Properties

Label 200.10.c.d.49.1
Level $200$
Weight $10$
Character 200.49
Analytic conductor $103.007$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,10,Mod(49,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.49"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-38916] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(103.007167233\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{46})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(3.39116 - 3.39116i\) of defining polynomial
Character \(\chi\) \(=\) 200.49
Dual form 200.10.c.d.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-216.776i q^{3} +1662.09i q^{7} -27308.8 q^{9} +34372.0 q^{11} -162675. i q^{13} +91796.1i q^{17} +536227. q^{19} +360300. q^{21} -234899. i q^{23} +1.65309e6i q^{27} -7.25706e6 q^{29} +8.23051e6 q^{31} -7.45102e6i q^{33} -1.56850e7i q^{37} -3.52641e7 q^{39} -1.67318e7 q^{41} -9.36208e6i q^{43} -2.69410e7i q^{47} +3.75911e7 q^{49} +1.98992e7 q^{51} -3.41105e7i q^{53} -1.16241e8i q^{57} -1.12155e8 q^{59} +5.49531e6 q^{61} -4.53896e7i q^{63} -2.40686e8i q^{67} -5.09204e7 q^{69} -2.58502e8 q^{71} +3.53583e8i q^{73} +5.71292e7i q^{77} -3.66190e8 q^{79} -1.79169e8 q^{81} +9.74953e6i q^{83} +1.57316e9i q^{87} +1.14201e9 q^{89} +2.70380e8 q^{91} -1.78418e9i q^{93} +1.25555e9i q^{97} -9.38657e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 38916 q^{9} + 50240 q^{11} + 50960 q^{19} + 1279728 q^{21} - 14646680 q^{29} + 21354544 q^{31} - 73949616 q^{39} - 15591528 q^{41} + 142678668 q^{49} + 22944240 q^{51} - 119236528 q^{59} - 376327544 q^{61}+ \cdots - 2022585408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 216.776i − 1.54513i −0.634935 0.772566i \(-0.718973\pi\)
0.634935 0.772566i \(-0.281027\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1662.09i 0.261645i 0.991406 + 0.130823i \(0.0417618\pi\)
−0.991406 + 0.130823i \(0.958238\pi\)
\(8\) 0 0
\(9\) −27308.8 −1.38743
\(10\) 0 0
\(11\) 34372.0 0.707844 0.353922 0.935275i \(-0.384848\pi\)
0.353922 + 0.935275i \(0.384848\pi\)
\(12\) 0 0
\(13\) − 162675.i − 1.57971i −0.613296 0.789853i \(-0.710157\pi\)
0.613296 0.789853i \(-0.289843\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 91796.1i 0.266566i 0.991078 + 0.133283i \(0.0425519\pi\)
−0.991078 + 0.133283i \(0.957448\pi\)
\(18\) 0 0
\(19\) 536227. 0.943969 0.471985 0.881607i \(-0.343538\pi\)
0.471985 + 0.881607i \(0.343538\pi\)
\(20\) 0 0
\(21\) 360300. 0.404276
\(22\) 0 0
\(23\) − 234899.i − 0.175027i −0.996163 0.0875136i \(-0.972108\pi\)
0.996163 0.0875136i \(-0.0278921\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.65309e6i 0.598631i
\(28\) 0 0
\(29\) −7.25706e6 −1.90533 −0.952665 0.304023i \(-0.901670\pi\)
−0.952665 + 0.304023i \(0.901670\pi\)
\(30\) 0 0
\(31\) 8.23051e6 1.60066 0.800330 0.599559i \(-0.204657\pi\)
0.800330 + 0.599559i \(0.204657\pi\)
\(32\) 0 0
\(33\) − 7.45102e6i − 1.09371i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 1.56850e7i − 1.37587i −0.725771 0.687936i \(-0.758517\pi\)
0.725771 0.687936i \(-0.241483\pi\)
\(38\) 0 0
\(39\) −3.52641e7 −2.44085
\(40\) 0 0
\(41\) −1.67318e7 −0.924730 −0.462365 0.886690i \(-0.652999\pi\)
−0.462365 + 0.886690i \(0.652999\pi\)
\(42\) 0 0
\(43\) − 9.36208e6i − 0.417604i −0.977958 0.208802i \(-0.933044\pi\)
0.977958 0.208802i \(-0.0669564\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 2.69410e7i − 0.805328i −0.915348 0.402664i \(-0.868084\pi\)
0.915348 0.402664i \(-0.131916\pi\)
\(48\) 0 0
\(49\) 3.75911e7 0.931542
\(50\) 0 0
\(51\) 1.98992e7 0.411879
\(52\) 0 0
\(53\) − 3.41105e7i − 0.593809i −0.954907 0.296905i \(-0.904046\pi\)
0.954907 0.296905i \(-0.0959544\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 1.16241e8i − 1.45856i
\(58\) 0 0
\(59\) −1.12155e8 −1.20499 −0.602496 0.798122i \(-0.705827\pi\)
−0.602496 + 0.798122i \(0.705827\pi\)
\(60\) 0 0
\(61\) 5.49531e6 0.0508168 0.0254084 0.999677i \(-0.491911\pi\)
0.0254084 + 0.999677i \(0.491911\pi\)
\(62\) 0 0
\(63\) − 4.53896e7i − 0.363014i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.40686e8i − 1.45920i −0.683876 0.729598i \(-0.739707\pi\)
0.683876 0.729598i \(-0.260293\pi\)
\(68\) 0 0
\(69\) −5.09204e7 −0.270440
\(70\) 0 0
\(71\) −2.58502e8 −1.20726 −0.603631 0.797264i \(-0.706280\pi\)
−0.603631 + 0.797264i \(0.706280\pi\)
\(72\) 0 0
