Properties

Label 20.27.d.a.19.1
Level $20$
Weight $27$
Character 20.19
Self dual yes
Analytic conductor $85.659$
Analytic rank $0$
Dimension $1$
CM discriminant -20
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [20,27,Mod(19,20)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(20, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 27, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("20.19"); S:= CuspForms(chi, 27); N := Newforms(S);
 
Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 27 \)
Character orbit: \([\chi]\) \(=\) 20.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-8192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.6585841459\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 19.1
Character \(\chi\) \(=\) 20.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8192.00 q^{2} -196556. q^{3} +6.71089e7 q^{4} -1.22070e9 q^{5} +1.61019e9 q^{6} +1.13407e11 q^{7} -5.49756e11 q^{8} -2.50323e12 q^{9} +1.00000e13 q^{10} -1.31906e13 q^{12} -9.29032e14 q^{14} +2.39937e14 q^{15} +4.50360e15 q^{16} +2.05065e16 q^{18} -8.19200e16 q^{20} -2.22909e16 q^{21} -7.67155e17 q^{23} +1.08058e17 q^{24} +1.49012e18 q^{25} +9.91644e17 q^{27} +7.61063e18 q^{28} +1.93102e19 q^{29} -1.96556e18 q^{30} -3.68935e19 q^{32} -1.38437e20 q^{35} -1.67989e20 q^{36} +6.71089e20 q^{40} -1.82951e21 q^{41} +1.82607e20 q^{42} -3.43251e21 q^{43} +3.05570e21 q^{45} +6.28453e21 q^{46} -5.74003e21 q^{47} -8.85210e20 q^{48} +3.47371e21 q^{49} -1.22070e22 q^{50} -8.12355e21 q^{54} -6.23463e22 q^{56} -1.58189e23 q^{58} +1.61019e22 q^{60} -5.07615e22 q^{61} -2.83884e23 q^{63} +3.02231e23 q^{64} +9.44504e23 q^{67} +1.50789e23 q^{69} +1.13407e24 q^{70} +1.37617e24 q^{72} -2.92891e23 q^{75} -5.49756e24 q^{80} +6.16797e24 q^{81} +1.49874e25 q^{82} +1.78871e24 q^{83} -1.49591e24 q^{84} +2.81191e25 q^{86} -3.79553e24 q^{87} +2.33570e25 q^{89} -2.50323e25 q^{90} -5.14829e25 q^{92} +4.70223e25 q^{94} +7.25164e24 q^{96} -2.84566e25 q^{98} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/20\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(17\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8192.00 −1.00000
\(3\) −196556. −0.123285 −0.0616425 0.998098i \(-0.519634\pi\)
−0.0616425 + 0.998098i \(0.519634\pi\)
\(4\) 6.71089e7 1.00000
\(5\) −1.22070e9 −1.00000
\(6\) 1.61019e9 0.123285
\(7\) 1.13407e11 1.17049 0.585243 0.810858i \(-0.300999\pi\)
0.585243 + 0.810858i \(0.300999\pi\)
\(8\) −5.49756e11 −1.00000
\(9\) −2.50323e12 −0.984801
\(10\) 1.00000e13 1.00000
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −1.31906e13 −0.123285
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −9.29032e14 −1.17049
\(15\) 2.39937e14 0.123285
\(16\) 4.50360e15 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 2.05065e16 0.984801
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −8.19200e16 −1.00000
\(21\) −2.22909e16 −0.144303
\(22\) 0 0
\(23\) −7.67155e17 −1.52202 −0.761012 0.648738i \(-0.775297\pi\)
−0.761012 + 0.648738i \(0.775297\pi\)
\(24\) 1.08058e17 0.123285
\(25\) 1.49012e18 1.00000
\(26\) 0 0
\(27\) 9.91644e17 0.244696
\(28\) 7.61063e18 1.17049
\(29\) 1.93102e19 1.88197 0.940984 0.338452i \(-0.109903\pi\)
0.940984 + 0.338452i \(0.109903\pi\)
\(30\) −1.96556e18 −0.123285
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −3.68935e19 −1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) −1.38437e20 −1.17049
\(36\) −1.67989e20 −0.984801
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 6.71089e20 1.00000
\(41\) −1.82951e21 −1.97763 −0.988814 0.149151i \(-0.952346\pi\)
−0.988814 + 0.149151i \(0.952346\pi\)
\(42\) 1.82607e20 0.144303
