Properties

Label 20.11.d
Level $20$
Weight $11$
Character orbit 20.d
Rep. character $\chi_{20}(19,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $4$
Sturm bound $33$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 20.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(33\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(20, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 28 28 0
Eisenstein series 4 4 0

Trace form

\( 28 q + 608 q^{4} + 1556 q^{5} - 4480 q^{6} + 472388 q^{9} + 24176 q^{10} + 429280 q^{14} - 539072 q^{16} - 4283104 q^{20} + 2717440 q^{21} + 25657280 q^{24} + 9050876 q^{25} + 9191136 q^{26} - 19342184 q^{29}+ \cdots + 10220645120 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(20, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
20.11.d.a 20.d 20.d $1$ $12.707$ \(\Q\) \(\Q(\sqrt{-5}) \) 20.11.d.a \(-32\) \(-236\) \(-3125\) \(-33364\) $\mathrm{U}(1)[D_{2}]$ \(q-2^{5}q^{2}-236q^{3}+2^{10}q^{4}-5^{5}q^{5}+\cdots\)
20.11.d.b 20.d 20.d $1$ $12.707$ \(\Q\) \(\Q(\sqrt{-5}) \) 20.11.d.a \(32\) \(236\) \(-3125\) \(33364\) $\mathrm{U}(1)[D_{2}]$ \(q+2^{5}q^{2}+236q^{3}+2^{10}q^{4}-5^{5}q^{5}+\cdots\)
20.11.d.c 20.d 20.d $2$ $12.707$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 20.11.d.c \(0\) \(0\) \(-474\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+8\beta q^{2}-1024 q^{4}+(779\beta-237)q^{5}+\cdots\)
20.11.d.d 20.d 20.d $24$ $12.707$ None 20.11.d.d \(0\) \(0\) \(8280\) \(0\) $\mathrm{SU}(2)[C_{2}]$