\(73\) 3.53583e8i 1.45726i 0.684905 + 0.728632i \(0.259844\pi\)
−0.684905 + 0.728632i \(0.740156\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.71292e7i 0.185204i
\(78\) 0 0
\(79\) −3.66190e8 −1.05775 −0.528876 0.848699i \(-0.677386\pi\)
−0.528876 + 0.848699i \(0.677386\pi\)
\(80\) 0 0
\(81\) −1.79169e8 −0.462467
\(82\) 0 0
\(83\) 9.74953e6i 0.0225493i 0.999936 + 0.0112746i \(0.00358890\pi\)
−0.999936 + 0.0112746i \(0.996411\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.57316e9i 2.94398i
\(88\) 0 0
\(89\) 1.14201e9 1.92937 0.964687 0.263397i \(-0.0848431\pi\)
0.964687 + 0.263397i \(0.0848431\pi\)
\(90\) 0 0
\(91\) 2.70380e8 0.413322
\(92\) 0 0
\(93\) − 1.78418e9i − 2.47323i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.25555e9i 1.44000i 0.693975 + 0.719999i \(0.255858\pi\)
−0.693975 + 0.719999i \(0.744142\pi\)
\(98\) 0 0
\(99\) −9.38657e8 −0.982084
\(100\) 0 0
\(101\) 2.63563e8 0.252022 0.126011 0.992029i \(-0.459783\pi\)
0.126011 + 0.992029i \(0.459783\pi\)
\(102\) 0 0
\(103\) 2.09532e9i 1.83435i 0.398482 + 0.917176i \(0.369537\pi\)
−0.398482 + 0.917176i \(0.630463\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 3.30509e8i − 0.243757i −0.992545 0.121878i \(-0.961108\pi\)
0.992545 0.121878i \(-0.0388918\pi\)
\(108\) 0 0
\(109\) 1.65293e9 1.12160 0.560798 0.827953i \(-0.310495\pi\)
0.560798 + 0.827953i \(0.310495\pi\)
\(110\) 0 0
\(111\) −3.40014e9 −2.12590
\(112\) 0 0
\(113\) − 1.15695e9i − 0.667513i −0.942659 0.333757i \(-0.891684\pi\)
0.942659 0.333757i \(-0.108316\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.44246e9i 2.19173i
\(118\) 0 0
\(119\) −1.52573e8 −0.0697456
\(120\) 0 0
\(121\) −1.17652e9 −0.498957
\(122\) 0 0
\(123\) 3.62705e9i 1.42883i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.56129e9i 0.532559i 0.963896 + 0.266280i \(0.0857944\pi\)
−0.963896 + 0.266280i \(0.914206\pi\)
\(128\) 0 0
\(129\) −2.02947e9 −0.645253
\(130\) 0 0
\(131\) −4.75445e9 −1.41052 −0.705261 0.708948i \(-0.749170\pi\)
−0.705261 + 0.708948i \(0.749170\pi\)
\(132\) 0 0
\(133\) 8.91256e8i 0.246985i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.57706e9i 0.382478i 0.981543 + 0.191239i \(0.0612506\pi\)
−0.981543 + 0.191239i \(0.938749\pi\)
\(138\) 0 0
\(139\) −3.40723e9 −0.774167 −0.387084 0.922045i \(-0.626518\pi\)
−0.387084 + 0.922045i \(0.626518\pi\)
\(140\) 0 0
\(141\) −5.84015e9 −1.24434
\(142\) 0 0
\(143\) − 5.59147e9i − 1.11818i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 8.14884e9i − 1.43935i
\(148\) 0 0
\(149\) 4.20713e8 0.0699274 0.0349637 0.999389i \(-0.488868\pi\)
0.0349637 + 0.999389i \(0.488868\pi\)
\(150\) 0 0
\(151\) −1.74377e9 −0.272957 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(152\) 0 0
\(153\) − 2.50684e9i − 0.369841i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 6.13142e9i − 0.805402i −0.915332 0.402701i \(-0.868071\pi\)
0.915332 0.402701i \(-0.131929\pi\)
\(158\) 0 0
\(159\) −7.39434e9 −0.917513
\(160\) 0 0
\(161\) 3.90422e8 0.0457950
\(162\) 0 0
\(163\) − 1.07953e10i − 1.19782i −0.800816 0.598910i \(-0.795601\pi\)
0.800816 0.598910i \(-0.204399\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.55417e10i 1.54623i 0.634266 + 0.773115i \(0.281302\pi\)
−0.634266 + 0.773115i \(0.718698\pi\)
\(168\) 0 0
\(169\) −1.58587e10 −1.49547
\(170\) 0 0
\(171\) −1.46437e10 −1.30969
\(172\) 0 0
\(173\) − 3.21498e9i − 0.272880i −0.990648 0.136440i \(-0.956434\pi\)
0.990648 0.136440i \(-0.0435661\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.43125e10i 1.86187i
\(178\) 0 0
\(179\) −2.10234e10 −1.53061 −0.765305 0.643667i \(-0.777412\pi\)
−0.765305 + 0.643667i \(0.777412\pi\)
\(180\) 0 0
\(181\) −1.54514e10 −1.07008 −0.535038 0.844828i \(-0.679703\pi\)
−0.535038 + 0.844828i \(0.679703\pi\)
\(182\) 0 0
\(183\) − 1.19125e9i − 0.0785187i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.15521e9i 0.188687i
\(188\) 0 0
\(189\) −2.74758e9 −0.156629
\(190\) 0 0
\(191\) 2.53988e10 1.38090 0.690451 0.723380i \(-0.257412\pi\)
0.690451 + 0.723380i \(0.257412\pi\)
\(192\) 0 0
\(193\) 1.70167e10i 0.882809i 0.897308 + 0.441404i \(0.145520\pi\)
−0.897308 + 0.441404i \(0.854480\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.38218e9i 0.207297i 0.994614 + 0.103648i \(0.0330517\pi\)
−0.994614 + 0.103648i \(0.966948\pi\)
\(198\) 0 0
\(199\) 1.37237e10 0.620343 0.310171 0.950681i \(-0.399614\pi\)
