Properties

Label 1998.2.h.b.1099.17
Level $1998$
Weight $2$
Character 1998.1099
Analytic conductor $15.954$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1998,2,Mod(1009,1998)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1998.1009"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1998, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1998 = 2 \cdot 3^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1998.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.9541103239\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 666)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1099.17
Character \(\chi\) \(=\) 1998.1099
Dual form 1998.2.h.b.1009.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +4.07867 q^{5} +(-2.47419 - 4.28542i) q^{7} +1.00000 q^{8} +4.07867 q^{10} +(1.34686 - 2.33282i) q^{11} -2.87378 q^{13} +(-2.47419 - 4.28542i) q^{14} +1.00000 q^{16} +(2.71933 + 4.71002i) q^{17} +(0.179633 - 0.311133i) q^{19} +4.07867 q^{20} +(1.34686 - 2.33282i) q^{22} +(-0.147957 - 0.256269i) q^{23} +11.6356 q^{25} -2.87378 q^{26} +(-2.47419 - 4.28542i) q^{28} +(1.72918 - 2.99502i) q^{29} +(0.980010 + 1.69743i) q^{31} +1.00000 q^{32} +(2.71933 + 4.71002i) q^{34} +(-10.0914 - 17.4788i) q^{35} +(-6.08268 - 0.0307620i) q^{37} +(0.179633 - 0.311133i) q^{38} +4.07867 q^{40} -2.46495 q^{41} +(3.92593 - 6.79991i) q^{43} +(1.34686 - 2.33282i) q^{44} +(-0.147957 - 0.256269i) q^{46} +(3.83844 - 6.64837i) q^{47} +(-8.74321 + 15.1437i) q^{49} +11.6356 q^{50} -2.87378 q^{52} +(-2.45992 - 4.26070i) q^{53} +(5.49339 - 9.51483i) q^{55} +(-2.47419 - 4.28542i) q^{56} +(1.72918 - 2.99502i) q^{58} +(3.27974 - 5.68067i) q^{59} +(-2.07388 - 3.59207i) q^{61} +(0.980010 + 1.69743i) q^{62} +1.00000 q^{64} -11.7212 q^{65} -0.566061 q^{67} +(2.71933 + 4.71002i) q^{68} +(-10.0914 - 17.4788i) q^{70} +(-5.34228 + 9.25310i) q^{71} +8.59878 q^{73} +(-6.08268 - 0.0307620i) q^{74} +(0.179633 - 0.311133i) q^{76} -13.3295 q^{77} +(7.09273 + 12.2850i) q^{79} +4.07867 q^{80} -2.46495 q^{82} -12.4880 q^{83} +(11.0913 + 19.2106i) q^{85} +(3.92593 - 6.79991i) q^{86} +(1.34686 - 2.33282i) q^{88} +(9.19327 + 15.9232i) q^{89} +(7.11027 + 12.3153i) q^{91} +(-0.147957 - 0.256269i) q^{92} +(3.83844 - 6.64837i) q^{94} +(0.732663 - 1.26901i) q^{95} +(0.696052 - 1.20560i) q^{97} +(-8.74321 + 15.1437i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 36 q^{2} + 36 q^{4} + 8 q^{5} + 4 q^{7} + 36 q^{8} + 8 q^{10} - 3 q^{11} - 2 q^{13} + 4 q^{14} + 36 q^{16} - 3 q^{17} + 9 q^{19} + 8 q^{20} - 3 q^{22} - 11 q^{23} + 44 q^{25} - 2 q^{26} + 4 q^{28}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1998\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 4.07867 1.82404 0.912019 0.410148i \(-0.134523\pi\)
