Properties

Label 20.25.d.b.19.1
Level $20$
Weight $25$
Character 20.19
Self dual yes
Analytic conductor $72.993$
Analytic rank $0$
Dimension $1$
CM discriminant -20
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [20,25,Mod(19,20)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(20, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 25, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("20.19"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 20.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,4096] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.9934304516\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 19.1
Character \(\chi\) \(=\) 20.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4096.00 q^{2} -834398. q^{3} +1.67772e7 q^{4} +2.44141e8 q^{5} -3.41769e9 q^{6} -2.61398e10 q^{7} +6.87195e10 q^{8} +4.13790e11 q^{9} +1.00000e12 q^{10} -1.39989e13 q^{12} -1.07069e14 q^{14} -2.03710e14 q^{15} +2.81475e14 q^{16} +1.69489e15 q^{18} +4.09600e15 q^{20} +2.18110e16 q^{21} -4.01974e16 q^{23} -5.73394e16 q^{24} +5.96046e16 q^{25} -1.09607e17 q^{27} -4.38553e17 q^{28} -3.09695e16 q^{29} -8.34398e17 q^{30} +1.15292e18 q^{32} -6.38179e18 q^{35} +6.94225e18 q^{36} +1.67772e19 q^{40} -2.93337e19 q^{41} +8.93379e19 q^{42} +7.23521e19 q^{43} +1.01023e20 q^{45} -1.64648e20 q^{46} +2.02721e20 q^{47} -2.34862e20 q^{48} +4.91709e20 q^{49} +2.44141e20 q^{50} -4.48952e20 q^{54} -1.79631e21 q^{56} -1.26851e20 q^{58} -3.41769e21 q^{60} +5.00828e21 q^{61} -1.08164e22 q^{63} +4.72237e21 q^{64} +1.63648e22 q^{67} +3.35406e22 q^{69} -2.61398e22 q^{70} +2.84355e22 q^{72} -4.97340e22 q^{75} +6.87195e22 q^{80} -2.54105e22 q^{81} -1.20151e23 q^{82} +1.79224e23 q^{83} +3.65928e23 q^{84} +2.96354e23 q^{86} +2.58409e22 q^{87} +4.29891e22 q^{89} +4.13790e23 q^{90} -6.74400e23 q^{92} +8.30345e23 q^{94} -9.61995e23 q^{96} +2.01404e24 q^{98} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/20\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(17\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4096.00 1.00000
\(3\) −834398. −1.57007 −0.785034 0.619453i \(-0.787354\pi\)
−0.785034 + 0.619453i \(0.787354\pi\)
\(4\) 1.67772e7 1.00000
\(5\) 2.44141e8 1.00000
\(6\) −3.41769e9 −1.57007
\(7\) −2.61398e10 −1.88854 −0.944270 0.329173i \(-0.893230\pi\)
−0.944270 + 0.329173i \(0.893230\pi\)
\(8\) 6.87195e10 1.00000
\(9\) 4.13790e11 1.46511
\(10\) 1.00000e12 1.00000
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −1.39989e13 −1.57007
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −1.07069e14 −1.88854
\(15\) −2.03710e14 −1.57007
\(16\) 2.81475e14 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 1.69489e15 1.46511
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 4.09600e15 1.00000
\(21\) 2.18110e16 2.96513
\(22\) 0 0
\(23\) −4.01974e16 −1.83427 −0.917136 0.398575i \(-0.869505\pi\)
−0.917136 + 0.398575i \(0.869505\pi\)
\(24\) −5.73394e16 −1.57007
\(25\) 5.96046e16 1.00000
\(26\) 0 0
\(27\) −1.09607e17 −0.730255
\(28\) −4.38553e17 −1.88854
\(29\) −3.09695e16 −0.0875302 −0.0437651 0.999042i \(-0.513935\pi\)
−0.0437651 + 0.999042i \(0.513935\pi\)
\(30\) −8.34398e17 −1.57007
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.15292e18 1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) −6.38179e18 −1.88854
\(36\) 6.94225e18 1.46511
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.67772e19 1.00000
\(41\) −2.93337e19 −1.30005 −0.650027 0.759911i \(-0.725242\pi\)
−0.650027 + 0.759911i \(0.725242\pi\)
\(42\) 8.93379e19 2.96513
\(43\) 7.23521e19 1.81063 0.905314 0.424742i \(-0.139635\pi\)