0.310171 + 0.950681i \(0.399614\pi\)
\(200\) 0 0
\(201\) −5.21749e10 −2.25465
\(202\) 0 0
\(203\) − 1.20619e10i − 0.498520i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.41480e9i 0.242838i
\(208\) 0 0
\(209\) 1.84312e10 0.668183
\(210\) 0 0
\(211\) −1.21366e10 −0.421526 −0.210763 0.977537i \(-0.567595\pi\)
−0.210763 + 0.977537i \(0.567595\pi\)
\(212\) 0 0
\(213\) 5.60370e10i 1.86538i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.36798e10i 0.418805i
\(218\) 0 0
\(219\) 7.66483e10 2.25166
\(220\) 0 0
\(221\) 1.49330e10 0.421095
\(222\) 0 0
\(223\) − 6.20297e10i − 1.67968i −0.542830 0.839842i \(-0.682647\pi\)
0.542830 0.839842i \(-0.317353\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.51959e10i 0.879783i 0.898051 + 0.439891i \(0.144983\pi\)
−0.898051 + 0.439891i \(0.855017\pi\)
\(228\) 0 0
\(229\) 3.83973e10 0.922659 0.461329 0.887229i \(-0.347373\pi\)
0.461329 + 0.887229i \(0.347373\pi\)
\(230\) 0 0
\(231\) 1.23842e10 0.286164
\(232\) 0 0
\(233\) 2.59156e10i 0.576049i 0.957623 + 0.288024i \(0.0929984\pi\)
−0.957623 + 0.288024i \(0.907002\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 7.93811e10i 1.63437i
\(238\) 0 0
\(239\) −5.76903e10 −1.14370 −0.571850 0.820358i \(-0.693774\pi\)
−0.571850 + 0.820358i \(0.693774\pi\)
\(240\) 0 0
\(241\) −4.59383e10 −0.877200 −0.438600 0.898682i \(-0.644525\pi\)
−0.438600 + 0.898682i \(0.644525\pi\)
\(242\) 0 0
\(243\) 7.13773e10i 1.31320i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 8.72309e10i − 1.49119i
\(248\) 0 0
\(249\) 2.11346e9 0.0348416
\(250\) 0 0
\(251\) −6.33143e10 −1.00686 −0.503431 0.864035i \(-0.667929\pi\)
−0.503431 + 0.864035i \(0.667929\pi\)
\(252\) 0 0
\(253\) − 8.07393e9i − 0.123892i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.21910e10i 0.603283i 0.953421 + 0.301642i \(0.0975346\pi\)
−0.953421 + 0.301642i \(0.902465\pi\)
\(258\) 0 0
\(259\) 2.60699e10 0.359990
\(260\) 0 0
\(261\) 1.98182e11 2.64351
\(262\) 0 0
\(263\) − 5.01270e10i − 0.646057i −0.946389 0.323028i \(-0.895299\pi\)
0.946389 0.323028i \(-0.104701\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 2.47561e11i − 2.98114i
\(268\) 0 0
\(269\) −7.21552e10 −0.840199 −0.420099 0.907478i \(-0.638005\pi\)
−0.420099 + 0.907478i \(0.638005\pi\)
\(270\) 0 0
\(271\) 5.23276e10 0.589344 0.294672 0.955598i \(-0.404790\pi\)
0.294672 + 0.955598i \(0.404790\pi\)
\(272\) 0 0
\(273\) − 5.86119e10i − 0.638637i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 5.78954e10i − 0.590860i −0.955364 0.295430i \(-0.904537\pi\)
0.955364 0.295430i \(-0.0954630\pi\)
\(278\) 0 0
\(279\) −2.24765e11 −2.22081
\(280\) 0 0
\(281\) 7.31211e10 0.699623 0.349812 0.936820i \(-0.386246\pi\)
0.349812 + 0.936820i \(0.386246\pi\)
\(282\) 0 0
\(283\) 5.12368e10i 0.474835i 0.971408 + 0.237418i \(0.0763010\pi\)
−0.971408 + 0.237418i \(0.923699\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 2.78097e10i − 0.241951i
\(288\) 0 0
\(289\) 1.10161e11 0.928943
\(290\) 0 0
\(291\) 2.72173e11 2.22499
\(292\) 0 0
\(293\) − 1.95934e11i − 1.55312i −0.630043 0.776561i \(-0.716963\pi\)
0.630043 0.776561i \(-0.283037\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.68200e10i 0.423737i
\(298\) 0 0
\(299\) −3.82122e10 −0.276491
\(300\) 0 0
\(301\) 1.55606e10 0.109264
\(302\) 0 0
\(303\) − 5.71341e10i − 0.389407i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 2.29564e11i − 1.47496i −0.675368 0.737481i \(-0.736015\pi\)
0.675368 0.737481i \(-0.263985\pi\)
\(308\) 0 0
\(309\) 4.54215e11 2.83431
\(310\) 0 0
\(311\) 4.99151e10 0.302559 0.151280 0.988491i \(-0.451661\pi\)
0.151280 + 0.988491i \(0.451661\pi\)
\(312\) 0 0
\(313\) 1.19272e11i 0.702408i 0.936299 + 0.351204i \(0.114228\pi\)
−0.936299 + 0.351204i \(0.885772\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2.85879e11i − 1.59007i −0.606565 0.795034i \(-0.707453\pi\)
0.606565 0.795034i \(-0.292547\pi\)
\(318\) 0 0
\(319\) −2.49440e11 −1.34868
\(320\) 0 0
\(321\) −7.16464e10 −0.376636
\(322\) 0 0
\(323\) 4.92236e10i 0.251630i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 3.58316e11i − 1.73301i
\(328\) 0 0
\(329\) 4.47782e10 0.210710
\(330\) 0 0
\(331\) −2.12047e11 −0.970973 −0.485486 0.874244i \(-0.661357\pi\)
−0.485486 + 0.874244i \(0.661357\pi\)
\(332\) 0 0