0.912019 + 0.410148i \(0.134523\pi\)
\(6\) 0 0
\(7\) −2.47419 4.28542i −0.935155 1.61974i −0.774357 0.632749i \(-0.781927\pi\)
−0.160798 0.986987i \(-0.551407\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 4.07867 1.28979
\(11\) 1.34686 2.33282i 0.406093 0.703373i −0.588355 0.808603i \(-0.700224\pi\)
0.994448 + 0.105229i \(0.0335577\pi\)
\(12\) 0 0
\(13\) −2.87378 −0.797043 −0.398521 0.917159i \(-0.630476\pi\)
−0.398521 + 0.917159i \(0.630476\pi\)
\(14\) −2.47419 4.28542i −0.661255 1.14533i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.71933 + 4.71002i 0.659535 + 1.14235i 0.980736 + 0.195337i \(0.0625799\pi\)
−0.321202 + 0.947011i \(0.604087\pi\)
\(18\) 0 0
\(19\) 0.179633 0.311133i 0.0412105 0.0713788i −0.844684 0.535265i \(-0.820212\pi\)
0.885895 + 0.463886i \(0.153545\pi\)
\(20\) 4.07867 0.912019
\(21\) 0 0
\(22\) 1.34686 2.33282i 0.287151 0.497360i
\(23\) −0.147957 0.256269i −0.0308511 0.0534357i 0.850188 0.526480i \(-0.176488\pi\)
−0.881039 + 0.473044i \(0.843155\pi\)
\(24\) 0 0
\(25\) 11.6356 2.32711
\(26\) −2.87378 −0.563594
\(27\) 0 0
\(28\) −2.47419 4.28542i −0.467578 0.809868i
\(29\) 1.72918 2.99502i 0.321100 0.556161i −0.659615 0.751603i \(-0.729281\pi\)
0.980715 + 0.195442i \(0.0626141\pi\)
\(30\) 0 0
\(31\) 0.980010 + 1.69743i 0.176015 + 0.304867i 0.940512 0.339760i \(-0.110346\pi\)
−0.764497 + 0.644627i \(0.777013\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 2.71933 + 4.71002i 0.466361 + 0.807762i
\(35\) −10.0914 17.4788i −1.70576 2.95446i
\(36\) 0 0
\(37\) −6.08268 0.0307620i −0.999987 0.00505725i
\(38\) 0.179633 0.311133i 0.0291403 0.0504724i
\(39\) 0 0
\(40\) 4.07867 0.644895
\(41\) −2.46495 −0.384960 −0.192480 0.981301i \(-0.561653\pi\)
−0.192480 + 0.981301i \(0.561653\pi\)
\(42\) 0 0
\(43\) 3.92593 6.79991i 0.598699 1.03698i −0.394314 0.918976i \(-0.629018\pi\)
0.993013 0.118001i \(-0.0376487\pi\)
\(44\) 1.34686 2.33282i 0.203046 0.351687i
\(45\) 0 0
\(46\) −0.147957 0.256269i −0.0218150 0.0377848i
\(47\) 3.83844 6.64837i 0.559893 0.969764i −0.437611 0.899164i \(-0.644175\pi\)
0.997505 0.0705996i \(-0.0224913\pi\)
\(48\) 0 0
\(49\) −8.74321 + 15.1437i −1.24903 + 2.16338i
\(50\) 11.6356 1.64552
\(51\) 0 0
\(52\) −2.87378 −0.398521
\(53\) −2.45992 4.26070i −0.337896 0.585252i 0.646141 0.763218i \(-0.276382\pi\)
−0.984037 + 0.177966i \(0.943048\pi\)
\(54\) 0 0
\(55\) 5.49339 9.51483i 0.740728 1.28298i
\(56\) −2.47419 4.28542i −0.330627 0.572663i