0.905314 + 0.424742i \(0.139635\pi\)
\(44\) 0 0
\(45\) 1.01023e20 1.46511
\(46\) −1.64648e20 −1.83427
\(47\) 2.02721e20 1.74471 0.872357 0.488869i \(-0.162590\pi\)
0.872357 + 0.488869i \(0.162590\pi\)
\(48\) −2.34862e20 −1.57007
\(49\) 4.91709e20 2.56658
\(50\) 2.44141e20 1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −4.48952e20 −0.730255
\(55\) 0 0
\(56\) −1.79631e21 −1.88854
\(57\) 0 0
\(58\) −1.26851e20 −0.0875302
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −3.41769e21 −1.57007
\(61\) 5.00828e21 1.88682 0.943411 0.331627i \(-0.107597\pi\)
0.943411 + 0.331627i \(0.107597\pi\)
\(62\) 0 0
\(63\) −1.08164e22 −2.76692
\(64\) 4.72237e21 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 1.63648e22 1.99993 0.999964 0.00848499i \(-0.00270089\pi\)
0.999964 + 0.00848499i \(0.00270089\pi\)
\(68\) 0 0
\(69\) 3.35406e22 2.87993
\(70\) −2.61398e22 −1.88854
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 2.84355e22 1.46511
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −4.97340e22 −1.57007
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 6.87195e22 1.00000
\(81\) −2.54105e22 −0.318562
\(82\) −1.20151e23 −1.30005
\(83\) 1.79224e23 1.67671 0.838357 0.545121i \(-0.183516\pi\)
0.838357 + 0.545121i \(0.183516\pi\)
\(84\) 3.65928e23 2.96513
\(85\) 0 0
\(86\) 2.96354e23 1.81063
\(87\) 2.58409e22 0.137428
\(88\) 0 0
\(89\) 4.29891e22 0.174052 0.0870258 0.996206i \(-0.472264\pi\)
0.0870258 + 0.996206i \(0.472264\pi\)
\(90\) 4.13790e23 1.46511
\(91\) 0 0
\(92\) −6.74400e23 −1.83427
\(93\) 0 0
\(94\) 8.30345e23 1.74471
\(95\) 0 0
\(96\) −9.61995e23 −1.57007
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 2.01404e24 2.56658
\(99\) 0 0
\(100\) 1.00000e24 1.00000
\(101\) 1.63137e23 0.144776 0.0723881 0.997377i \(-0.476938\pi\)
0.0723881 + 0.997377i \(0.476938\pi\)
\(102\) 0 0
\(103\) −2.41811e24 −1.69601 −0.848006 0.529987i \(-0.822197\pi\)
−0.848006 + 0.529987i \(0.822197\pi\)
\(104\) 0 0
\(105\) 5.32495e24 2.96513
\(106\) 0 0
\(107\) 1.90838e24 0.847345 0.423672 0.905816i \(-0.360741\pi\)
0.423672 + 0.905816i \(0.360741\pi\)
\(108\) −1.83891e24 −0.730255
\(109\) −2.85198e24 −1.01398 −0.506988 0.861953i \(-0.669241\pi\)
−0.506988 + 0.861953i \(0.669241\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −7.35770e24 −1.88854
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) −9.81381e24 −1.83427
\(116\) −5.19581e23 −0.0875302
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −1.39989e25 −1.57007
\(121\) 9.84973e24 1.00000
\(122\) 2.05139e25 1.88682
\(123\) 2.44760e25 2.04117
\(124\) 0 0
\(125\) 1.45519e25 1.00000
\(126\) −4.43040e25 −2.76692
\(127\) −5.87349e24 −0.333620 −0.166810 0.985989i \(-0.553347\pi\)
−0.166810 + 0.985989i \(0.553347\pi\)
\(128\) 1.93428e25 1.00000
\(129\) −6.03704e25 −2.84281
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.70304e25 1.99993
\(135\) −2.67596e25 −0.730255
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 1.37382e26 2.87993
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −1.07069e26 −1.88854
\(141\) −1.69150e26 −2.73932
\(142\) 0 0
\(143\) 0 0
\(144\) 1.16472e26 1.46511
\(145\) −7.56090e24 −0.0875302
\(146\) 0 0
\(147\) −4.10281e26 −4.02970
\(148\) 0 0
\(149\) −6.86998e25 −0.573747 −0.286873 0.957968i \(-0.592616\pi\)
−0.286873 + 0.957968i \(0.592616\pi\)
\(150\) −2.03710e26 −1.57007
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 2.81475e26 1.00000
\(161\) 1.05075e27 3.46409
\(162\) −1.04082e26 −0.318562
\(163\) 7.02891e26 1.99819 0.999095 0.0425351i \(-0.0135434\pi\)
0.999095 + 0.0425351i \(0.0135434\pi\)
\(164\) −4.92139e26 −1.30005
\(165\) 0 0