\(333\) 4.28340e11i 1.90893i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00430e11i 0.846502i 0.906012 + 0.423251i \(0.139111\pi\)
−0.906012 + 0.423251i \(0.860889\pi\)
\(338\) 0 0
\(339\) −2.50798e11 −1.03140
\(340\) 0 0
\(341\) 2.82899e11 1.13302
\(342\) 0 0
\(343\) 1.29551e11i 0.505378i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 9.86210e10i − 0.365163i −0.983191 0.182582i \(-0.941555\pi\)
0.983191 0.182582i \(-0.0584453\pi\)
\(348\) 0 0
\(349\) 4.79143e11 1.72882 0.864411 0.502785i \(-0.167691\pi\)
0.864411 + 0.502785i \(0.167691\pi\)
\(350\) 0 0
\(351\) 2.68917e11 0.945662
\(352\) 0 0
\(353\) − 4.56755e11i − 1.56566i −0.622235 0.782830i \(-0.713775\pi\)
0.622235 0.782830i \(-0.286225\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.30742e10i 0.107766i
\(358\) 0 0
\(359\) 1.54059e11 0.489509 0.244755 0.969585i \(-0.421293\pi\)
0.244755 + 0.969585i \(0.421293\pi\)
\(360\) 0 0
\(361\) −3.51479e10 −0.108922
\(362\) 0 0
\(363\) 2.55040e11i 0.770954i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 3.42604e11i 0.985815i 0.870082 + 0.492908i \(0.164066\pi\)
−0.870082 + 0.492908i \(0.835934\pi\)
\(368\) 0 0
\(369\) 4.56925e11 1.28300
\(370\) 0 0
\(371\) 5.66947e10 0.155367
\(372\) 0 0
\(373\) 1.68130e11i 0.449734i 0.974389 + 0.224867i \(0.0721948\pi\)
−0.974389 + 0.224867i \(0.927805\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.18054e12i 3.00986i
\(378\) 0 0
\(379\) 1.00434e11 0.250038 0.125019 0.992154i \(-0.460101\pi\)
0.125019 + 0.992154i \(0.460101\pi\)
\(380\) 0 0
\(381\) 3.38451e11 0.822874
\(382\) 0 0
\(383\) − 5.07533e11i − 1.20523i −0.798032 0.602615i \(-0.794126\pi\)
0.798032 0.602615i \(-0.205874\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.55667e11i 0.579396i
\(388\) 0 0
\(389\) 1.26566e11 0.280249 0.140125 0.990134i \(-0.455250\pi\)
0.140125 + 0.990134i \(0.455250\pi\)
\(390\) 0 0
\(391\) 2.15628e10 0.0466562
\(392\) 0 0
\(393\) 1.03065e12i 2.17944i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 4.70667e11i − 0.950948i −0.879730 0.475474i \(-0.842277\pi\)
0.879730 0.475474i \(-0.157723\pi\)
\(398\) 0 0
\(399\) 1.93203e11 0.381624
\(400\) 0 0
\(401\) −9.20810e11 −1.77836 −0.889182 0.457554i \(-0.848726\pi\)
−0.889182 + 0.457554i \(0.848726\pi\)
\(402\) 0 0
\(403\) − 1.33890e12i − 2.52857i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 5.39126e11i − 0.973902i
\(408\) 0 0
\(409\) −8.23952e11 −1.45595 −0.727976 0.685603i \(-0.759539\pi\)
−0.727976 + 0.685603i \(0.759539\pi\)
\(410\) 0 0
\(411\) 3.41870e11 0.590979
\(412\) 0 0
\(413\) − 1.86411e11i − 0.315280i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7.38605e11i 1.19619i
\(418\) 0 0
\(419\) −7.01758e11 −1.11231 −0.556153 0.831080i \(-0.687723\pi\)
−0.556153 + 0.831080i \(0.687723\pi\)
\(420\) 0 0
\(421\) 1.22669e11 0.190311 0.0951555 0.995462i \(-0.469665\pi\)
0.0951555 + 0.995462i \(0.469665\pi\)
\(422\) 0 0
\(423\) 7.35725e11i 1.11734i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 9.13368e9i 0.0132960i
\(428\) 0 0
\(429\) −1.21210e12 −1.72774
\(430\) 0 0
\(431\) −4.82937e11 −0.674129 −0.337064 0.941482i \(-0.609434\pi\)
−0.337064 + 0.941482i \(0.609434\pi\)
\(432\) 0 0
\(433\) − 7.71175e11i − 1.05428i −0.849777 0.527142i \(-0.823264\pi\)
0.849777 0.527142i \(-0.176736\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.25959e11i − 0.165220i
\(438\) 0 0
\(439\) 6.62301e11 0.851070 0.425535 0.904942i \(-0.360086\pi\)
0.425535 + 0.904942i \(0.360086\pi\)
\(440\) 0 0
\(441\) −1.02657e12 −1.29245
\(442\) 0 0
\(443\) 3.76774e11i 0.464798i 0.972621 + 0.232399i \(0.0746574\pi\)
−0.972621 + 0.232399i \(0.925343\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 9.12004e10i − 0.108047i
\(448\) 0 0
\(449\) −5.77774e11 −0.670888 −0.335444 0.942060i \(-0.608886\pi\)
−0.335444 + 0.942060i \(0.608886\pi\)
\(450\) 0 0
\(451\) −5.75105e11 −0.654564
\(452\) 0 0
\(453\) 3.78008e11i 0.421754i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 8.28175e11i − 0.888176i −0.895983 0.444088i \(-0.853528\pi\)
0.895983 0.444088i \(-0.146472\pi\)
\(458\) 0 0
\(459\) −1.51747e11 −0.159575
\(460\) 0 0
\(461\) 2.77554e11 0.286216 0.143108 0.989707i \(-0.454290\pi\)
0.143108 + 0.989707i \(0.454290\pi\)
\(462\) 0 0
\(463\) 1.01088e11i 0.102232i 0.998693 + 0.0511159i \(0.0162778\pi\)
