Properties

Label 20.11.d.a
Level 20
Weight 11
Character orbit 20.d
Self dual Yes
Analytic conductor 12.707
Analytic rank 0
Dimension 1
CM disc. -20
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) = \( 11 \)
Character orbit: \([\chi]\) = 20.d (of order \(2\) and degree \(1\))

Newform invariants

Self dual: Yes
Analytic conductor: \(12.7071450535\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

\(f(q)\) \(=\) \(q \) \(\mathstrut -\mathstrut 32q^{2} \) \(\mathstrut -\mathstrut 236q^{3} \) \(\mathstrut +\mathstrut 1024q^{4} \) \(\mathstrut -\mathstrut 3125q^{5} \) \(\mathstrut +\mathstrut 7552q^{6} \) \(\mathstrut -\mathstrut 33364q^{7} \) \(\mathstrut -\mathstrut 32768q^{8} \) \(\mathstrut -\mathstrut 3353q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut -\mathstrut 32q^{2} \) \(\mathstrut -\mathstrut 236q^{3} \) \(\mathstrut +\mathstrut 1024q^{4} \) \(\mathstrut -\mathstrut 3125q^{5} \) \(\mathstrut +\mathstrut 7552q^{6} \) \(\mathstrut -\mathstrut 33364q^{7} \) \(\mathstrut -\mathstrut 32768q^{8} \) \(\mathstrut -\mathstrut 3353q^{9} \) \(\mathstrut +\mathstrut 100000q^{10} \) \(\mathstrut -\mathstrut 241664q^{12} \) \(\mathstrut +\mathstrut 1067648q^{14} \) \(\mathstrut +\mathstrut 737500q^{15} \) \(\mathstrut +\mathstrut 1048576q^{16} \) \(\mathstrut +\mathstrut 107296q^{18} \) \(\mathstrut -\mathstrut 3200000q^{20} \) \(\mathstrut +\mathstrut 7873904q^{21} \) \(\mathstrut +\mathstrut 1169564q^{23} \) \(\mathstrut +\mathstrut 7733248q^{24} \) \(\mathstrut +\mathstrut 9765625q^{25} \) \(\mathstrut +\mathstrut 14726872q^{27} \) \(\mathstrut -\mathstrut 34164736q^{28} \) \(\mathstrut -\mathstrut 38179702q^{29} \) \(\mathstrut -\mathstrut 23600000q^{30} \) \(\mathstrut -\mathstrut 33554432q^{32} \) \(\mathstrut +\mathstrut 104262500q^{35} \) \(\mathstrut -\mathstrut 3433472q^{36} \) \(\mathstrut +\mathstrut 102400000q^{40} \) \(\mathstrut -\mathstrut 211028098q^{41} \) \(\mathstrut -\mathstrut 251964928q^{42} \) \(\mathstrut +\mathstrut 223663364q^{43} \) \(\mathstrut +\mathstrut 10478125q^{45} \) \(\mathstrut -\mathstrut 37426048q^{46} \) \(\mathstrut -\mathstrut 96887764q^{47} \) \(\mathstrut -\mathstrut 247463936q^{48} \) \(\mathstrut +\mathstrut 830681247q^{49} \) \(\mathstrut -\mathstrut 312500000q^{50} \) \(\mathstrut -\mathstrut 471259904q^{54} \) \(\mathstrut +\mathstrut 1093271552q^{56} \) \(\mathstrut +\mathstrut 1221750464q^{58} \) \(\mathstrut +\mathstrut 755200000q^{60} \) \(\mathstrut -\mathstrut 1041591898q^{61} \) \(\mathstrut +\mathstrut 111869492q^{63} \) \(\mathstrut +\mathstrut 1073741824q^{64} \) \(\mathstrut -\mathstrut 2343243964q^{67} \) \(\mathstrut -\mathstrut 276017104q^{69} \) \(\mathstrut -\mathstrut 3336400000q^{70} \) \(\mathstrut +\mathstrut 109871104q^{72} \) \(\mathstrut -\mathstrut 2304687500q^{75} \) \(\mathstrut -\mathstrut 3276800000q^{80} \) \(\mathstrut -\mathstrut 3277550495q^{81} \) \(\mathstrut +\mathstrut 6752899136q^{82} \) \(\mathstrut -\mathstrut 5449159036q^{83} \) \(\mathstrut +\mathstrut 8062877696q^{84} \) \(\mathstrut -\mathstrut 7157227648q^{86} \) \(\mathstrut +\mathstrut 9010409672q^{87} \) \(\mathstrut +\mathstrut 11118190898q^{89} \) \(\mathstrut -\mathstrut 335300000q^{90} \) \(\mathstrut +\mathstrut 1197633536q^{92} \) \(\mathstrut +\mathstrut 3100408448q^{94} \) \(\mathstrut +\mathstrut 7918845952q^{96} \) \(\mathstrut -\mathstrut 26581799904q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/20\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(17\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0
−32.0000 −236.000 1024.00 −3125.00 7552.00 −33364.0 −32768.0 −3353.00 100000.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
20.d Odd 1 CM by \(\Q(\sqrt{-5}) \) yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{3} \) \(\mathstrut +\mathstrut 236 \) acting on \(S_{11}^{\mathrm{new}}(20, [\chi])\).