\(166\) 7.34102e26 1.67671
\(167\) −8.65117e26 −1.83856 −0.919279 0.393607i \(-0.871227\pi\)
−0.919279 + 0.393607i \(0.871227\pi\)
\(168\) 1.49884e27 2.96513
\(169\) 5.42801e26 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 1.21387e27 1.81063
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 1.05844e26 0.137428
\(175\) −1.55805e27 −1.88854
\(176\) 0 0
\(177\) 0 0
\(178\) 1.76083e26 0.174052
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 1.69489e27 1.46511
\(181\) −5.26957e26 −0.426219 −0.213109 0.977028i \(-0.568359\pi\)
−0.213109 + 0.977028i \(0.568359\pi\)
\(182\) 0 0
\(183\) −4.17890e27 −2.96244
\(184\) −2.76234e27 −1.83427
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 3.40109e27 1.74471
\(189\) 2.86511e27 1.37911
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −3.94033e27 −1.57007
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 8.24950e27 2.56658
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 4.09600e27 1.00000
\(201\) −1.36548e28 −3.14002
\(202\) 6.68211e26 0.144776
\(203\) 8.09536e26 0.165304
\(204\) 0 0
\(205\) −7.16156e27 −1.30005
\(206\) −9.90456e27 −1.69601
\(207\) −1.66333e28 −2.68741
\(208\) 0 0
\(209\) 0 0
\(210\) 2.18110e28 2.96513
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 7.81673e27 0.847345
\(215\) 1.76641e28 1.81063
\(216\) −7.53216e27 −0.730255
\(217\) 0 0
\(218\) −1.16817e28 −1.01398
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −2.50378e28 −1.65554 −0.827768 0.561071i \(-0.810389\pi\)
−0.827768 + 0.561071i \(0.810389\pi\)
\(224\) −3.01372e28 −1.88854
\(225\) 2.46638e28 1.46511
\(226\) 0 0
\(227\) −6.69727e27 −0.357756 −0.178878 0.983871i \(-0.557247\pi\)
−0.178878 + 0.983871i \(0.557247\pi\)
\(228\) 0 0
\(229\) 2.15967e28 1.03839 0.519196 0.854655i \(-0.326231\pi\)
0.519196 + 0.854655i \(0.326231\pi\)
\(230\) −4.01974e28 −1.83427
\(231\) 0 0
\(232\) −2.12821e27 −0.0875302
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 4.94924e28 1.74471
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −5.73394e28 −1.57007
\(241\) −2.05926e28 −0.536422 −0.268211 0.963360i \(-0.586432\pi\)
−0.268211 + 0.963360i \(0.586432\pi\)
\(242\) 4.03445e28 1.00000
\(243\) 5.21588e28 1.23042
\(244\) 8.40250e28 1.88682
\(245\) 1.20046e29 2.56658
\(246\) 1.00254e29 2.04117
\(247\) 0 0
\(248\) 0 0
\(249\) −1.49544e29 −2.63255
\(250\) 5.96046e28 1.00000
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −1.81469e29 −2.76692
\(253\) 0 0
\(254\) −2.40578e28 −0.333620
\(255\) 0 0
\(256\) 7.92282e28 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) −2.47277e29 −2.84281
\(259\) 0 0
\(260\) 0 0
\(261\) −1.28149e28 −0.128241
\(262\) 0 0
\(263\) 1.85459e29 1.69347 0.846736 0.532013i \(-0.178564\pi\)
0.846736 + 0.532013i \(0.178564\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3.58700e28 −0.273273
\(268\) 2.74557e29 1.99993
\(269\) 1.89860e29 1.32253 0.661267 0.750151i \(-0.270019\pi\)
0.661267 + 0.750151i \(0.270019\pi\)
\(270\) −1.09607e29 −0.730255
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 5.62718e29 2.87993
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −4.38553e29 −1.88854
\(281\) −3.88928e29 −1.60470 −0.802349 0.596856i \(-0.796417\pi\)
−0.802349 + 0.596856i \(0.796417\pi\)
\(282\) −6.92838e29 −2.73932
\(283\) 3.58181e29 1.35727 0.678634 0.734476i \(-0.262572\pi\)
0.678634 + 0.734476i \(0.262572\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.66779e29 2.45520
\(288\) 4.77068e29 1.46511
\(289\) 3.39449e29 1.00000
\(290\) −3.09695e28 −0.0875302
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −1.68051e30 −4.02970