−0.998693 + 0.0511159i \(0.983722\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.30742e12i − 1.27201i −0.771686 0.636004i \(-0.780586\pi\)
0.771686 0.636004i \(-0.219414\pi\)
\(468\) 0 0
\(469\) 4.00041e11 0.381792
\(470\) 0 0
\(471\) −1.32914e12 −1.24445
\(472\) 0 0
\(473\) − 3.21793e11i − 0.295598i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 9.31518e11i 0.823869i
\(478\) 0 0
\(479\) 1.38500e12 1.20210 0.601049 0.799212i \(-0.294750\pi\)
0.601049 + 0.799212i \(0.294750\pi\)
\(480\) 0 0
\(481\) −2.55157e12 −2.17347
\(482\) 0 0
\(483\) − 8.46341e10i − 0.0707593i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.54305e11i 0.768789i 0.923169 + 0.384394i \(0.125590\pi\)
−0.923169 + 0.384394i \(0.874410\pi\)
\(488\) 0 0
\(489\) −2.34017e12 −1.85079
\(490\) 0 0
\(491\) −7.41251e11 −0.575571 −0.287785 0.957695i \(-0.592919\pi\)
−0.287785 + 0.957695i \(0.592919\pi\)
\(492\) 0 0
\(493\) − 6.66171e11i − 0.507895i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 4.29653e11i − 0.315874i
\(498\) 0 0
\(499\) −1.51393e12 −1.09308 −0.546542 0.837432i \(-0.684056\pi\)
−0.546542 + 0.837432i \(0.684056\pi\)
\(500\) 0 0
\(501\) 3.36906e12 2.38913
\(502\) 0 0
\(503\) − 1.58191e12i − 1.10186i −0.834552 0.550929i \(-0.814274\pi\)
0.834552 0.550929i \(-0.185726\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.43779e12i 2.31070i
\(508\) 0 0
\(509\) 2.29553e11 0.151584 0.0757918 0.997124i \(-0.475852\pi\)
0.0757918 + 0.997124i \(0.475852\pi\)
\(510\) 0 0
\(511\) −5.87686e11 −0.381286
\(512\) 0 0
\(513\) 8.86432e11i 0.565089i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 9.26014e11i − 0.570046i
\(518\) 0 0
\(519\) −6.96931e11 −0.421635
\(520\) 0 0
\(521\) −1.73274e12 −1.03030 −0.515149 0.857101i \(-0.672263\pi\)
−0.515149 + 0.857101i \(0.672263\pi\)
\(522\) 0 0
\(523\) − 2.45691e12i − 1.43592i −0.696083 0.717961i \(-0.745075\pi\)
0.696083 0.717961i \(-0.254925\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.55529e11i 0.426681i
\(528\) 0 0
\(529\) 1.74598e12 0.969366
\(530\) 0 0
\(531\) 3.06281e12 1.67184
\(532\) 0 0
\(533\) 2.72185e12i 1.46080i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.55737e12i 2.36499i
\(538\) 0 0
\(539\) 1.29208e12 0.659386
\(540\) 0 0
\(541\) −2.10080e12 −1.05438 −0.527190 0.849748i \(-0.676754\pi\)
−0.527190 + 0.849748i \(0.676754\pi\)
\(542\) 0 0
\(543\) 3.34949e12i 1.65341i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3.58621e12i 1.71275i 0.516357 + 0.856373i \(0.327288\pi\)
−0.516357 + 0.856373i \(0.672712\pi\)
\(548\) 0 0
\(549\) −1.50070e11 −0.0705048
\(550\) 0 0
\(551\) −3.89144e12 −1.79857
\(552\) 0 0
\(553\) − 6.08639e11i − 0.276756i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 3.15166e12i − 1.38737i −0.720280 0.693683i \(-0.755987\pi\)
0.720280 0.693683i \(-0.244013\pi\)
\(558\) 0 0
\(559\) −1.52298e12 −0.659691
\(560\) 0 0
\(561\) 6.83975e11 0.291546
\(562\) 0 0
\(563\) 3.70986e12i 1.55621i 0.628131 + 0.778107i \(0.283820\pi\)
−0.628131 + 0.778107i \(0.716180\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 2.97795e11i − 0.121002i
\(568\) 0 0
\(569\) 1.52350e12 0.609308 0.304654 0.952463i \(-0.401459\pi\)
0.304654 + 0.952463i \(0.401459\pi\)
\(570\) 0 0
\(571\) 2.81914e12 1.10982 0.554911 0.831909i \(-0.312752\pi\)
0.554911 + 0.831909i \(0.312752\pi\)
\(572\) 0 0
\(573\) − 5.50584e12i − 2.13367i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 2.80815e11i − 0.105470i −0.998609 0.0527350i \(-0.983206\pi\)
0.998609 0.0527350i \(-0.0167939\pi\)
\(578\) 0 0
\(579\) 3.68880e12 1.36406
\(580\) 0 0
\(581\) −1.62046e10 −0.00589990
\(582\) 0 0
\(583\) − 1.17245e12i − 0.420324i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.71929e12i 0.597691i 0.954302 + 0.298845i \(0.0966015\pi\)
−0.954302 + 0.298845i \(0.903399\pi\)
\(588\) 0 0
\(589\) 4.41343e12 1.51097
\(590\) 0 0
\(591\) 9.49952e11 0.320301
\(592\) 0 0
\(593\) − 4.82940e12i − 1.60379i −0.597465 0.801895i \(-0.703825\pi\)
0.597465 0.801895i \(-0.296175\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 2.97496e12i − 0.958511i
\(598\) 0 0
\(599\) −1.72589e12 −0.547763 −0.273881 0.961763i \(-0.588308\pi\)
−0.273881 + 0.961763i \(0.588308\pi\)
\(600\) 0 0
\(601\) 5.06692e12 1.58420 0.792098 0.610394i \(-0.208989\pi\)
0.792098 + 0.610394i \(0.208989\pi\)
\(602\) 0 0
\(603\) 6.57284e12i 2.02453i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 1.57706e12i − 0.471520i −0.971811 0.235760i \(-0.924242\pi\)