\(43\) −3.43251e21 −1.99766 −0.998831 0.0483468i \(-0.984605\pi\)
−0.998831 + 0.0483468i \(0.984605\pi\)
\(44\) 0 0
\(45\) 3.05570e21 0.984801
\(46\) 6.28453e21 1.52202
\(47\) −5.74003e21 −1.05110 −0.525548 0.850764i \(-0.676140\pi\)
−0.525548 + 0.850764i \(0.676140\pi\)
\(48\) −8.85210e20 −0.123285
\(49\) 3.47371e21 0.370037
\(50\) −1.22070e22 −1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −8.12355e21 −0.244696
\(55\) 0 0
\(56\) −6.23463e22 −1.17049
\(57\) 0 0
\(58\) −1.58189e23 −1.88197
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 1.61019e22 0.123285
\(61\) −5.07615e22 −0.313506 −0.156753 0.987638i \(-0.550103\pi\)
−0.156753 + 0.987638i \(0.550103\pi\)
\(62\) 0 0
\(63\) −2.83884e23 −1.15270
\(64\) 3.02231e23 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 9.44504e23 1.72279 0.861393 0.507939i \(-0.169593\pi\)
0.861393 + 0.507939i \(0.169593\pi\)
\(68\) 0 0
\(69\) 1.50789e23 0.187643
\(70\) 1.13407e24 1.17049
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 1.37617e24 0.984801
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −2.92891e23 −0.123285
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −5.49756e24 −1.00000
\(81\) 6.16797e24 0.954633
\(82\) 1.49874e25 1.97763
\(83\) 1.78871e24 0.201615 0.100808 0.994906i \(-0.467857\pi\)
0.100808 + 0.994906i \(0.467857\pi\)
\(84\) −1.49591e24 −0.144303
\(85\) 0 0
\(86\) 2.81191e25 1.99766
\(87\) −3.79553e24 −0.232018
\(88\) 0 0
\(89\) 2.33570e25 1.06254 0.531272 0.847201i \(-0.321714\pi\)
0.531272 + 0.847201i \(0.321714\pi\)
\(90\) −2.50323e25 −0.984801
\(91\) 0 0
\(92\) −5.14829e25 −1.52202
\(93\) 0 0
\(94\) 4.70223e25 1.05110
\(95\) 0 0
\(96\) 7.25164e24 0.123285
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −2.84566e25 −0.370037
\(99\) 0 0
\(100\) 1.00000e26 1.00000
\(101\) 1.90891e26 1.67729 0.838643 0.544682i \(-0.183349\pi\)
0.838643 + 0.544682i \(0.183349\pi\)
\(102\) 0 0
\(103\) 9.88703e25 0.673259 0.336629 0.941637i \(-0.390713\pi\)
0.336629 + 0.941637i \(0.390713\pi\)
\(104\) 0 0
\(105\) 2.72105e25 0.144303
\(106\) 0 0
\(107\) −4.74135e26 −1.96749 −0.983746 0.179566i \(-0.942531\pi\)
−0.983746 + 0.179566i \(0.942531\pi\)
\(108\) 6.65481e25 0.244696
\(109\) 4.66237e26 1.52077 0.760383 0.649475i \(-0.225011\pi\)
0.760383 + 0.649475i \(0.225011\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 5.10741e26 1.17049
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 9.36469e26 1.52202
\(116\) 1.29588e27 1.88197
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −1.31906e26 −0.123285
\(121\) 1.19182e27 1.00000
\(122\) 4.15838e26 0.313506
\(123\) 3.59601e26 0.243812
\(124\) 0 0
\(125\) −1.81899e27 −1.00000
\(126\) 2.32558e27 1.15270
\(127\) 9.37166e26 0.419149 0.209574 0.977793i \(-0.432792\pi\)
0.209574 + 0.977793i \(0.432792\pi\)
\(128\) −2.47588e27 −1.00000
\(129\) 6.74680e26 0.246282
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −7.73737e27 −1.72279
\(135\) −1.21050e27 −0.244696
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) −1.23526e27 −0.187643
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −9.29032e27 −1.17049
\(141\) 1.12824e27 0.129584
\(142\) 0 0
\(143\) 0 0
\(144\) −1.12736e28 −0.984801
\(145\) −2.35720e28 −1.88197
\(146\) 0 0
\(147\) −6.82779e26 −0.0456199
\(148\) 0 0
\(149\) 2.76227e27 0.154826 0.0774132 0.996999i \(-0.475334\pi\)
0.0774132 + 0.996999i \(0.475334\pi\)
\(150\) 2.39937e27 0.123285
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 4.50360e28 1.00000
\(161\) −8.70009e28 −1.78151
\(162\) −5.05280e28 −0.954633
\(163\) 6.18526e28 1.07875 0.539373 0.842067i \(-0.318661\pi\)
0.539373 + 0.842067i \(0.318661\pi\)