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −2.81394e29 −0.573747
\(299\) 0 0
\(300\) −8.34398e29 −1.57007
\(301\) −1.89127e30 −3.41944
\(302\) 0 0
\(303\) −1.36122e29 −0.227308
\(304\) 0 0
\(305\) 1.22273e30 1.88682
\(306\) 0 0
\(307\) −1.36529e30 −1.94790 −0.973948 0.226773i \(-0.927182\pi\)
−0.973948 + 0.226773i \(0.927182\pi\)
\(308\) 0 0
\(309\) 2.01766e30 2.66285
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −2.64072e30 −2.76692
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.15292e30 1.00000
\(321\) −1.59235e30 −1.33039
\(322\) 4.30388e30 3.46409
\(323\) 0 0
\(324\) −4.26318e29 −0.318562
\(325\) 0 0
\(326\) 2.87904e30 1.99819
\(327\) 2.37968e30 1.59201
\(328\) −2.01580e30 −1.30005
\(329\) −5.29909e30 −3.29496
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 3.00688e30 1.67671
\(333\) 0 0
\(334\) −3.54352e30 −1.83856
\(335\) 3.99532e30 1.99993
\(336\) 6.13925e30 2.96513
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 2.22331e30 1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −7.84527e30 −2.95855
\(344\) 4.97200e30 1.81063
\(345\) 8.18863e30 2.87993
\(346\) 0 0
\(347\) −2.62054e30 −0.859880 −0.429940 0.902857i \(-0.641465\pi\)
−0.429940 + 0.902857i \(0.641465\pi\)
\(348\) 4.33538e29 0.137428
\(349\) 6.06863e30 1.85860 0.929299 0.369328i \(-0.120412\pi\)
0.929299 + 0.369328i \(0.120412\pi\)
\(350\) −6.38179e30 −1.88854
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.21237e29 0.174052
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 6.94225e30 1.46511
\(361\) 4.89876e30 1.00000
\(362\) −2.15842e30 −0.426219
\(363\) −8.21860e30 −1.57007
\(364\) 0 0
\(365\) 0 0
\(366\) −1.71168e31 −2.96244
\(367\) −4.78471e30 −0.801424 −0.400712 0.916204i \(-0.631237\pi\)
−0.400712 + 0.916204i \(0.631237\pi\)
\(368\) −1.13146e31 −1.83427
\(369\) −1.21380e31 −1.90472
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −1.21421e31 −1.57007
\(376\) 1.39309e31 1.74471
\(377\) 0 0
\(378\) 1.17355e31 1.37911
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 4.90083e30 0.523806
\(382\) 0 0
\(383\) 1.53718e31 1.54291 0.771453 0.636286i \(-0.219530\pi\)
0.771453 + 0.636286i \(0.219530\pi\)
\(384\) −1.61396e31 −1.57007
\(385\) 0 0
\(386\) 0 0
\(387\) 2.99386e31 2.65277
\(388\) 0 0
\(389\) −2.40106e31 −1.99990 −0.999948 0.0102012i \(-0.996753\pi\)
−0.999948 + 0.0102012i \(0.996753\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.37900e31 2.56658
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.67772e31 1.00000
\(401\) 6.58776e30 0.381071 0.190535 0.981680i \(-0.438978\pi\)
0.190535 + 0.981680i \(0.438978\pi\)
\(402\) −5.59300e31 −3.14002
\(403\) 0 0
\(404\) 2.73699e30 0.144776
\(405\) −6.20374e30 −0.318562
\(406\) 3.31586e30 0.165304
\(407\) 0 0
\(408\) 0 0
\(409\) −3.16362e31 −1.44379 −0.721895 0.692003i \(-0.756729\pi\)
−0.721895 + 0.692003i \(0.756729\pi\)
\(410\) −2.93337e31 −1.30005
\(411\) 0 0
\(412\) −4.05691e31 −1.69601
\(413\) 0 0
\(414\) −6.81300e31 −2.68741
\(415\) 4.37559e31 1.67671
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 8.93379e31 2.96513
\(421\) −2.15824e29 −0.00696168 −0.00348084 0.999994i \(-0.501108\pi\)
−0.00348084 + 0.999994i \(0.501108\pi\)
\(422\) 0 0
\(423\) 8.38840e31 2.55620
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.30916e32 −3.56334
\(428\) 3.20173e31 0.847345
\(429\) 0 0
\(430\) 7.23521e31 1.81063
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −3.08517e31 −0.730255
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 6.30880e30 0.137428
\(436\) −4.78482e31 −1.01398
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 2.03464e32 3.76032
\(442\) 0 0