0.971811 0.235760i \(-0.0757580\pi\)
\(608\) 0 0
\(609\) −2.61472e12 −0.770279
\(610\) 0 0
\(611\) −4.38263e12 −1.27218
\(612\) 0 0
\(613\) 1.35557e12i 0.387747i 0.981026 + 0.193874i \(0.0621052\pi\)
−0.981026 + 0.193874i \(0.937895\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 4.35935e12i − 1.21098i −0.795852 0.605492i \(-0.792977\pi\)
0.795852 0.605492i \(-0.207023\pi\)
\(618\) 0 0
\(619\) −1.67780e12 −0.459338 −0.229669 0.973269i \(-0.573764\pi\)
−0.229669 + 0.973269i \(0.573764\pi\)
\(620\) 0 0
\(621\) 3.88309e11 0.104777
\(622\) 0 0
\(623\) 1.89813e12i 0.504811i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 3.99544e12i − 1.03243i
\(628\) 0 0
\(629\) 1.43983e12 0.366760
\(630\) 0 0
\(631\) 4.12439e12 1.03568 0.517842 0.855476i \(-0.326736\pi\)
0.517842 + 0.855476i \(0.326736\pi\)
\(632\) 0 0
\(633\) 2.63091e12i 0.651313i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 6.11514e12i − 1.47156i
\(638\) 0 0
\(639\) 7.05938e12 1.67499
\(640\) 0 0
\(641\) 2.54925e12 0.596420 0.298210 0.954500i \(-0.403610\pi\)
0.298210 + 0.954500i \(0.403610\pi\)
\(642\) 0 0
\(643\) 1.49409e11i 0.0344688i 0.999851 + 0.0172344i \(0.00548615\pi\)
−0.999851 + 0.0172344i \(0.994514\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 7.88552e11i − 0.176913i −0.996080 0.0884567i \(-0.971806\pi\)
0.996080 0.0884567i \(-0.0281935\pi\)
\(648\) 0 0
\(649\) −3.85498e12 −0.852946
\(650\) 0 0
\(651\) 2.96546e12 0.647109
\(652\) 0 0
\(653\) − 1.87557e12i − 0.403668i −0.979420 0.201834i \(-0.935310\pi\)
0.979420 0.201834i \(-0.0646901\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 9.65592e12i − 2.02185i
\(658\) 0 0
\(659\) 2.02453e11 0.0418158 0.0209079 0.999781i \(-0.493344\pi\)
0.0209079 + 0.999781i \(0.493344\pi\)
\(660\) 0 0
\(661\) 2.41063e12 0.491160 0.245580 0.969376i \(-0.421022\pi\)
0.245580 + 0.969376i \(0.421022\pi\)
\(662\) 0 0
\(663\) − 3.23711e12i − 0.650648i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.70468e12i 0.333484i
\(668\) 0 0
\(669\) −1.34465e13 −2.59533
\(670\) 0 0
\(671\) 1.88885e11 0.0359704
\(672\) 0 0
\(673\) 5.63582e11i 0.105898i 0.998597 + 0.0529491i \(0.0168621\pi\)
−0.998597 + 0.0529491i \(0.983138\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.43518e11i 0.154328i 0.997018 + 0.0771641i \(0.0245865\pi\)
−0.997018 + 0.0771641i \(0.975413\pi\)
\(678\) 0 0
\(679\) −2.08684e12 −0.376768
\(680\) 0 0
\(681\) 7.62962e12 1.35938
\(682\) 0 0
\(683\) − 5.43927e12i − 0.956418i −0.878246 0.478209i \(-0.841286\pi\)
0.878246 0.478209i \(-0.158714\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 8.32361e12i − 1.42563i
\(688\) 0 0
\(689\) −5.54894e12 −0.938044
\(690\) 0 0
\(691\) −1.41900e12 −0.236773 −0.118386 0.992968i \(-0.537772\pi\)
−0.118386 + 0.992968i \(0.537772\pi\)
\(692\) 0 0
\(693\) − 1.56013e12i − 0.256957i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.53591e12i − 0.246501i
\(698\) 0 0
\(699\) 5.61787e12 0.890071
\(700\) 0 0
\(701\) 9.10116e12 1.42353 0.711763 0.702419i \(-0.247897\pi\)
0.711763 + 0.702419i \(0.247897\pi\)
\(702\) 0 0
\(703\) − 8.41075e12i − 1.29878i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.38064e11i 0.0659402i
\(708\) 0 0
\(709\) −3.00283e12 −0.446296 −0.223148 0.974785i \(-0.571633\pi\)
−0.223148 + 0.974785i \(0.571633\pi\)
\(710\) 0 0
\(711\) 1.00002e13 1.46756
\(712\) 0 0
\(713\) − 1.93334e12i − 0.280159i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.25059e13i 1.76717i
\(718\) 0 0
\(719\) 8.40313e12 1.17263 0.586315 0.810083i \(-0.300578\pi\)
0.586315 + 0.810083i \(0.300578\pi\)
\(720\) 0 0
\(721\) −3.48260e12 −0.479949
\(722\) 0 0
\(723\) 9.95833e12i 1.35539i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.70907e12i 0.890753i 0.895343 + 0.445377i \(0.146930\pi\)
−0.895343 + 0.445377i \(0.853070\pi\)
\(728\) 0 0
\(729\) 1.19463e13 1.56660
\(730\) 0 0
\(731\) 8.59403e11 0.111319
\(732\) 0 0
\(733\) − 1.50813e12i − 0.192962i −0.995335 0.0964810i \(-0.969241\pi\)
0.995335 0.0964810i \(-0.0307587\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 8.27285e12i − 1.03288i
\(738\) 0 0
\(739\) 1.48289e13 1.82898 0.914492 0.404603i \(-0.132590\pi\)
0.914492 + 0.404603i \(0.132590\pi\)
\(740\) 0 0
\(741\) −1.89096e13 −2.30409
\(742\) 0 0
