623\) −67.5557 + 132.585i −0.108436 + 0.212818i
\(624\) 0 0
\(625\) −78.0613 620.106i −0.124898 0.992170i
\(626\) 0 0
\(627\) 24.8714 + 12.6726i 0.0396673 + 0.0202115i
\(628\) 0 0
\(629\) −213.733 294.178i −0.339798 0.467692i
\(630\) 0 0
\(631\) −496.536 360.754i −0.786903 0.571719i 0.120140 0.992757i \(-0.461666\pi\)
−0.907043 + 0.421038i \(0.861666\pi\)
\(632\) 0 0
\(633\) −69.7072 440.114i −0.110122 0.695283i
\(634\) 0 0
\(635\) −28.8446 + 610.226i −0.0454245 + 0.960985i
\(636\) 0 0
\(637\) 8.44140 + 16.5672i 0.0132518 + 0.0260081i
\(638\) 0 0
\(639\) 140.765 45.7375i 0.220290 0.0715767i
\(640\) 0 0
\(641\) 8.01015 24.6527i 0.0124963 0.0384598i −0.944614 0.328184i \(-0.893563\pi\)
0.957110 + 0.289724i \(0.0935635\pi\)
\(642\) 0 0
\(643\) 307.458 + 307.458i 0.478162 + 0.478162i 0.904543 0.426381i \(-0.140212\pi\)
−0.426381 + 0.904543i \(0.640212\pi\)
\(644\) 0 0
\(645\) −325.146 + 569.897i −0.504103 + 0.883561i
\(646\) 0 0
\(647\) −25.5238 + 161.151i −0.0394494 + 0.249074i −0.999530 0.0306491i \(-0.990243\pi\)
0.960081 + 0.279723i \(0.0902426\pi\)
\(648\) 0 0
\(649\) 21.5430i 0.0331941i
\(650\) 0 0
\(651\) 1558.22 2.39358
\(652\) 0 0
\(653\) −181.554 28.7553i −0.278030 0.0440357i 0.0158620 0.999874i \(-0.494951\pi\)
−0.293892 + 0.955838i \(0.594951\pi\)
\(654\) 0 0
\(655\) −183.834 + 887.211i −0.280663 + 1.35452i
\(656\) 0 0
\(657\) −48.5562 + 48.5562i −0.0739060 + 0.0739060i
\(658\) 0 0
\(659\) 308.361 + 100.193i 0.467923 + 0.152038i 0.533482 0.845811i \(-0.320883\pi\)
−0.0655590 + 0.997849i \(0.520883\pi\)
\(660\) 0 0
\(661\) −121.643 374.378i −0.184028 0.566381i 0.815902 0.578190i \(-0.196241\pi\)
−0.999930 + 0.0118092i \(0.996241\pi\)
\(662\) 0 0
\(663\) −185.281 + 94.4054i −0.279459 + 0.142391i
\(664\) 0 0
\(665\) −765.207 + 502.527i −1.15069 + 0.755680i
\(666\) 0 0
\(667\) −1120.71 + 177.503i −1.68022 + 0.266121i
\(668\) 0 0
\(669\) −391.939 + 539.457i −0.585857 + 0.806364i
\(670\) 0 0
\(671\) −23.5702 + 17.1248i −0.0351270 + 0.0255213i
\(672\) 0 0
\(673\) −208.434 + 409.074i −0.309708 + 0.607837i −0.992426 0.122846i \(-0.960798\pi\)
0.682718 + 0.730682i \(0.260798\pi\)
\(674\) 0 0
\(675\) 228.621 90.4594i 0.338697 0.134014i
\(676\) 0 0
\(677\) −49.8554 25.4026i −0.0736417 0.0375223i 0.416782 0.909007i \(-0.363158\pi\)
−0.490424 + 0.871484i \(0.663158\pi\)
\(678\) 0 0
\(679\) 636.694 + 876.335i 0.937694 + 1.29063i
\(680\) 0 0
\(681\) 1265.97 + 919.784i 1.85899 + 1.35064i
\(682\) 0 0
\(683\) 0.429989 + 2.71484i 0.000629559 + 0.00397488i 0.988001 0.154447i \(-0.0493595\pi\)
−0.987372 + 0.158422i \(0.949359\pi\)