\(443\) 7.73164e31 1.35340 0.676701 0.736258i \(-0.263409\pi\)
0.676701 + 0.736258i \(0.263409\pi\)
\(444\) 0 0
\(445\) 1.04954e31 0.174052
\(446\) −1.02555e32 −1.65554
\(447\) 5.73230e31 0.900821
\(448\) −1.23442e32 −1.88854
\(449\) 9.61046e31 1.43149 0.715745 0.698362i \(-0.246087\pi\)
0.715745 + 0.698362i \(0.246087\pi\)
\(450\) 1.01023e32 1.46511
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −2.74320e31 −0.357756
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 8.84601e31 1.03839
\(459\) 0 0
\(460\) −1.64648e32 −1.83427
\(461\) 5.85571e31 0.635577 0.317789 0.948162i \(-0.397060\pi\)
0.317789 + 0.948162i \(0.397060\pi\)
\(462\) 0 0
\(463\) 1.17151e32 1.20718 0.603592 0.797293i \(-0.293736\pi\)
0.603592 + 0.797293i \(0.293736\pi\)
\(464\) −8.71713e30 −0.0875302
\(465\) 0 0
\(466\) 0 0
\(467\) −5.82441e30 −0.0541315 −0.0270657 0.999634i \(-0.508616\pi\)
−0.0270657 + 0.999634i \(0.508616\pi\)
\(468\) 0 0
\(469\) −4.27774e32 −3.77694
\(470\) 2.02721e32 1.74471
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) −2.34862e32 −1.57007
\(481\) 0 0
\(482\) −8.43473e31 −0.536422
\(483\) −8.76745e32 −5.43886
\(484\) 1.65251e32 1.00000
\(485\) 0 0
\(486\) 2.13643e32 1.23042
\(487\) 3.55617e32 1.99818 0.999091 0.0426223i \(-0.0135712\pi\)
0.999091 + 0.0426223i \(0.0135712\pi\)
\(488\) 3.44167e32 1.88682
\(489\) −5.86491e32 −3.13729
\(490\) 4.91709e32 2.56658
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 4.10639e32 2.04117
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −6.12533e32 −2.63255
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 2.44141e32 1.00000
\(501\) 7.21852e32 2.88666
\(502\) 0 0
\(503\) 2.05360e32 0.782888 0.391444 0.920202i \(-0.371976\pi\)
0.391444 + 0.920202i \(0.371976\pi\)
\(504\) −7.43298e32 −2.76692
\(505\) 3.98285e31 0.144776
\(506\) 0 0
\(507\) −4.52912e32 −1.57007
\(508\) −9.85409e31 −0.333620
\(509\) −6.03783e32 −1.99649 −0.998246 0.0591970i \(-0.981146\pi\)
−0.998246 + 0.0591970i \(0.981146\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 3.24519e32 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) −5.90358e32 −1.69601
\(516\) −1.01285e33 −2.84281
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.77291e32 −1.94326 −0.971630 0.236505i \(-0.923998\pi\)
−0.971630 + 0.236505i \(0.923998\pi\)
\(522\) −5.24897e31 −0.128241
\(523\) −2.62258e32 −0.626193 −0.313097 0.949721i \(-0.601366\pi\)
−0.313097 + 0.949721i \(0.601366\pi\)
\(524\) 0 0
\(525\) 1.30004e33 2.96513
\(526\) 7.59639e32 1.69347
\(527\) 0 0
\(528\) 0 0
\(529\) 1.13558e33 2.36455
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −1.46924e32 −0.273273
\(535\) 4.65914e32 0.847345
\(536\) 1.12458e33 1.99993
\(537\) 0 0
\(538\) 7.77668e32 1.32253
\(539\) 0 0
\(540\) −4.48952e32 −0.730255
\(541\) −7.29092e32 −1.15988 −0.579942 0.814657i \(-0.696925\pi\)
−0.579942 + 0.814657i \(0.696925\pi\)
\(542\) 0 0
\(543\) 4.39692e32 0.669192
\(544\) 0 0
\(545\) −6.96283e32 −1.01398
\(546\) 0 0
\(547\) −7.59564e31 −0.105856 −0.0529281 0.998598i \(-0.516855\pi\)
−0.0529281 + 0.998598i \(0.516855\pi\)
\(548\) 0 0
\(549\) 2.07238e33 2.76440
\(550\) 0 0
\(551\) 0 0
\(552\) 2.30489e33 2.87993
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.79631e33 −1.88854
\(561\) 0 0
\(562\) −1.59305e33 −1.60470
\(563\) 1.53111e33 1.50975 0.754877 0.655866i \(-0.227697\pi\)
0.754877 + 0.655866i \(0.227697\pi\)
\(564\) −2.83787e33 −2.73932
\(565\) 0 0
\(566\) 1.46711e33 1.35727
\(567\) 6.64227e32 0.601616
\(568\) 0 0
\(569\) −2.31529e32 −0.201028 −0.100514 0.994936i \(-0.532049\pi\)