\(743\) 1.91312e12i 0.230299i 0.993348 + 0.115150i \(0.0367348\pi\)
−0.993348 + 0.115150i \(0.963265\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 2.66248e11i − 0.0312855i
\(748\) 0 0
\(749\) 5.49335e11 0.0637777
\(750\) 0 0
\(751\) −6.50309e12 −0.746002 −0.373001 0.927831i \(-0.621671\pi\)
−0.373001 + 0.927831i \(0.621671\pi\)
\(752\) 0 0
\(753\) 1.37250e13i 1.55573i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.11069e11i − 0.0122931i −0.999981 0.00614653i \(-0.998043\pi\)
0.999981 0.00614653i \(-0.00195651\pi\)
\(758\) 0 0
\(759\) −1.75023e12 −0.191429
\(760\) 0 0
\(761\) 1.21294e13 1.31102 0.655510 0.755186i \(-0.272454\pi\)
0.655510 + 0.755186i \(0.272454\pi\)
\(762\) 0 0
\(763\) 2.74732e12i 0.293460i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.82448e13i 1.90353i
\(768\) 0 0
\(769\) 1.19313e13 1.23033 0.615164 0.788399i \(-0.289090\pi\)
0.615164 + 0.788399i \(0.289090\pi\)
\(770\) 0 0
\(771\) 9.14600e12 0.932152
\(772\) 0 0
\(773\) 1.71471e13i 1.72736i 0.504038 + 0.863681i \(0.331847\pi\)
−0.504038 + 0.863681i \(0.668153\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 5.65133e12i − 0.556232i
\(778\) 0 0
\(779\) −8.97204e12 −0.872917
\(780\) 0 0
\(781\) −8.88523e12 −0.854553
\(782\) 0 0
\(783\) − 1.19966e13i − 1.14059i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 2.12129e11i − 0.0197112i −0.999951 0.00985561i \(-0.996863\pi\)
0.999951 0.00985561i \(-0.00313719\pi\)
\(788\) 0 0
\(789\) −1.08663e13 −0.998242
\(790\) 0 0
\(791\) 1.92294e12 0.174652
\(792\) 0 0
\(793\) − 8.93950e11i − 0.0802757i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.75044e12i 0.855976i 0.903784 + 0.427988i \(0.140777\pi\)
−0.903784 + 0.427988i \(0.859223\pi\)
\(798\) 0 0
\(799\) 2.47308e12 0.214673
\(800\) 0 0
\(801\) −3.11870e13 −2.67687
\(802\) 0 0
\(803\) 1.21533e13i 1.03152i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.56415e13i 1.29822i
\(808\) 0 0
\(809\) −1.00162e13 −0.822120 −0.411060 0.911608i \(-0.634841\pi\)
−0.411060 + 0.911608i \(0.634841\pi\)
\(810\) 0 0
\(811\) 1.09433e11 0.00888287 0.00444143 0.999990i \(-0.498586\pi\)
0.00444143 + 0.999990i \(0.498586\pi\)
\(812\) 0 0
\(813\) − 1.13434e13i − 0.910614i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 5.02020e12i − 0.394205i
\(818\) 0 0
\(819\) −7.38376e12 −0.573456
\(820\) 0 0
\(821\) −2.10914e13 −1.62017 −0.810086 0.586312i \(-0.800579\pi\)
−0.810086 + 0.586312i \(0.800579\pi\)
\(822\) 0 0
\(823\) − 6.07029e12i − 0.461222i −0.973046 0.230611i \(-0.925927\pi\)
0.973046 0.230611i \(-0.0740725\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.09879e13i − 0.816846i −0.912793 0.408423i \(-0.866079\pi\)
0.912793 0.408423i \(-0.133921\pi\)
\(828\) 0 0
\(829\) 1.34601e13 0.989811 0.494906 0.868947i \(-0.335203\pi\)
0.494906 + 0.868947i \(0.335203\pi\)
\(830\) 0 0
\(831\) −1.25503e13 −0.912957
\(832\) 0 0
\(833\) 3.45072e12i 0.248317i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.36058e13i 0.958206i
\(838\) 0 0
\(839\) 4.34425e12 0.302681 0.151341 0.988482i \(-0.451641\pi\)
0.151341 + 0.988482i \(0.451641\pi\)
\(840\) 0 0
\(841\) 3.81578e13 2.63028
\(842\) 0 0
\(843\) − 1.58509e13i − 1.08101i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 1.95547e12i − 0.130550i
\(848\) 0 0
\(849\) 1.11069e13 0.733683
\(850\) 0 0
\(851\) −3.68440e12 −0.240815
\(852\) 0 0
\(853\) 1.33638e13i 0.864290i 0.901804 + 0.432145i \(0.142243\pi\)
−0.901804 + 0.432145i \(0.857757\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.60497e13i 1.64964i 0.565397 + 0.824819i \(0.308723\pi\)
−0.565397 + 0.824819i \(0.691277\pi\)
\(858\) 0 0
\(859\) −2.01187e12 −0.126076 −0.0630379 0.998011i \(-0.520079\pi\)
−0.0630379 + 0.998011i \(0.520079\pi\)
\(860\) 0 0
\(861\) −6.02847e12 −0.373846
\(862\) 0 0
\(863\) − 2.36870e13i − 1.45366i −0.686819 0.726828i \(-0.740994\pi\)
0.686819 0.726828i \(-0.259006\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 2.38803e13i − 1.43534i
\(868\) 0 0
\(869\) −1.25867e13 −0.748723
\(870\) 0 0
\(871\) −3.91536e13 −2.30510
\(872\) 0 0
\(873\) − 3.42876e13i − 1.99790i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.83122e13i 1.04531i 0.852545 + 0.522653i \(0.175058\pi\)
−0.852545 + 0.522653i \(0.824942\pi\)
\(878\) 0 0
\(879\) −4.24738e13 −2.39978
\(880\) 0 0
\(881\) 3.34824e13 1.87251 0.936256 0.351320i \(-0.114267\pi\)