\(684\) 0 0
\(685\) −110.696 + 138.140i −0.161599 + 0.201664i
\(686\) 0 0
\(687\) 328.670 + 645.051i 0.478413 + 0.938939i
\(688\) 0 0
\(689\) 270.338 87.8380i 0.392362 0.127486i
\(690\) 0 0
\(691\) 41.5358 127.834i 0.0601097 0.184999i −0.916493 0.400051i \(-0.868992\pi\)
0.976602 + 0.215053i \(0.0689923\pi\)
\(692\) 0 0
\(693\) −9.30862 9.30862i −0.0134324 0.0134324i
\(694\) 0 0
\(695\) 194.500 + 213.799i 0.279855 + 0.307625i
\(696\) 0 0
\(697\) 28.0469 177.081i 0.0402395 0.254062i
\(698\) 0 0
\(699\) 1155.56i 1.65316i
\(700\) 0 0
\(701\) −264.123 −0.376780 −0.188390 0.982094i \(-0.560327\pi\)
−0.188390 + 0.982094i \(0.560327\pi\)
\(702\) 0 0
\(703\) 974.124 + 154.286i 1.38567 + 0.219468i
\(704\) 0 0
\(705\) −368.419 + 40.6330i −0.522580 + 0.0576354i
\(706\) 0 0
\(707\) −247.536 + 247.536i −0.350121 + 0.350121i
\(708\) 0 0
\(709\) −854.165 277.535i −1.20475 0.391446i −0.363242 0.931695i \(-0.618330\pi\)
−0.841505 + 0.540249i \(0.818330\pi\)
\(710\) 0 0
\(711\) −244.357 752.052i −0.343680 1.05774i
\(712\) 0 0
\(713\) 1243.89 633.795i 1.74459 0.888913i
\(714\) 0 0
\(715\) −2.80040 + 7.40858i −0.00391664 + 0.0103617i
\(716\) 0 0
\(717\) 73.0902 11.5763i 0.101939 0.0161455i
\(718\) 0 0
\(719\) 719.629 990.484i 1.00087 1.37759i 0.0760877 0.997101i \(-0.475757\pi\)
0.924787 0.380485i \(-0.124243\pi\)
\(720\) 0 0
\(721\) 710.995 516.568i 0.986124 0.716461i
\(722\) 0 0
\(723\) −621.729 + 1220.21i −0.859930 + 1.68771i
\(724\) 0 0
\(725\) 1107.15 + 104.902i 1.52711 + 0.144692i
\(726\) 0 0
\(727\) −597.726 304.557i −0.822182 0.418923i −0.00830916 0.999965i \(-0.502645\pi\)
−0.813873 + 0.581043i \(0.802645\pi\)
\(728\) 0 0
\(729\) −166.804 229.586i −0.228812 0.314932i
\(730\) 0 0
\(731\) 251.718 + 182.884i 0.344348 + 0.250184i
\(732\) 0 0
\(733\) 23.5240 + 148.525i 0.0320928 + 0.202626i 0.998525 0.0542964i \(-0.0172916\pi\)
−0.966432 + 0.256922i \(0.917292\pi\)
\(734\) 0 0
\(735\) 62.4104 17.0662i 0.0849121 0.0232193i
\(736\) 0 0
\(737\) 3.86034 + 7.57635i 0.00523791 + 0.0102800i
\(738\) 0 0
\(739\) 62.7595 20.3918i 0.0849249 0.0275938i −0.266246 0.963905i \(-0.585783\pi\)
0.351171 + 0.936311i \(0.385783\pi\)
\(740\) 0 0
\(741\) 174.290 536.411i 0.235210 0.723901i
\(742\) 0 0
\(743\) 425.112 + 425.112i 0.572156 + 0.572156i 0.932730 0.360574i \(-0.117419\pi\)
−0.360574 + 0.932730i \(0.617419\pi\)
\(744\) 0 0
\(745\) 1102.27 497.550i 1.47956 0.667852i
\(746\) 0 0
\(747\) −26.3351 + 166.273i −0.0352544 + 0.222588i
\(748\) 0 0
\(749\) 1072.04i 1.43129i
\(750\) 0 0
\(751\) −903.975 −1.20370 −0.601848 0.798611i \(-0.705569\pi\)