−0.100514 + 0.994936i \(0.532049\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 3.14073e33 2.45520
\(575\) −2.39595e33 −1.83427
\(576\) 1.95407e33 1.46511
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 1.39038e33 1.00000
\(579\) 0 0
\(580\) −1.26851e32 −0.0875302
\(581\) −4.68488e33 −3.16654
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.48508e32 0.447239 0.223619 0.974677i \(-0.428213\pi\)
0.223619 + 0.974677i \(0.428213\pi\)
\(588\) −6.88337e33 −4.02970
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.15259e33 −0.573747
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −3.41769e33 −1.57007
\(601\) −1.93306e33 −0.870468 −0.435234 0.900317i \(-0.643334\pi\)
−0.435234 + 0.900317i \(0.643334\pi\)
\(602\) −7.74664e33 −3.41944
\(603\) 6.77162e33 2.93012
\(604\) 0 0
\(605\) 2.40472e33 1.00000
\(606\) −5.57554e32 −0.227308
\(607\) 7.06595e31 0.0282427 0.0141214 0.999900i \(-0.495505\pi\)
0.0141214 + 0.999900i \(0.495505\pi\)
\(608\) 0 0
\(609\) −6.75475e32 −0.259539
\(610\) 5.00828e33 1.88682
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −5.59224e33 −1.94790
\(615\) 5.97559e33 2.04117
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 8.26435e33 2.66285
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 4.40593e33 1.33949
\(622\) 0 0
\(623\) −1.12373e33 −0.328703
\(624\) 0 0
\(625\) 3.55271e33 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −1.08164e34 −2.76692
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.43396e33 −0.333620
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 4.72237e33 1.00000
\(641\) 8.24959e33 1.71449 0.857247 0.514905i \(-0.172173\pi\)
0.857247 + 0.514905i \(0.172173\pi\)
\(642\) −6.52227e33 −1.33039
\(643\) −7.68447e33 −1.53845 −0.769223 0.638980i \(-0.779356\pi\)
−0.769223 + 0.638980i \(0.779356\pi\)
\(644\) 1.76287e34 3.46409
\(645\) −1.47389e34 −2.84281
\(646\) 0 0
\(647\) −9.17137e33 −1.70444 −0.852222 0.523181i \(-0.824745\pi\)
−0.852222 + 0.523181i \(0.824745\pi\)
\(648\) −1.74620e33 −0.318562
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.17926e34 1.99819
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 9.74718e33 1.59201
\(655\) 0 0
\(656\) −8.25672e33 −1.30005
\(657\) 0 0
\(658\) −2.17051e34 −3.29496
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −1.27431e34 −1.83172 −0.915860 0.401498i \(-0.868490\pi\)
−0.915860 + 0.401498i \(0.868490\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 1.23162e34 1.67671
\(665\) 0 0
\(666\) 0 0
\(667\) 1.24489e33 0.160554
\(668\) −1.45143e34 −1.83856
\(669\) 2.08915e34 2.59930
\(670\) 1.63648e34 1.99993
\(671\) 0 0
\(672\) 2.51464e34 2.96513
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −6.53310e33 −0.730255
\(676\) 9.10669e33 1.00000
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 5.58819e33 0.561701
\(682\) 0 0
\(683\) 6.44378e33 0.625305 0.312653 0.949868i \(-0.398782\pi\)
0.312653 + 0.949868i \(0.398782\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −3.21342e34 −2.95855
\(687\) −1.80202e34 −1.63035
\(688\) 2.03653e34 1.81063
\(689\) 0 0
\(690\) 3.35406e34 2.87993
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.07338e34 −0.859880
\(695\) 0 0
\(696\) 1.77577e33 0.137428
\(697\) 0 0
\(698\) 2.48571e34 1.85860
\(699\) 0 0
\(700\) −2.61398e34 −1.88854
\(701\) −1.43011e34 −1.01567 −0.507837 0.861453i \(-0.669555\pi\)
−0.507837 + 0.861453i \(0.669555\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −4.12964e34 −2.73932
\(706\) 0 0
\(707\) −4.26438e33 −0.273415
\(708\) 0 0
\(709\) 3.20837e34 1.98852 0.994258 0.107009i \(-0.0341275\pi\)
0.994258 + 0.107009i \(0.0341275\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 2.95419e33 0.174052