\(57\) 0 0
\(58\) 1.72918 2.99502i 0.227052 0.393265i
\(59\) 3.27974 5.68067i 0.426985 0.739560i −0.569618 0.821909i \(-0.692909\pi\)
0.996604 + 0.0823492i \(0.0262423\pi\)
\(60\) 0 0
\(61\) −2.07388 3.59207i −0.265534 0.459918i 0.702170 0.712010i \(-0.252215\pi\)
−0.967703 + 0.252092i \(0.918881\pi\)
\(62\) 0.980010 + 1.69743i 0.124461 + 0.215574i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −11.7212 −1.45384
\(66\) 0 0
\(67\) −0.566061 −0.0691553 −0.0345777 0.999402i \(-0.511009\pi\)
−0.0345777 + 0.999402i \(0.511009\pi\)
\(68\) 2.71933 + 4.71002i 0.329767 + 0.571174i
\(69\) 0 0
\(70\) −10.0914 17.4788i −1.20615 2.08912i
\(71\) −5.34228 + 9.25310i −0.634012 + 1.09814i 0.352712 + 0.935732i \(0.385260\pi\)
−0.986724 + 0.162409i \(0.948074\pi\)
\(72\) 0 0
\(73\) 8.59878 1.00641 0.503206 0.864167i \(-0.332154\pi\)
0.503206 + 0.864167i \(0.332154\pi\)
\(74\) −6.08268 0.0307620i −0.707098 0.00357601i
\(75\) 0 0
\(76\) 0.179633 0.311133i 0.0206053 0.0356894i
\(77\) −13.3295 −1.51904
\(78\) 0 0
\(79\) 7.09273 + 12.2850i 0.797995 + 1.38217i 0.920920 + 0.389751i \(0.127439\pi\)
−0.122925 + 0.992416i \(0.539228\pi\)
\(80\) 4.07867 0.456009
\(81\) 0 0
\(82\) −2.46495 −0.272208
\(83\) −12.4880 −1.37074 −0.685368 0.728197i \(-0.740359\pi\)
−0.685368 + 0.728197i \(0.740359\pi\)
\(84\) 0 0
\(85\) 11.0913 + 19.2106i 1.20302 + 2.08368i
\(86\) 3.92593 6.79991i 0.423344 0.733253i
\(87\) 0 0
\(88\) 1.34686 2.33282i 0.143575 0.248680i
\(89\) 9.19327 + 15.9232i 0.974485 + 1.68786i 0.681626 + 0.731701i \(0.261273\pi\)
0.292859 + 0.956156i \(0.405393\pi\)
\(90\) 0 0
\(91\) 7.11027 + 12.3153i 0.745358 + 1.29100i
\(92\) −0.147957 0.256269i −0.0154256 0.0267179i
\(93\) 0 0
\(94\) 3.83844 6.64837i 0.395904 0.685727i
\(95\) 0.732663 1.26901i 0.0751696 0.130198i
\(96\) 0 0
\(97\) 0.696052 1.20560i 0.0706734 0.122410i −0.828523 0.559955i \(-0.810819\pi\)
0.899197 + 0.437545i \(0.144152\pi\)
\(98\) −8.74321 + 15.1437i −0.883198 + 1.52974i
\(99\) 0 0
\(100\) 11.6356 1.16356
\(101\) −1.38693 + 2.40224i −0.138005 + 0.239032i −0.926741 0.375700i \(-0.877402\pi\)
0.788736 + 0.614732i \(0.210736\pi\)
\(102\) 0 0
\(103\) −0.774343 1.34120i −0.0762983 0.132152i 0.825352 0.564619i \(-0.190977\pi\)
−0.901650 + 0.432466i \(0.857643\pi\)
\(104\) −2.87378 −0.281797
\(105\) 0 0
\(106\) −2.45992 4.26070i −0.238928 0.413836i
\(107\) 5.19514 8.99825i 0.502234 0.869894i −0.497763 0.867313i \(-0.665845\pi\)
0.999997 0.00258098i \(-0.000821551\pi\)
\(108\) 0 0
\(109\) −9.23262 15.9914i −0.884325 1.53170i −0.846485 0.532412i \(-0.821286\pi\)