\(164\) −1.22776e29 −1.97763
\(165\) 0 0
\(166\) −1.46531e28 −0.201615
\(167\) 1.47786e29 1.88070 0.940352 0.340204i \(-0.110496\pi\)
0.940352 + 0.340204i \(0.110496\pi\)
\(168\) 1.22545e28 0.144303
\(169\) 9.17333e28 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −2.30352e29 −1.99766
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 3.10930e28 0.232018
\(175\) 1.68990e29 1.17049
\(176\) 0 0
\(177\) 0 0
\(178\) −1.91340e29 −1.06254
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 2.05065e29 0.984801
\(181\) 1.59151e29 0.711193 0.355597 0.934639i \(-0.384278\pi\)
0.355597 + 0.934639i \(0.384278\pi\)
\(182\) 0 0
\(183\) 9.97747e27 0.0386506
\(184\) 4.21748e29 1.52202
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −3.85207e29 −1.05110
\(189\) 1.12460e29 0.286413
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −5.94054e28 −0.123285
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.33117e29 0.370037
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −8.19200e29 −1.00000
\(201\) −1.85648e29 −0.212393
\(202\) −1.56378e30 −1.67729
\(203\) 2.18991e30 2.20282
\(204\) 0 0
\(205\) 2.23329e30 1.97763
\(206\) −8.09946e29 −0.673259
\(207\) 1.92037e30 1.49889
\(208\) 0 0
\(209\) 0 0
\(210\) −2.22909e29 −0.144303
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 3.88411e30 1.96749
\(215\) 4.19008e30 1.99766
\(216\) −5.45162e29 −0.244696
\(217\) 0 0
\(218\) −3.81941e30 −1.52077
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 6.25516e30 1.85471 0.927353 0.374187i \(-0.122078\pi\)
0.927353 + 0.374187i \(0.122078\pi\)
\(224\) −4.18399e30 −1.17049
\(225\) −3.73011e30 −0.984801
\(226\) 0 0
\(227\) −6.38136e30 −1.50168 −0.750839 0.660485i \(-0.770351\pi\)
−0.750839 + 0.660485i \(0.770351\pi\)
\(228\) 0 0
\(229\) −9.50662e30 −1.99602 −0.998010 0.0630538i \(-0.979916\pi\)
−0.998010 + 0.0630538i \(0.979916\pi\)
\(230\) −7.67155e30 −1.52202
\(231\) 0 0
\(232\) −1.06159e31 −1.88197
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 7.00687e30 1.05110
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 1.08058e30 0.123285
\(241\) 1.07832e31 1.16554 0.582771 0.812636i \(-0.301968\pi\)
0.582771 + 0.812636i \(0.301968\pi\)
\(242\) −9.76337e30 −1.00000
\(243\) −3.73298e30 −0.362388
\(244\) −3.40655e30 −0.313506
\(245\) −4.24037e30 −0.370037
\(246\) −2.94585e30 −0.243812
\(247\) 0 0
\(248\) 0 0
\(249\) −3.51581e29 −0.0248561
\(250\) 1.49012e31 1.00000
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −1.90512e31 −1.15270
\(253\) 0 0
\(254\) −7.67726e30 −0.419149
\(255\) 0 0
\(256\) 2.02824e31 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) −5.52698e30 −0.246282
\(259\) 0 0
\(260\) 0 0
\(261\) −4.83378e31 −1.85336
\(262\) 0 0
\(263\) 5.21305e31 1.80995 0.904976 0.425463i \(-0.139889\pi\)
0.904976 + 0.425463i \(0.139889\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4.59096e30 −0.130996
\(268\) 6.33846e31 1.72279
\(269\) 6.13999e31 1.58997 0.794984 0.606631i \(-0.207479\pi\)
0.794984 + 0.606631i \(0.207479\pi\)
\(270\) 9.91644e30 0.244696
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 1.01193e31 0.187643
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 7.61063e31 1.17049
\(281\) 1.35628e32 1.99145 0.995723 0.0923919i \(-0.0294512\pi\)
0.995723 + 0.0923919i \(0.0294512\pi\)
\(282\) −9.24252e30 −0.129584
\(283\) −1.47609e32 −1.97647 −0.988233 0.152959i \(-0.951120\pi\)
−0.988233 + 0.152959i \(0.951120\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.07480e32 −2.31479
\(288\) 9.23529e31 0.984801
\(289\) 9.81007e31 1.00000
\(290\) 1.93102e32 1.88197
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 5.59332e30 0.0456199