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 2.84355e34 1.46511
\(721\) 6.32088e34 3.20298
\(722\) 2.00653e34 1.00000
\(723\) 1.71824e34 0.842218
\(724\) −8.84088e33 −0.426219
\(725\) −1.84592e33 −0.0875302
\(726\) −3.36634e34 −1.57007
\(727\) −1.36875e34 −0.627931 −0.313966 0.949434i \(-0.601658\pi\)
−0.313966 + 0.949434i \(0.601658\pi\)
\(728\) 0 0
\(729\) −3.63445e34 −1.61328
\(730\) 0 0
\(731\) 0 0
\(732\) −7.01103e34 −2.96244
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −1.95982e34 −0.801424
\(735\) −1.00166e35 −4.02970
\(736\) −4.63444e34 −1.83427
\(737\) 0 0
\(738\) −4.97174e34 −1.90472
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.55181e34 1.96141 0.980706 0.195490i \(-0.0626298\pi\)
0.980706 + 0.195490i \(0.0626298\pi\)
\(744\) 0 0
\(745\) −1.67724e34 −0.573747
\(746\) 0 0
\(747\) 7.41612e34 2.45657
\(748\) 0 0
\(749\) −4.98848e34 −1.60024
\(750\) −4.97340e34 −1.57007
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 5.70609e34 1.74471
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 4.80686e34 1.37911
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.55411e34 −0.677056 −0.338528 0.940956i \(-0.609929\pi\)
−0.338528 + 0.940956i \(0.609929\pi\)
\(762\) 2.00738e34 0.523806
\(763\) 7.45501e34 1.91493
\(764\) 0 0
\(765\) 0 0
\(766\) 6.29629e34 1.54291
\(767\) 0 0
\(768\) −6.61078e34 −1.57007
\(769\) 8.44606e34 1.97487 0.987434 0.158030i \(-0.0505141\pi\)
0.987434 + 0.158030i \(0.0505141\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 1.22628e35 2.65277
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −9.83473e34 −1.99990
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 3.39448e33 0.0639193
\(784\) 1.38404e35 2.56658
\(785\) 0 0
\(786\) 0 0
\(787\) 7.14886e34 1.26631 0.633155 0.774025i \(-0.281759\pi\)
0.633155 + 0.774025i \(0.281759\pi\)
\(788\) 0 0
\(789\) −1.54746e35 −2.65887
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 6.87195e34 1.00000
\(801\) 1.77885e34 0.255005
\(802\) 2.69835e34 0.381071
\(803\) 0 0
\(804\) −2.29089e35 −3.14002
\(805\) 2.56531e35 3.46409
\(806\) 0 0
\(807\) −1.58419e35 −2.07647
\(808\) 1.12107e34 0.144776
\(809\) 2.76115e34 0.351324 0.175662 0.984451i \(-0.443793\pi\)
0.175662 + 0.984451i \(0.443793\pi\)
\(810\) −2.54105e34 −0.318562
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 1.35818e34 0.165304
\(813\) 0 0
\(814\) 0 0
\(815\) 1.71604e35 1.99819
\(816\) 0 0
\(817\) 0 0
\(818\) −1.29582e35 −1.44379
\(819\) 0 0
\(820\) −1.20151e35 −1.30005
\(821\) 4.95423e34 0.528273 0.264137 0.964485i \(-0.414913\pi\)
0.264137 + 0.964485i \(0.414913\pi\)
\(822\) 0 0
\(823\) 1.76546e35 1.82835 0.914176 0.405318i \(-0.132839\pi\)
0.914176 + 0.405318i \(0.132839\pi\)
\(824\) −1.66171e35 −1.69601
\(825\) 0 0
\(826\) 0 0
\(827\) −5.82998e34 −0.569641 −0.284820 0.958581i \(-0.591934\pi\)
−0.284820 + 0.958581i \(0.591934\pi\)
\(828\) −2.79060e35 −2.68741
\(829\) 1.69051e35 1.60459 0.802295 0.596928i \(-0.203612\pi\)
0.802295 + 0.596928i \(0.203612\pi\)
\(830\) 1.79224e35 1.67671
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.11210e35 −1.83856
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 3.65928e35 2.96513
\(841\) −1.24226e35 −0.992338
\(842\) −8.84014e32 −0.00696168
\(843\) 3.24521e35 2.51948
\(844\) 0 0
\(845\) 1.32520e35 1.00000
\(846\) 3.43589e35 2.55620
\(847\) −2.57470e35 −1.88854
\(848\) 0 0
\(849\) −2.98866e35 −2.13100
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) −5.36230e35 −3.56334
\(855\) 0 0
\(856\) 1.31143e35 0.847345
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 2.96354e35 1.81063