−0.0378394 0.999284i \(-0.512048\pi\)
\(110\) 5.49339 9.51483i 0.523774 0.907203i
\(111\) 0 0
\(112\) −2.47419 4.28542i −0.233789 0.404934i
\(113\) −7.99901 + 13.8547i −0.752483 + 1.30334i 0.194132 + 0.980975i \(0.437811\pi\)
−0.946616 + 0.322364i \(0.895522\pi\)
\(114\) 0 0
\(115\) −0.603468 1.04524i −0.0562736 0.0974688i
\(116\) 1.72918 2.99502i 0.160550 0.278081i
\(117\) 0 0
\(118\) 3.27974 5.68067i 0.301924 0.522948i
\(119\) 13.4563 23.3069i 1.23353 2.13654i
\(120\) 0 0
\(121\) 1.87195 + 3.24232i 0.170177 + 0.294756i
\(122\) −2.07388 3.59207i −0.187761 0.325211i
\(123\) 0 0
\(124\) 0.980010 + 1.69743i 0.0880075 + 0.152434i
\(125\) 27.0643 2.42071
\(126\) 0 0
\(127\) 7.60717 + 13.1760i 0.675027 + 1.16918i 0.976461 + 0.215694i \(0.0692014\pi\)
−0.301434 + 0.953487i \(0.597465\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −11.7212 −1.02802
\(131\) 0.447688 0.775418i 0.0391146 0.0677486i −0.845805 0.533492i \(-0.820880\pi\)
0.884920 + 0.465743i \(0.154213\pi\)
\(132\) 0 0
\(133\) −1.77778 −0.154153
\(134\) −0.566061 −0.0489002
\(135\) 0 0
\(136\) 2.71933 + 4.71002i 0.233181 + 0.403881i
\(137\) −3.53417 + 6.12135i −0.301944 + 0.522983i −0.976576 0.215172i \(-0.930969\pi\)
0.674632 + 0.738154i \(0.264302\pi\)
\(138\) 0 0
\(139\) −3.83262 + 6.63828i −0.325078 + 0.563052i −0.981528 0.191318i \(-0.938724\pi\)
0.656450 + 0.754370i \(0.272057\pi\)
\(140\) −10.0914 17.4788i −0.852879 1.47723i
\(141\) 0 0
\(142\) −5.34228 + 9.25310i −0.448314 + 0.776503i
\(143\) −3.87057 + 6.70402i −0.323673 + 0.560618i
\(144\) 0 0
\(145\) 7.05274 12.2157i 0.585698 1.01446i
\(146\) 8.59878 0.711640
\(147\) 0 0
\(148\) −6.08268 0.0307620i −0.499994 0.00252862i
\(149\) 1.76498 + 3.05704i 0.144593 + 0.250442i 0.929221 0.369525i \(-0.120479\pi\)
−0.784628 + 0.619967i \(0.787146\pi\)
\(150\) 0 0
\(151\) −1.13793 1.97095i −0.0926032 0.160393i 0.816003 0.578048i \(-0.196185\pi\)
−0.908606 + 0.417655i \(0.862852\pi\)
\(152\) 0.179633 0.311133i 0.0145701 0.0252362i
\(153\) 0 0
\(154\) −13.3295 −1.07412
\(155\) 3.99714 + 6.92325i 0.321058 + 0.556089i
\(156\) 0 0
\(157\) 5.17802 8.96859i 0.413251 0.715772i −0.581992 0.813194i \(-0.697727\pi\)
0.995243 + 0.0974227i \(0.0310599\pi\)
\(158\) 7.09273 + 12.2850i 0.564267 + 0.977340i
\(159\) 0 0
\(160\) 4.07867 0.322447
\(161\) −0.732146 + 1.26811i −0.0577012 + 0.0999414i
\(162\) 0 0
\(163\) 0.937663 + 1.62408i 0.0734434 + 0.127208i 0.900408 0.435046i \(-0.143268\pi\)
−0.826965 + 0.562254i \(0.809935\pi\)
\(164\) −2.46495 −0.192480
\(165\) 0 0
\(166\) −12.4880 −0.969257
\(167\) 20.0417 1.55088 0.775438 0.631424i \(-0.217529\pi\)