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −2.26285e31 −0.154826
\(299\) 0 0
\(300\) −1.96556e31 −0.123285
\(301\) −3.89271e32 −2.33823
\(302\) 0 0
\(303\) −3.75207e31 −0.206784
\(304\) 0 0
\(305\) 6.19647e31 0.313506
\(306\) 0 0
\(307\) −4.30315e32 −1.99980 −0.999902 0.0139720i \(-0.995552\pi\)
−0.999902 + 0.0139720i \(0.995552\pi\)
\(308\) 0 0
\(309\) −1.94336e31 −0.0830027
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 3.46539e32 1.15270
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −3.68935e32 −1.00000
\(321\) 9.31941e31 0.242562
\(322\) 7.12711e32 1.78151
\(323\) 0 0
\(324\) 4.13925e32 0.954633
\(325\) 0 0
\(326\) −5.06697e32 −1.07875
\(327\) −9.16417e31 −0.187487
\(328\) 1.00578e33 1.97763
\(329\) −6.50961e32 −1.23029
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 1.20038e32 0.201615
\(333\) 0 0
\(334\) −1.21067e33 −1.88070
\(335\) −1.15296e33 −1.72279
\(336\) −1.00389e32 −0.144303
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −7.51479e32 −1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −6.70664e32 −0.737363
\(344\) 1.88704e33 1.99766
\(345\) −1.84069e32 −0.187643
\(346\) 0 0
\(347\) 1.73070e33 1.63659 0.818293 0.574801i \(-0.194921\pi\)
0.818293 + 0.574801i \(0.194921\pi\)
\(348\) −2.54714e32 −0.232018
\(349\) −9.08067e32 −0.796870 −0.398435 0.917197i \(-0.630447\pi\)
−0.398435 + 0.917197i \(0.630447\pi\)
\(350\) −1.38437e33 −1.17049
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.56746e33 1.06254
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) −1.67989e33 −0.984801
\(361\) 1.76845e33 1.00000
\(362\) −1.30376e33 −0.711193
\(363\) −2.34259e32 −0.123285
\(364\) 0 0
\(365\) 0 0
\(366\) −8.17355e31 −0.0386506
\(367\) 2.39255e33 1.09195 0.545974 0.837802i \(-0.316160\pi\)
0.545974 + 0.837802i \(0.316160\pi\)
\(368\) −3.45496e33 −1.52202
\(369\) 4.57969e33 1.94757
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 3.57533e32 0.123285
\(376\) 3.15561e33 1.05110
\(377\) 0 0
\(378\) −9.21269e32 −0.286413
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) −1.84206e32 −0.0516747
\(382\) 0 0
\(383\) 5.18603e33 1.35910 0.679549 0.733630i \(-0.262176\pi\)
0.679549 + 0.733630i \(0.262176\pi\)
\(384\) 4.86649e32 0.123285
\(385\) 0 0
\(386\) 0 0
\(387\) 8.59237e33 1.96730
\(388\) 0 0
\(389\) 2.51709e33 0.538956 0.269478 0.963007i \(-0.413149\pi\)
0.269478 + 0.963007i \(0.413149\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.90969e33 −0.370037
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 6.71089e33 1.00000
\(401\) −1.25035e34 −1.80366 −0.901828 0.432096i \(-0.857774\pi\)
−0.901828 + 0.432096i \(0.857774\pi\)
\(402\) 1.52083e33 0.212393
\(403\) 0 0
\(404\) 1.28105e34 1.67729
\(405\) −7.52925e33 −0.954633
\(406\) −1.79398e34 −2.20282
\(407\) 0 0
\(408\) 0 0
\(409\) 1.51273e34 1.68795 0.843973 0.536385i \(-0.180211\pi\)
0.843973 + 0.536385i \(0.180211\pi\)
\(410\) −1.82951e34 −1.97763
\(411\) 0 0
\(412\) 6.63508e33 0.673259
\(413\) 0 0
\(414\) −1.57316e34 −1.49889
\(415\) −2.18348e33 −0.201615
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 1.82607e33 0.144303
\(421\) −9.89833e33 −0.758394 −0.379197 0.925316i \(-0.623800\pi\)
−0.379197 + 0.925316i \(0.623800\pi\)
\(422\) 0 0
\(423\) 1.43686e34 1.03512
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5.75672e33 −0.366955
\(428\) −3.18187e34 −1.96749
\(429\) 0 0
\(430\) −3.43251e34 −1.99766
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 4.46597e33 0.244696
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 4.63321e33 0.232018
\(436\) 3.12886e34 1.52077
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −8.69550e33 −0.364412