\(861\) −6.39799e35 −3.85483
\(862\) 0 0
\(863\) −2.49582e35 −1.46246 −0.731229 0.682132i \(-0.761053\pi\)
−0.731229 + 0.682132i \(0.761053\pi\)
\(864\) −1.26369e35 −0.730255
\(865\) 0 0
\(866\) 0 0
\(867\) −2.83235e35 −1.57007
\(868\) 0 0
\(869\) 0 0
\(870\) 2.58409e34 0.137428
\(871\) 0 0
\(872\) −1.95986e35 −1.01398
\(873\) 0 0
\(874\) 0 0
\(875\) −3.80384e35 −1.88854
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.51651e34 0.343799 0.171900 0.985114i \(-0.445009\pi\)
0.171900 + 0.985114i \(0.445009\pi\)
\(882\) 8.33390e35 3.76032
\(883\) −4.33662e35 −1.93029 −0.965145 0.261715i \(-0.915712\pi\)
−0.965145 + 0.261715i \(0.915712\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 3.16688e35 1.35340
\(887\) 3.88632e35 1.63853 0.819266 0.573413i \(-0.194381\pi\)
0.819266 + 0.573413i \(0.194381\pi\)
\(888\) 0 0
\(889\) 1.53532e35 0.630054
\(890\) 4.29891e34 0.174052
\(891\) 0 0
\(892\) −4.20065e35 −1.65554
\(893\) 0 0
\(894\) 2.34795e35 0.900821
\(895\) 0 0
\(896\) −5.05618e35 −1.88854
\(897\) 0 0
\(898\) 3.93644e35 1.43149
\(899\) 0 0
\(900\) 4.13790e35 1.46511
\(901\) 0 0
\(902\) 0 0
\(903\) 1.57807e36 5.36876
\(904\) 0 0
\(905\) −1.28652e35 −0.426219
\(906\) 0 0
\(907\) −7.48855e34 −0.241608 −0.120804 0.992676i \(-0.538547\pi\)
−0.120804 + 0.992676i \(0.538547\pi\)
\(908\) −1.12361e35 −0.357756
\(909\) 6.75047e34 0.212113
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −1.02024e36 −2.96244
\(916\) 3.62332e35 1.03839
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) −6.74400e35 −1.83427
\(921\) 1.13920e36 3.05833
\(922\) 2.39850e35 0.635577
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 4.79850e35 1.20718
\(927\) −1.00059e36 −2.48484
\(928\) −3.57054e34 −0.0875302
\(929\) −7.06348e35 −1.70935 −0.854673 0.519167i \(-0.826242\pi\)
−0.854673 + 0.519167i \(0.826242\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −2.38568e34 −0.0541315
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) −1.75216e36 −3.77694
\(939\) 0 0
\(940\) 8.30345e35 1.74471
\(941\) 7.03496e35 1.45944 0.729719 0.683747i \(-0.239651\pi\)
0.729719 + 0.683747i \(0.239651\pi\)
\(942\) 0 0
\(943\) 1.17914e36 2.38465
\(944\) 0 0
\(945\) 6.99491e35 1.37911
\(946\) 0 0
\(947\) −8.74520e35 −1.68101 −0.840504 0.541805i \(-0.817741\pi\)
−0.840504 + 0.541805i \(0.817741\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −9.61995e35 −1.57007
\(961\) 6.20413e35 1.00000
\(962\) 0 0
\(963\) 7.89670e35 1.24145
\(964\) −3.45486e35 −0.536422
\(965\) 0 0
\(966\) −3.59115e36 −5.43886
\(967\) 7.05504e34 0.105531 0.0527657 0.998607i \(-0.483196\pi\)
0.0527657 + 0.998607i \(0.483196\pi\)
\(968\) 6.76868e35 1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 8.75080e35 1.23042
\(973\) 0 0
\(974\) 1.45661e36 1.99818
\(975\) 0 0
\(976\) 1.40971e36 1.88682
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) −2.40227e36 −3.13729
\(979\) 0 0
\(980\) 2.01404e36 2.56658
\(981\) −1.18012e36 −1.48559
\(982\) 0 0
\(983\) −2.73448e35 −0.335918 −0.167959 0.985794i \(-0.553718\pi\)
−0.167959 + 0.985794i \(0.553718\pi\)
\(984\) 1.68198e36 2.04117
\(985\) 0 0
\(986\) 0 0
\(987\) 4.42155e36 5.17331
\(988\) 0 0
\(989\) −2.90836e36 −3.32119
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −2.50894e36 −2.63255
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 20.25.d.b.19.1 yes 1
4.3 odd 2 20.25.d.a.19.1 1
5.4 even 2 20.25.d.a.19.1 1
20.19 odd 2 CM 20.25.d.b.19.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.25.d.a.19.1 1 4.3 odd 2
20.25.d.a.19.1 1 5.4 even 2
20.25.d.b.19.1 yes 1 1.1 even 1 trivial
20.25.d.b.19.1 yes 1 20.19 odd 2 CM