−0.601848 + 0.798611i \(0.705569\pi\)
\(752\) 0 0
\(753\) 1393.33 + 220.681i 1.85037 + 0.293069i
\(754\) 0 0
\(755\) 194.392 + 430.656i 0.257473 + 0.570406i
\(756\) 0 0
\(757\) 334.979 334.979i 0.442508 0.442508i −0.450346 0.892854i \(-0.648699\pi\)
0.892854 + 0.450346i \(0.148699\pi\)
\(758\) 0 0
\(759\) −26.7432 8.68939i −0.0352348 0.0114485i
\(760\) 0 0
\(761\) 43.3702 + 133.480i 0.0569911 + 0.175401i 0.975500 0.220000i \(-0.0706058\pi\)
−0.918509 + 0.395401i \(0.870606\pi\)
\(762\) 0 0
\(763\) 927.309 472.488i 1.21535 0.619250i
\(764\) 0 0
\(765\) 80.0543 + 292.755i 0.104646 + 0.382687i
\(766\) 0 0
\(767\) 429.930 68.0942i 0.560534 0.0887799i
\(768\) 0 0
\(769\) 52.0992 71.7085i 0.0677493 0.0932490i −0.773798 0.633433i \(-0.781645\pi\)
0.841547 + 0.540184i \(0.181645\pi\)
\(770\) 0 0
\(771\) −423.063 + 307.373i −0.548719 + 0.398668i
\(772\) 0 0
\(773\) 431.889 847.630i 0.558718 1.09655i −0.422986 0.906136i \(-0.639018\pi\)
0.981705 0.190410i \(-0.0609818\pi\)
\(774\) 0 0
\(775\) −1335.40 + 298.190i −1.72310 + 0.384762i
\(776\) 0 0
\(777\) −988.075 503.450i −1.27165 0.647940i
\(778\) 0 0
\(779\) 285.833 + 393.416i 0.366923 + 0.505026i
\(780\) 0 0
\(781\) −5.15628 3.74625i −0.00660215 0.00479674i
\(782\) 0 0
\(783\) 68.4385 + 432.103i 0.0874055 + 0.551856i
\(784\) 0 0
\(785\) −1239.24 468.425i −1.57865 0.596720i
\(786\) 0 0
\(787\) 146.845 + 288.200i 0.186589 + 0.366201i 0.965284 0.261201i \(-0.0841185\pi\)
−0.778696 + 0.627401i \(0.784119\pi\)
\(788\) 0 0
\(789\) 136.033 44.1997i 0.172411 0.0560198i
\(790\) 0 0
\(791\) 306.280 942.632i 0.387206 1.19170i
\(792\) 0 0
\(793\) 416.258 + 416.258i 0.524916 + 0.524916i
\(794\) 0 0
\(795\) −108.432 983.156i −0.136393 1.23667i
\(796\) 0 0
\(797\) −132.525 + 836.730i −0.166280 + 1.04985i 0.753510 + 0.657437i \(0.228359\pi\)
−0.919789 + 0.392412i \(0.871641\pi\)
\(798\) 0 0
\(799\) 175.767i 0.219984i
\(800\) 0 0
\(801\) −133.807 −0.167050
\(802\) 0 0
\(803\) 2.92057 + 0.462574i 0.00363708 + 0.000576057i
\(804\) 0 0
\(805\) 682.162 620.583i 0.847406 0.770911i
\(806\) 0 0
\(807\) −599.468 + 599.468i −0.742835 + 0.742835i
\(808\) 0 0
\(809\) −209.176 67.9655i −0.258561 0.0840117i 0.176868 0.984235i \(-0.443403\pi\)
−0.435429 + 0.900223i \(0.643403\pi\)
\(810\) 0 0
\(811\) −77.6057 238.846i −0.0956913 0.294508i 0.891742 0.452544i \(-0.149484\pi\)
−0.987433 + 0.158037i \(0.949484\pi\)
\(812\) 0 0
\(813\) −660.180 + 336.378i −0.812029 + 0.413750i
\(814\) 0 0
\(815\) −174.042 139.465i −0.213549 0.171123i
\(816\) 0 0
\(817\) −833.524 + 132.017i −1.02023 + 0.161588i