\(442\) 0 0
\(443\) −4.71366e34 −1.86256 −0.931280 0.364304i \(-0.881307\pi\)
−0.931280 + 0.364304i \(0.881307\pi\)
\(444\) 0 0
\(445\) −2.85119e34 −1.06254
\(446\) −5.12423e34 −1.85471
\(447\) −5.42941e32 −0.0190878
\(448\) 3.42752e34 1.17049
\(449\) −1.86171e34 −0.617604 −0.308802 0.951126i \(-0.599928\pi\)
−0.308802 + 0.951126i \(0.599928\pi\)
\(450\) 3.05570e34 0.984801
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 5.22761e34 1.50168
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 7.78782e34 1.99602
\(459\) 0 0
\(460\) 6.28453e34 1.52202
\(461\) 5.74687e34 1.35307 0.676533 0.736412i \(-0.263481\pi\)
0.676533 + 0.736412i \(0.263481\pi\)
\(462\) 0 0
\(463\) 4.26692e33 0.0949646 0.0474823 0.998872i \(-0.484880\pi\)
0.0474823 + 0.998872i \(0.484880\pi\)
\(464\) 8.69653e34 1.88197
\(465\) 0 0
\(466\) 0 0
\(467\) −9.92089e34 −1.97438 −0.987191 0.159540i \(-0.948999\pi\)
−0.987191 + 0.159540i \(0.948999\pi\)
\(468\) 0 0
\(469\) 1.07114e35 2.01650
\(470\) −5.74003e34 −1.05110
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) −8.85210e33 −0.123285
\(481\) 0 0
\(482\) −8.83363e34 −1.16554
\(483\) 1.71005e34 0.219633
\(484\) 7.99815e34 1.00000
\(485\) 0 0
\(486\) 3.05805e34 0.362388
\(487\) −7.96478e34 −0.918962 −0.459481 0.888188i \(-0.651965\pi\)
−0.459481 + 0.888188i \(0.651965\pi\)
\(488\) 2.79064e34 0.313506
\(489\) −1.21575e34 −0.132993
\(490\) 3.47371e34 0.370037
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 2.41324e34 0.243812
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 2.88015e33 0.0248561
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −1.22070e35 −1.00000
\(501\) −2.90483e34 −0.231862
\(502\) 0 0
\(503\) −1.94446e35 −1.47372 −0.736861 0.676044i \(-0.763693\pi\)
−0.736861 + 0.676044i \(0.763693\pi\)
\(504\) 1.56067e35 1.15270
\(505\) −2.33021e35 −1.67729
\(506\) 0 0
\(507\) −1.80307e34 −0.123285
\(508\) 6.28921e34 0.419149
\(509\) 2.91654e35 1.89468 0.947342 0.320225i \(-0.103759\pi\)
0.947342 + 0.320225i \(0.103759\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.66153e35 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) −1.20691e35 −0.673259
\(516\) 4.52770e34 0.246282
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.09527e35 −1.00543 −0.502713 0.864453i \(-0.667665\pi\)
−0.502713 + 0.864453i \(0.667665\pi\)
\(522\) 3.95983e35 1.85336
\(523\) 3.89402e35 1.77777 0.888886 0.458129i \(-0.151480\pi\)
0.888886 + 0.458129i \(0.151480\pi\)
\(524\) 0 0
\(525\) −3.32160e34 −0.144303
\(526\) −4.27053e35 −1.80995
\(527\) 0 0
\(528\) 0 0
\(529\) 3.34474e35 1.31655
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 3.76091e34 0.130996
\(535\) 5.78778e35 1.96749
\(536\) −5.19246e35 −1.72279
\(537\) 0 0
\(538\) −5.02988e35 −1.58997
\(539\) 0 0
\(540\) −8.12355e34 −0.244696
\(541\) −6.54112e35 −1.92348 −0.961740 0.273965i \(-0.911665\pi\)
−0.961740 + 0.273965i \(0.911665\pi\)
\(542\) 0 0
\(543\) −3.12821e34 −0.0876794
\(544\) 0 0
\(545\) −5.69137e35 −1.52077
\(546\) 0 0
\(547\) 1.46915e35 0.374310 0.187155 0.982330i \(-0.440073\pi\)
0.187155 + 0.982330i \(0.440073\pi\)
\(548\) 0 0
\(549\) 1.27068e35 0.308741
\(550\) 0 0
\(551\) 0 0
\(552\) −8.28971e34 −0.187643
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −6.23463e35 −1.17049
\(561\) 0 0
\(562\) −1.11107e36 −1.99145
\(563\) 8.15866e35 1.42893 0.714463 0.699674i \(-0.246671\pi\)
0.714463 + 0.699674i \(0.246671\pi\)
\(564\) 7.57147e34 0.129584
\(565\) 0 0
\(566\) 1.20921e36 1.97647
\(567\) 6.99492e35 1.11738
\(568\) 0 0
\(569\) 1.27310e36 1.94269 0.971344 0.237678i \(-0.0763862\pi\)