0.775438 + 0.631424i \(0.217529\pi\)
\(168\) 0 0
\(169\) −4.74140 −0.364723
\(170\) 11.0913 + 19.2106i 0.850661 + 1.47339i
\(171\) 0 0
\(172\) 3.92593 6.79991i 0.299349 0.518488i
\(173\) 13.9219 1.05846 0.529231 0.848478i \(-0.322481\pi\)
0.529231 + 0.848478i \(0.322481\pi\)
\(174\) 0 0
\(175\) −28.7886 49.8633i −2.17621 3.76931i
\(176\) 1.34686 2.33282i 0.101523 0.175843i
\(177\) 0 0
\(178\) 9.19327 + 15.9232i 0.689065 + 1.19349i
\(179\) −24.6042 −1.83900 −0.919502 0.393086i \(-0.871407\pi\)
−0.919502 + 0.393086i \(0.871407\pi\)
\(180\) 0 0
\(181\) 0.918274 1.59050i 0.0682547 0.118221i −0.829878 0.557944i \(-0.811590\pi\)
0.898133 + 0.439724i \(0.144924\pi\)
\(182\) 7.11027 + 12.3153i 0.527048 + 0.912874i
\(183\) 0 0
\(184\) −0.147957 0.256269i −0.0109075 0.0188924i
\(185\) −24.8093 0.125468i −1.82401 0.00922461i
\(186\) 0 0
\(187\) 14.6502 1.07133
\(188\) 3.83844 6.64837i 0.279947 0.484882i
\(189\) 0 0
\(190\) 0.732663 1.26901i 0.0531529 0.0920636i
\(191\) −8.45520 + 14.6448i −0.611797 + 1.05966i 0.379140 + 0.925339i \(0.376220\pi\)
−0.990937 + 0.134324i \(0.957114\pi\)
\(192\) 0 0
\(193\) 10.3364 + 17.9031i 0.744029 + 1.28870i 0.950647 + 0.310274i \(0.100421\pi\)
−0.206618 + 0.978422i \(0.566246\pi\)
\(194\) 0.696052 1.20560i 0.0499736 0.0865569i
\(195\) 0 0
\(196\) −8.74321 + 15.1437i −0.624515 + 1.08169i
\(197\) 7.80217 + 13.5138i 0.555882 + 0.962816i 0.997834 + 0.0657773i \(0.0209527\pi\)
−0.441952 + 0.897039i \(0.645714\pi\)
\(198\) 0 0
\(199\) −10.2576 −0.727144 −0.363572 0.931566i \(-0.618443\pi\)
−0.363572 + 0.931566i \(0.618443\pi\)
\(200\) 11.6356 0.822759
\(201\) 0 0
\(202\) −1.38693 + 2.40224i −0.0975843 + 0.169021i
\(203\) −17.1132 −1.20111
\(204\) 0 0
\(205\) −10.0537 −0.702182
\(206\) −0.774343 1.34120i −0.0539510 0.0934459i
\(207\) 0 0
\(208\) −2.87378 −0.199261
\(209\) −0.483879 0.838103i −0.0334706 0.0579728i
\(210\) 0 0
\(211\) 10.6091 + 18.3755i 0.730359 + 1.26502i 0.956730 + 0.290978i \(0.0939805\pi\)
−0.226371 + 0.974041i \(0.572686\pi\)
\(212\) −2.45992 4.26070i −0.168948 0.292626i
\(213\) 0 0
\(214\) 5.19514 8.99825i 0.355133 0.615108i
\(215\) 16.0126 27.7346i 1.09205 1.89149i
\(216\) 0 0
\(217\) 4.84946 8.39951i 0.329203 0.570196i
\(218\) −9.23262 15.9914i −0.625312 1.08307i
\(219\) 0 0
\(220\) 5.49339 9.51483i 0.370364 0.641490i
\(221\) −7.81475 13.5355i −0.525677 0.910499i
\(222\) 0 0
\(223\) −8.98920 + 15.5698i −0.601962 + 1.04263i 0.390562 + 0.920577i \(0.372281\pi\)
−0.992524 + 0.122052i \(0.961053\pi\)
\(224\) −2.47419 4.28542i −0.165314 0.286332i
\(225\) 0 0