\(818\) 0 0
\(819\) −156.347 + 215.194i −0.190900 + 0.262752i
\(820\) 0 0
\(821\) −1005.92 + 730.846i −1.22524 + 0.890190i −0.996524 0.0833033i \(-0.973453\pi\)
−0.228717 + 0.973493i \(0.573453\pi\)
\(822\) 0 0
\(823\) 58.3047 114.429i 0.0708442 0.139039i −0.852868 0.522126i \(-0.825139\pi\)
0.923712 + 0.383087i \(0.125139\pi\)
\(824\) 0 0
\(825\) 23.2666 + 14.7726i 0.0282020 + 0.0179062i
\(826\) 0 0
\(827\) 611.364 + 311.506i 0.739255 + 0.376669i 0.782710 0.622386i \(-0.213837\pi\)
−0.0434552 + 0.999055i \(0.513837\pi\)
\(828\) 0 0
\(829\) −722.996 995.118i −0.872130 1.20038i −0.978539 0.206061i \(-0.933935\pi\)
0.106409 0.994322i \(-0.466065\pi\)
\(830\) 0 0
\(831\) −648.738 471.336i −0.780672 0.567191i
\(832\) 0 0
\(833\) −4.79974 30.3044i −0.00576199 0.0363798i
\(834\) 0 0
\(835\) 652.537 + 993.631i 0.781482 + 1.18998i
\(836\) 0 0
\(837\) −244.368 479.599i −0.291957 0.572998i
\(838\) 0 0
\(839\) 358.353 116.436i 0.427120 0.138780i −0.0875656 0.996159i \(-0.527909\pi\)
0.514685 + 0.857379i \(0.327909\pi\)
\(840\) 0 0
\(841\) −351.621 + 1082.18i −0.418099 + 1.28678i
\(842\) 0 0
\(843\) −893.271 893.271i −1.05963 1.05963i
\(844\) 0 0
\(845\) −670.721 138.976i −0.793753 0.164469i
\(846\) 0 0
\(847\) 136.783 863.613i 0.161491 1.01961i
\(848\) 0 0
\(849\) 412.710i 0.486113i
\(850\) 0 0
\(851\) −993.531 −1.16749
\(852\) 0 0
\(853\) 30.6258 + 4.85064i 0.0359036 + 0.00568657i 0.174360 0.984682i \(-0.444214\pi\)
−0.138457 + 0.990368i \(0.544214\pi\)
\(854\) 0 0
\(855\) −715.012 407.939i −0.836271 0.477122i
\(856\) 0 0
\(857\) −530.847 + 530.847i −0.619424 + 0.619424i −0.945384 0.325959i \(-0.894313\pi\)
0.325959 + 0.945384i \(0.394313\pi\)
\(858\) 0 0
\(859\) 1220.02 + 396.408i 1.42028 + 0.461476i 0.915691 0.401884i \(-0.131645\pi\)
0.504588 + 0.863360i \(0.331645\pi\)
\(860\) 0 0
\(861\) −168.963 520.014i −0.196240 0.603966i
\(862\) 0 0
\(863\) −583.573 + 297.345i −0.676214 + 0.344548i −0.758142 0.652090i \(-0.773892\pi\)
0.0819275 + 0.996638i \(0.473892\pi\)
\(864\) 0 0
\(865\) −1395.25 65.9516i −1.61301 0.0762447i
\(866\) 0 0
\(867\) −784.952 + 124.324i −0.905366 + 0.143396i
\(868\) 0 0
\(869\) −20.0147 + 27.5479i −0.0230319 + 0.0317006i
\(870\) 0 0
\(871\) 138.998 100.988i 0.159584 0.115945i
\(872\) 0 0
\(873\) −442.203 + 867.873i −0.506533 + 0.994127i
\(874\) 0 0
\(875\) −798.947 + 422.684i −0.913082 + 0.483068i
\(876\) 0 0
\(877\) −99.6739 50.7864i −0.113653 0.0579092i 0.396240 0.918147i \(-0.370315\pi\)
−0.509893 + 0.860238i \(0.670315\pi\)
\(878\) 0 0
\(879\) −199.199 274.174i −0.226620 0.311916i