0.936256 + 0.351320i \(0.114267\pi\)
\(882\) 0 0
\(883\) 1.73556e13i 0.960763i 0.877060 + 0.480382i \(0.159502\pi\)
−0.877060 + 0.480382i \(0.840498\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.34047e13i − 0.727109i −0.931573 0.363555i \(-0.881563\pi\)
0.931573 0.363555i \(-0.118437\pi\)
\(888\) 0 0
\(889\) −2.59501e12 −0.139341
\(890\) 0 0
\(891\) −6.15839e12 −0.327354
\(892\) 0 0
\(893\) − 1.44465e13i − 0.760204i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 8.28348e12i 0.427216i
\(898\) 0 0
\(899\) −5.97294e13 −3.04979
\(900\) 0 0
\(901\) 3.13122e12 0.158289
\(902\) 0 0
\(903\) − 3.37316e12i − 0.168827i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 9.01114e12i 0.442127i 0.975259 + 0.221064i \(0.0709528\pi\)
−0.975259 + 0.221064i \(0.929047\pi\)
\(908\) 0 0
\(909\) −7.19758e12 −0.349663
\(910\) 0 0
\(911\) 7.64836e12 0.367905 0.183952 0.982935i \(-0.441111\pi\)
0.183952 + 0.982935i \(0.441111\pi\)
\(912\) 0 0
\(913\) 3.35110e11i 0.0159613i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 7.90232e12i − 0.369056i
\(918\) 0 0
\(919\) −3.19451e13 −1.47735 −0.738676 0.674060i \(-0.764549\pi\)
−0.738676 + 0.674060i \(0.764549\pi\)
\(920\) 0 0
\(921\) −4.97639e13 −2.27901
\(922\) 0 0
\(923\) 4.20519e13i 1.90712i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 5.72207e13i − 2.54504i
\(928\) 0 0
\(929\) 1.36029e13 0.599186 0.299593 0.954067i \(-0.403149\pi\)
0.299593 + 0.954067i \(0.403149\pi\)
\(930\) 0 0
\(931\) 2.01574e13 0.879347
\(932\) 0 0
\(933\) − 1.08204e13i − 0.467494i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 1.10891e13i − 0.469966i −0.971999 0.234983i \(-0.924497\pi\)
0.971999 0.234983i \(-0.0755035\pi\)
\(938\) 0 0
\(939\) 2.58553e13 1.08531
\(940\) 0 0
\(941\) −2.46259e13 −1.02385 −0.511927 0.859029i \(-0.671068\pi\)
−0.511927 + 0.859029i \(0.671068\pi\)
\(942\) 0 0
\(943\) 3.93028e12i 0.161853i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.82162e13i 1.94813i 0.226267 + 0.974065i \(0.427348\pi\)
−0.226267 + 0.974065i \(0.572652\pi\)
\(948\) 0 0
\(949\) 5.75192e13 2.30205
\(950\) 0 0
\(951\) −6.19717e13 −2.45686
\(952\) 0 0
\(953\) 3.00142e12i 0.117872i 0.998262 + 0.0589358i \(0.0187707\pi\)
−0.998262 + 0.0589358i \(0.981229\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 5.40725e13i 2.08388i
\(958\) 0 0
\(959\) −2.62122e12 −0.100074
\(960\) 0 0
\(961\) 4.13017e13 1.56211
\(962\) 0 0
\(963\) 9.02581e12i 0.338195i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1.36956e13i − 0.503690i −0.967768 0.251845i \(-0.918963\pi\)
0.967768 0.251845i \(-0.0810373\pi\)
\(968\) 0 0
\(969\) 1.06705e13 0.388801
\(970\) 0 0
\(971\) 2.83646e12 0.102398 0.0511988 0.998688i \(-0.483696\pi\)
0.0511988 + 0.998688i \(0.483696\pi\)
\(972\) 0 0
\(973\) − 5.66311e12i − 0.202557i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 9.66226e12i − 0.339276i −0.985506 0.169638i \(-0.945740\pi\)
0.985506 0.169638i \(-0.0542599\pi\)
\(978\) 0 0
\(979\) 3.92533e13 1.36570
\(980\) 0 0
\(981\) −4.51396e13 −1.55614
\(982\) 0 0
\(983\) 1.05400e13i 0.360039i 0.983663 + 0.180019i \(0.0576160\pi\)
−0.983663 + 0.180019i \(0.942384\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 9.70684e12i − 0.325575i
\(988\) 0 0
\(989\) −2.19914e12 −0.0730920
\(990\) 0 0
\(991\) 3.01597e13 0.993335 0.496668 0.867941i \(-0.334557\pi\)
0.496668 + 0.867941i \(0.334557\pi\)
\(992\) 0 0
\(993\) 4.59668e13i 1.50028i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.98318e13i 0.635675i 0.948145 + 0.317837i \(0.102957\pi\)
−0.948145 + 0.317837i \(0.897043\pi\)
\(998\) 0 0
\(999\) 2.59288e13 0.823640
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.10.c.d.49.1 4
4.3 odd 2 400.10.c.m.49.4 4
5.2 odd 4 200.10.a.c.1.1 2
5.3 odd 4 40.10.a.c.1.2 2
5.4 even 2 inner 200.10.c.d.49.4 4
15.8 even 4 360.10.a.g.1.2 2
20.3 even 4 80.10.a.g.1.1 2
20.7 even 4 400.10.a.r.1.2 2
20.19 odd 2 400.10.c.m.49.1 4
40.3 even 4 320.10.a.q.1.2 2
40.13 odd 4 320.10.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.10.a.c.1.2 2 5.3 odd 4
80.10.a.g.1.1 2 20.3 even 4
200.10.a.c.1.1 2 5.2 odd 4
200.10.c.d.49.1 4 1.1 even 1 trivial
200.10.c.d.49.4 4 5.4 even 2 inner
320.10.a.n.1.1 2 40.13 odd 4
320.10.a.q.1.2 2 40.3 even 4
360.10.a.g.1.2 2 15.8 even 4
400.10.a.r.1.2 2 20.7 even 4
400.10.c.m.49.1 4 20.19 odd 2
400.10.c.m.49.4 4 4.3 odd 2