\(226\) −7.99901 + 13.8547i −0.532086 + 0.921600i
\(227\) −3.04228 5.26939i −0.201923 0.349742i 0.747225 0.664571i \(-0.231386\pi\)
−0.949148 + 0.314830i \(0.898053\pi\)
\(228\) 0 0
\(229\) −14.9476 −0.987766 −0.493883 0.869528i \(-0.664423\pi\)
−0.493883 + 0.869528i \(0.664423\pi\)
\(230\) −0.603468 1.04524i −0.0397915 0.0689209i
\(231\) 0 0
\(232\) 1.72918 2.99502i 0.113526 0.196633i
\(233\) 13.7687 0.902021 0.451010 0.892519i \(-0.351064\pi\)
0.451010 + 0.892519i \(0.351064\pi\)
\(234\) 0 0
\(235\) 15.6557 27.1165i 1.02127 1.76889i
\(236\) 3.27974 5.68067i 0.213493 0.369780i
\(237\) 0 0
\(238\) 13.4563 23.3069i 0.872240 1.51076i
\(239\) 2.62191 4.54128i 0.169597 0.293751i −0.768681 0.639632i \(-0.779087\pi\)
0.938278 + 0.345881i \(0.112420\pi\)
\(240\) 0 0
\(241\) 15.4037 + 26.6799i 0.992237 + 1.71861i 0.603817 + 0.797123i \(0.293646\pi\)
0.388421 + 0.921482i \(0.373021\pi\)
\(242\) 1.87195 + 3.24232i 0.120334 + 0.208424i
\(243\) 0 0
\(244\) −2.07388 3.59207i −0.132767 0.229959i
\(245\) −35.6607 + 61.7662i −2.27828 + 3.94609i
\(246\) 0 0
\(247\) −0.516224 + 0.894126i −0.0328466 + 0.0568919i
\(248\) 0.980010 + 1.69743i 0.0622307 + 0.107787i
\(249\) 0 0
\(250\) 27.0643 1.71170
\(251\) 15.4213 0.973381 0.486691 0.873574i \(-0.338204\pi\)
0.486691 + 0.873574i \(0.338204\pi\)
\(252\) 0 0
\(253\) −0.797107 −0.0501137
\(254\) 7.60717 + 13.1760i 0.477316 + 0.826736i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.96221 10.3268i 0.371912 0.644171i −0.617947 0.786219i \(-0.712036\pi\)
0.989860 + 0.142048i \(0.0453689\pi\)
\(258\) 0 0
\(259\) 14.9179 + 26.1430i 0.926952 + 1.62444i
\(260\) −11.7212 −0.726918
\(261\) 0 0
\(262\) 0.447688 0.775418i 0.0276582 0.0479055i
\(263\) −15.4194 26.7072i −0.950800 1.64683i −0.743699 0.668514i \(-0.766931\pi\)
−0.207101 0.978320i \(-0.566403\pi\)
\(264\) 0 0
\(265\) −10.0332 17.3780i −0.616335 1.06752i
\(266\) −1.77778 −0.109003
\(267\) 0 0
\(268\) −0.566061 −0.0345777
\(269\) −18.7661 −1.14419 −0.572093 0.820189i \(-0.693868\pi\)
−0.572093 + 0.820189i \(0.693868\pi\)
\(270\) 0 0
\(271\) −1.55135 2.68702i −0.0942379 0.163225i 0.815052 0.579387i \(-0.196708\pi\)
−0.909290 + 0.416162i \(0.863375\pi\)
\(272\) 2.71933 + 4.71002i 0.164884 + 0.285587i
\(273\) 0 0
\(274\) −3.53417 + 6.12135i −0.213507 + 0.369805i
\(275\) 15.6715 27.1438i 0.945024 1.63683i
\(276\) 0 0
\(277\) 2.57324 + 4.45699i 0.154611 + 0.267795i 0.932917 0.360090i \(-0.117254\pi\)
−0.778306 + 0.627885i \(0.783921\pi\)
\(278\) −3.83262 + 6.63828i −0.229865 + 0.398138i
\(279\) 0 0
\(280\) −10.0914 17.4788i −0.603077 1.04456i