\(880\) 0 0
\(881\) −1204.60 875.195i −1.36731 0.993411i −0.997942 0.0641289i \(-0.979573\pi\)
−0.369371 0.929282i \(-0.620427\pi\)
\(882\) 0 0
\(883\) 162.958 + 1028.88i 0.184551 + 1.16521i 0.889834 + 0.456283i \(0.150820\pi\)
−0.705284 + 0.708925i \(0.749180\pi\)
\(884\) 0 0
\(885\) 71.5178 1513.01i 0.0808111 1.70961i
\(886\) 0 0
\(887\) −83.4425 163.765i −0.0940727 0.184628i 0.839175 0.543861i \(-0.183038\pi\)
−0.933248 + 0.359233i \(0.883038\pi\)
\(888\) 0 0
\(889\) 840.247 273.013i 0.945159 0.307101i
\(890\) 0 0
\(891\) −8.41357 + 25.8943i −0.00944283 + 0.0290621i
\(892\) 0 0
\(893\) −337.103 337.103i −0.377495 0.377495i
\(894\) 0 0
\(895\) 230.630 404.234i 0.257687 0.451659i
\(896\) 0 0
\(897\) −88.8814 + 561.175i −0.0990874 + 0.625613i
\(898\) 0 0
\(899\) 2434.71i 2.70824i
\(900\) 0 0
\(901\) −469.048 −0.520586
\(902\) 0 0
\(903\) 937.202 + 148.438i 1.03788 + 0.164383i
\(904\) 0 0
\(905\) −353.655 + 1706.79i −0.390779 + 1.88596i
\(906\) 0 0
\(907\) −1195.59 + 1195.59i −1.31818 + 1.31818i −0.402959 + 0.915218i \(0.632018\pi\)
−0.915218 + 0.402959i \(0.867982\pi\)
\(908\) 0 0
\(909\) −299.380 97.2743i −0.329350 0.107012i
\(910\) 0 0
\(911\) −461.192 1419.40i −0.506248 1.55807i −0.798662 0.601780i \(-0.794458\pi\)
0.292414 0.956292i \(-0.405542\pi\)
\(912\) 0 0
\(913\) 6.45909 3.29107i 0.00707458 0.00360468i
\(914\) 0 0
\(915\) 1712.23 1124.46i 1.87129 1.22892i
\(916\) 0 0
\(917\) 1294.20 204.981i 1.41134 0.223534i
\(918\) 0 0
\(919\) −812.353 + 1118.11i −0.883953 + 1.21666i 0.0913577 + 0.995818i \(0.470879\pi\)
−0.975310 + 0.220838i \(0.929121\pi\)
\(920\) 0 0
\(921\) 1723.88 1252.47i 1.87175 1.35990i
\(922\) 0 0
\(923\) −58.4651 + 114.744i −0.0633425 + 0.124317i
\(924\) 0 0
\(925\) 943.127 + 242.374i 1.01960 + 0.262026i
\(926\) 0 0
\(927\) 704.130 + 358.772i 0.759579 + 0.387025i
\(928\) 0 0
\(929\) −47.2332 65.0109i −0.0508431 0.0699795i 0.782838 0.622225i \(-0.213771\pi\)
−0.833682 + 0.552246i \(0.813771\pi\)
\(930\) 0 0
\(931\) 67.3261 + 48.9153i 0.0723159 + 0.0525406i
\(932\) 0 0
\(933\) −27.6789 174.758i −0.0296665 0.187307i
\(934\) 0 0
\(935\) 8.17260 10.1988i 0.00874075 0.0109078i
\(936\) 0 0
\(937\) −677.385 1329.44i −0.722930 1.41883i −0.900560 0.434732i \(-0.856843\pi\)
0.177630 0.984097i \(-0.443157\pi\)
\(938\) 0 0
\(939\) −8.48898 + 2.75824i −0.00904045 + 0.00293742i
\(940\) 0 0
\(941\) −156.957 + 483.065i −0.166798 + 0.513353i −0.999164 0.0408737i \(-0.986986\pi\)
0.832366 + 0.554227i \(0.186986\pi\)
\(942\) 0 0
\(943\) −346.391 346.391i −0.367329 0.367329i
\(944\) 0 0