0.971344 + 0.237678i \(0.0763862\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 1.69967e36 2.31479
\(575\) −1.14315e36 −1.52202
\(576\) −7.56555e35 −0.984801
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −8.03641e35 −1.00000
\(579\) 0 0
\(580\) −1.58189e36 −1.88197
\(581\) 2.02852e35 0.235988
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.16869e36 1.18960 0.594802 0.803872i \(-0.297230\pi\)
0.594802 + 0.803872i \(0.297230\pi\)
\(588\) −4.58205e34 −0.0456199
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.85373e35 0.154826
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 1.61019e35 0.123285
\(601\) 2.65724e36 1.99096 0.995479 0.0949804i \(-0.0302788\pi\)
0.995479 + 0.0949804i \(0.0302788\pi\)
\(602\) 3.18891e36 2.33823
\(603\) −2.36431e36 −1.69660
\(604\) 0 0
\(605\) −1.45486e36 −1.00000
\(606\) 3.07370e35 0.206784
\(607\) 1.81189e36 1.19311 0.596553 0.802573i \(-0.296536\pi\)
0.596553 + 0.802573i \(0.296536\pi\)
\(608\) 0 0
\(609\) −4.30440e35 −0.271574
\(610\) −5.07615e35 −0.313506
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 3.52514e36 1.99980
\(615\) −4.38966e35 −0.243812
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 1.59200e35 0.0830027
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) −7.60745e35 −0.372433
\(622\) 0 0
\(623\) 2.64885e36 1.24369
\(624\) 0 0
\(625\) 2.22045e36 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −2.83884e36 −1.15270
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.14400e36 −0.419149
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 3.02231e36 1.00000
\(641\) −6.15657e36 −1.99611 −0.998055 0.0623319i \(-0.980146\pi\)
−0.998055 + 0.0623319i \(0.980146\pi\)
\(642\) −7.63446e35 −0.242562
\(643\) −5.44896e36 −1.69657 −0.848284 0.529542i \(-0.822364\pi\)
−0.848284 + 0.529542i \(0.822364\pi\)
\(644\) −5.83853e36 −1.78151
\(645\) −8.23584e35 −0.246282
\(646\) 0 0
\(647\) −6.83892e36 −1.96441 −0.982204 0.187816i \(-0.939859\pi\)
−0.982204 + 0.187816i \(0.939859\pi\)
\(648\) −3.39087e36 −0.954633
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 4.15086e36 1.07875
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 7.50729e35 0.187487
\(655\) 0 0
\(656\) −8.23938e36 −1.97763
\(657\) 0 0
\(658\) 5.33267e36 1.23029
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −1.69884e36 −0.369430 −0.184715 0.982792i \(-0.559136\pi\)
−0.184715 + 0.982792i \(0.559136\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −9.83351e35 −0.201615
\(665\) 0 0
\(666\) 0 0
\(667\) −1.48139e37 −2.86440
\(668\) 9.91778e36 1.88070
\(669\) −1.22949e36 −0.228657
\(670\) 9.44504e36 1.72279
\(671\) 0 0
\(672\) 8.22388e35 0.144303
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 1.47766e36 0.244696
\(676\) 6.15612e36 1.00000
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.25429e36 0.185134
\(682\) 0 0
\(683\) 1.04219e37 1.48073 0.740366 0.672204i \(-0.234652\pi\)
0.740366 + 0.672204i \(0.234652\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5.49408e36 0.737363
\(687\) 1.86858e36 0.246079
\(688\) −1.54586e37 −1.99766
\(689\) 0 0
\(690\) 1.50789e36 0.187643
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.41779e37 −1.63659
\(695\) 0 0
\(696\) 2.08661e36 0.232018
\(697\) 0 0
\(698\) 7.43889e36 0.796870
\(699\) 0 0
\(700\) 1.13407e37 1.17049
\(701\) 6.56909e36 0.665535 0.332767 0.943009i \(-0.392018\pi\)
0.332767 + 0.943009i \(0.392018\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.37724e36 −0.129584
\(706\) 0 0
\(707\) 2.16484e37 1.96324
\(708\) 0 0
\(709\) 9.06611e36 0.792538 0.396269 0.918134i \(-0.370305\pi\)
0.396269 + 0.918134i \(0.370305\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.28406e37 −1.06254