\(945\) −239.274 263.017i −0.253200 0.278324i
\(946\) 0 0
\(947\) −4.90723 + 30.9831i −0.00518187 + 0.0327171i −0.990144 0.140054i \(-0.955272\pi\)
0.984962 + 0.172772i \(0.0552722\pi\)
\(948\) 0 0
\(949\) 59.7475i 0.0629584i
\(950\) 0 0
\(951\) 626.651 0.658939
\(952\) 0 0
\(953\) −907.936 143.803i −0.952714 0.150895i −0.339319 0.940671i \(-0.610197\pi\)
−0.613395 + 0.789776i \(0.710197\pi\)
\(954\) 0 0
\(955\) 474.983 52.3859i 0.497364 0.0548543i
\(956\) 0 0
\(957\) −34.6766 + 34.6766i −0.0362347 + 0.0362347i
\(958\) 0 0
\(959\) 243.475 + 79.1098i 0.253884 + 0.0824919i
\(960\) 0 0
\(961\) 628.710 + 1934.97i 0.654225 + 2.01350i
\(962\) 0 0
\(963\) −858.922 + 437.643i −0.891923 + 0.454458i
\(964\) 0 0
\(965\) 113.083 299.165i 0.117184 0.310016i
\(966\) 0 0
\(967\) 714.279 113.131i 0.738654 0.116991i 0.224241 0.974534i \(-0.428010\pi\)
0.514413 + 0.857542i \(0.328010\pi\)
\(968\) 0 0
\(969\) −547.050 + 752.950i −0.564551 + 0.777038i
\(970\) 0 0
\(971\) −1077.34 + 782.736i −1.10952 + 0.806113i −0.982588 0.185798i \(-0.940513\pi\)
−0.126932 + 0.991911i \(0.540513\pi\)
\(972\) 0 0
\(973\) 189.767 372.438i 0.195033 0.382773i
\(974\) 0 0
\(975\) 221.272 511.022i 0.226946 0.524126i
\(976\) 0 0
\(977\) 812.379 + 413.928i 0.831503 + 0.423672i 0.817290 0.576227i \(-0.195476\pi\)
0.0142134 + 0.999899i \(0.495476\pi\)
\(978\) 0 0
\(979\) 3.38677 + 4.66148i 0.00345941 + 0.00476147i
\(980\) 0 0
\(981\) 757.119 + 550.079i 0.771783 + 0.560733i
\(982\) 0 0
\(983\) −166.604 1051.90i −0.169485 1.07009i −0.914957 0.403551i \(-0.867776\pi\)
0.745472 0.666537i \(-0.232224\pi\)
\(984\) 0 0
\(985\) 627.150 171.495i 0.636701 0.174107i
\(986\) 0 0
\(987\) 243.355 + 477.611i 0.246560 + 0.483901i
\(988\) 0 0
\(989\) 808.522 262.705i 0.817515 0.265627i
\(990\) 0 0
\(991\) −45.3053 + 139.435i −0.0457167 + 0.140702i −0.971309 0.237820i \(-0.923567\pi\)
0.925593 + 0.378521i \(0.123567\pi\)
\(992\) 0 0
\(993\) 867.011 + 867.011i 0.873123 + 0.873123i
\(994\) 0 0
\(995\) −755.955 + 341.227i −0.759754 + 0.342942i
\(996\) 0 0
\(997\) −163.370 + 1031.48i −0.163862 + 1.03458i 0.759460 + 0.650554i \(0.225463\pi\)
−0.923322 + 0.384028i \(0.874537\pi\)
\(998\) 0 0
\(999\) 383.069i 0.383452i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.3.u.b.33.7 64
4.3 odd 2 400.3.bg.f.33.2 64
25.22 odd 20 inner 200.3.u.b.97.7 yes 64
100.47 even 20 400.3.bg.f.97.2 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.3.u.b.33.7 64 1.1 even 1 trivial
200.3.u.b.97.7 yes 64 25.22 odd 20 inner
400.3.bg.f.33.2 64 4.3 odd 2
400.3.bg.f.97.2 64 100.47 even 20