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 1.37617e37 0.984801
\(721\) 1.12126e37 0.788040
\(722\) −1.44872e37 −1.00000
\(723\) −2.11951e36 −0.143694
\(724\) 1.06804e37 0.711193
\(725\) 2.87744e37 1.88197
\(726\) 1.91905e36 0.123285
\(727\) −1.45479e37 −0.918020 −0.459010 0.888431i \(-0.651796\pi\)
−0.459010 + 0.888431i \(0.651796\pi\)
\(728\) 0 0
\(729\) −1.49444e37 −0.909957
\(730\) 0 0
\(731\) 0 0
\(732\) 6.69577e35 0.0386506
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −1.95998e37 −1.09195
\(735\) 8.33470e35 0.0456199
\(736\) 2.83030e37 1.52202
\(737\) 0 0
\(738\) −3.75168e37 −1.94757
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.82605e37 1.34377 0.671886 0.740654i \(-0.265484\pi\)
0.671886 + 0.740654i \(0.265484\pi\)
\(744\) 0 0
\(745\) −3.37191e36 −0.154826
\(746\) 0 0
\(747\) −4.47754e36 −0.198551
\(748\) 0 0
\(749\) −5.37703e37 −2.30292
\(750\) −2.92891e36 −0.123285
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) −2.58508e37 −1.05110
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 7.54703e36 0.286413
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.02479e37 1.75032 0.875160 0.483834i \(-0.160756\pi\)
0.875160 + 0.483834i \(0.160756\pi\)
\(762\) 1.50901e36 0.0516747
\(763\) 5.28746e37 1.78003
\(764\) 0 0
\(765\) 0 0
\(766\) −4.24839e37 −1.35910
\(767\) 0 0
\(768\) −3.98663e36 −0.123285
\(769\) −6.17509e37 −1.87759 −0.938796 0.344475i \(-0.888057\pi\)
−0.938796 + 0.344475i \(0.888057\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −7.03887e37 −1.96730
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −2.06200e37 −0.538956
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.91488e37 0.460510
\(784\) 1.56442e37 0.370037
\(785\) 0 0
\(786\) 0 0
\(787\) 7.27384e37 1.63716 0.818582 0.574390i \(-0.194761\pi\)
0.818582 + 0.574390i \(0.194761\pi\)
\(788\) 0 0
\(789\) −1.02466e37 −0.223140
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −5.49756e37 −1.00000
\(801\) −5.84680e37 −1.04639
\(802\) 1.02428e38 1.80366
\(803\) 0 0
\(804\) −1.24586e37 −0.212393
\(805\) 1.06202e38 1.78151
\(806\) 0 0
\(807\) −1.20685e37 −0.196019
\(808\) −1.04943e38 −1.67729
\(809\) −5.68187e37 −0.893636 −0.446818 0.894625i \(-0.647443\pi\)
−0.446818 + 0.894625i \(0.647443\pi\)
\(810\) 6.16797e37 0.954633
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 1.46962e38 2.20282
\(813\) 0 0
\(814\) 0 0
\(815\) −7.55037e37 −1.07875
\(816\) 0 0
\(817\) 0 0
\(818\) −1.23923e38 −1.68795
\(819\) 0 0
\(820\) 1.49874e38 1.97763
\(821\) −1.19517e38 −1.55227 −0.776135 0.630567i \(-0.782822\pi\)
−0.776135 + 0.630567i \(0.782822\pi\)
\(822\) 0 0
\(823\) −8.90985e37 −1.12117 −0.560586 0.828096i \(-0.689424\pi\)
−0.560586 + 0.828096i \(0.689424\pi\)
\(824\) −5.43545e37 −0.673259
\(825\) 0 0
\(826\) 0 0
\(827\) −1.68740e38 −1.99363 −0.996817 0.0797270i \(-0.974595\pi\)
−0.996817 + 0.0797270i \(0.974595\pi\)
\(828\) 1.28874e38 1.49889
\(829\) 1.72179e38 1.97138 0.985691 0.168565i \(-0.0539133\pi\)
0.985691 + 0.168565i \(0.0539133\pi\)
\(830\) 1.78871e37 0.201615
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.80403e38 −1.88070
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) −1.49591e37 −0.144303
\(841\) 2.67602e38 2.54180
\(842\) 8.10871e37 0.758394
\(843\) −2.66586e37 −0.245515
\(844\) 0 0
\(845\) −1.11979e38 −1.00000
\(846\) −1.17708e38 −1.03512
\(847\) 1.35161e38 1.17049
\(848\) 0 0
\(849\) 2.90134e37 0.243668
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 4.71590e37 0.366955
\(855\) 0 0
\(856\) 2.60659e38 1.96749
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 2.81191e38 1.99766
\(861\) 4.07814e37 0.285378
\(862\) 0 0
\(863\) 1.40123e38 0.951413 0.475707 0.879604i \(-0.342192\pi\)
0.475707 + 0.879604i \(0.342192\pi\)
\(864\) −3.65852e37 −0.244696
\(865\) 0 0
\(866\) 0 0
\(867\) −1.92823e37 −0.123285
\(868\) 0 0
\(869\) 0 0
\(870\) −3.79553e37 −0.232018
\(871\) 0 0
\(872\) −2.56316e38 −1.52077
\(873\) 0 0
\(874\) 0 0
\(875\) −2.06286e38 −1.17049
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.11066e38 −1.09580 −0.547901 0.836543i \(-0.684573\pi\)
−0.547901 + 0.836543i \(0.684573\pi\)
\(882\) 7.12336e37 0.364412
\(883\) 3.48461e38 1.75657 0.878285 0.478137i \(-0.158688\pi\)
0.878285 + 0.478137i \(0.158688\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 3.86143e38 1.86256
\(887\) −3.89860e38 −1.85311 −0.926557 0.376155i \(-0.877246\pi\)
−0.926557 + 0.376155i \(0.877246\pi\)
\(888\) 0 0
\(889\) 1.06281e38 0.490607
\(890\) 2.33570e38 1.06254
\(891\) 0 0
\(892\) 4.19777e38 1.85471
\(893\) 0 0
\(894\) 4.44777e36 0.0190878
\(895\) 0 0
\(896\) −2.80783e38 −1.17049
\(897\) 0 0
\(898\) 1.52512e38 0.617604
\(899\) 0 0
\(900\) −2.50323e38 −0.984801
\(901\) 0 0
\(902\) 0 0
\(903\) 7.65136e37 0.288269
\(904\) 0 0
\(905\) −1.94276e38 −0.711193
\(906\) 0 0
\(907\) −1.45678e38 −0.518201 −0.259101 0.965850i \(-0.583426\pi\)
−0.259101 + 0.965850i \(0.583426\pi\)
\(908\) −4.28246e38 −1.50168
\(909\) −4.77844e38 −1.65179
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −1.21795e37 −0.0386506
\(916\) −6.37979e38 −1.99602
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) −5.14829e38 −1.52202
\(921\) 8.45810e37 0.246546
\(922\) −4.70783e38 −1.35307
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −3.49546e37 −0.0949646
\(927\) −2.47495e38 −0.663026
\(928\) −7.12419e38 −1.88197
\(929\) 5.78416e38 1.50673 0.753365 0.657602i \(-0.228429\pi\)
0.753365 + 0.657602i \(0.228429\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 8.12720e38 1.97438
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) −8.77474e38 −2.01650
\(939\) 0 0
\(940\) 4.70223e38 1.05110
\(941\) −6.60570e38 −1.45631 −0.728154 0.685413i \(-0.759622\pi\)
−0.728154 + 0.685413i \(0.759622\pi\)
\(942\) 0 0
\(943\) 1.40352e39 3.01000
\(944\) 0 0
\(945\) −1.37280e38 −0.286413
\(946\) 0 0
\(947\) 6.26207e38 1.27107 0.635533 0.772074i \(-0.280780\pi\)
0.635533 + 0.772074i \(0.280780\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 7.25164e37 0.123285
\(961\) 5.96217e38 1.00000
\(962\) 0 0
\(963\) 1.18687e39 1.93759
\(964\) 7.23651e38 1.16554
\(965\) 0 0
\(966\) −1.40088e38 −0.219633
\(967\) −1.28942e39 −1.99457 −0.997285 0.0736435i \(-0.976537\pi\)
−0.997285 + 0.0736435i \(0.976537\pi\)
\(968\) −6.55209e38 −1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −2.50516e38 −0.362388
\(973\) 0 0
\(974\) 6.52475e38 0.918962
\(975\) 0 0
\(976\) −2.28609e38 −0.313506
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 9.95943e37 0.132993
\(979\) 0 0
\(980\) −2.84566e38 −0.370037
\(981\) −1.16710e39 −1.49765
\(982\) 0 0
\(983\) 1.52228e39 1.90238 0.951192 0.308601i \(-0.0998607\pi\)
0.951192 + 0.308601i \(0.0998607\pi\)
\(984\) −1.97693e38 −0.243812
\(985\) 0 0
\(986\) 0 0
\(987\) 1.27950e38 0.151676
\(988\) 0 0
\(989\) 2.63327e39 3.04049
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −2.35942e37 −0.0248561
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 20.27.d.a.19.1 1
4.3 odd 2 20.27.d.b.19.1 yes 1
5.4 even 2 20.27.d.b.19.1 yes 1
20.19 odd 2 CM 20.27.d.a.19.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.27.d.a.19.1 1 1.1 even 1 trivial
20.27.d.a.19.1 1 20.19 odd 2 CM
20.27.d.b.19.1 yes 1 4.3 odd 2
20.27.d.b.19.1 yes 1 5.4 even 2