\(281\) −8.01445 −0.478102 −0.239051 0.971007i \(-0.576836\pi\)
−0.239051 + 0.971007i \(0.576836\pi\)
\(282\) 0 0
\(283\) −6.09395 −0.362248 −0.181124 0.983460i \(-0.557974\pi\)
−0.181124 + 0.983460i \(0.557974\pi\)
\(284\) −5.34228 + 9.25310i −0.317006 + 0.549070i
\(285\) 0 0
\(286\) −3.87057 + 6.70402i −0.228871 + 0.396417i
\(287\) 6.09875 + 10.5633i 0.359998 + 0.623534i
\(288\) 0 0
\(289\) −6.28952 + 10.8938i −0.369972 + 0.640810i
\(290\) 7.05274 12.2157i 0.414151 0.717331i
\(291\) 0 0
\(292\) 8.59878 0.503206
\(293\) 5.16113 0.301516 0.150758 0.988571i \(-0.451829\pi\)
0.150758 + 0.988571i \(0.451829\pi\)
\(294\) 0 0
\(295\) 13.3770 23.1696i 0.778837 1.34899i
\(296\) −6.08268 0.0307620i −0.353549 0.00178801i
\(297\) 0 0
\(298\) 1.76498 + 3.05704i 0.102243 + 0.177089i
\(299\) 0.425195 + 0.736460i 0.0245897 + 0.0425906i
\(300\) 0 0
\(301\) −38.8540 −2.23951
\(302\) −1.13793 1.97095i −0.0654803 0.113415i
\(303\) 0 0
\(304\) 0.179633 0.311133i 0.0103026 0.0178447i
\(305\) −8.45869 14.6509i −0.484343 0.838907i
\(306\) 0 0
\(307\) 29.9546 1.70960 0.854799 0.518959i \(-0.173680\pi\)
0.854799 + 0.518959i \(0.173680\pi\)
\(308\) −13.3295 −0.759519
\(309\) 0 0
\(310\) 3.99714 + 6.92325i 0.227022 + 0.393214i
\(311\) 3.66058 6.34032i 0.207573 0.359526i −0.743377 0.668873i \(-0.766777\pi\)
0.950949 + 0.309347i \(0.100110\pi\)
\(312\) 0 0
\(313\) −17.7450 −1.00301 −0.501504 0.865155i \(-0.667220\pi\)
−0.501504 + 0.865155i \(0.667220\pi\)
\(314\) 5.17802 8.96859i 0.292213 0.506127i
\(315\) 0 0
\(316\) 7.09273 + 12.2850i 0.398997 + 0.691084i
\(317\) 6.45120 0.362336 0.181168 0.983452i \(-0.442012\pi\)
0.181168 + 0.983452i \(0.442012\pi\)
\(318\) 0 0
\(319\) −4.65791 8.06773i −0.260793 0.451706i
\(320\) 4.07867 0.228005
\(321\) 0 0
\(322\) −0.732146 + 1.26811i −0.0408009 + 0.0706693i
\(323\) 1.95392 0.108719
\(324\) 0 0
\(325\) −33.4380 −1.85481
\(326\) 0.937663 + 1.62408i 0.0519323 + 0.0899494i
\(327\) 0 0
\(328\) −2.46495 −0.136104
\(329\) −37.9880 −2.09435
\(330\) 0 0
\(331\) −6.10487 −0.335554 −0.167777 0.985825i \(-0.553659\pi\)
−0.167777 + 0.985825i \(0.553659\pi\)
\(332\) −12.4880 −0.685368
\(333\) 0 0
\(334\) 20.0417 1.09664
\(335\) −2.30878 −0.126142
\(336\) 0 0
\(337\) −26.4706 −1.44195 −0.720973 0.692963i \(-0.756305\pi\)
−0.720973 + 0.692963i \(0.756305\pi\)
\(338\) −4.74140 −0.257898
\(339\) 0 0
\(340\) 11.0913 + 19.2106i 0.601508 + 1.04184i
\(341\) 5.27974 0.285914
\(342\) 0 0
\(343\) 51.8908 2.80184
\(344\) 3.92593 6.79991i 0.211672 0.366627i
\(345\) 0 0
\(346\) 13.9219 0.748446
\(347\) −1.05120 1.82073i −0.0564313 0.0977419i 0.836430 0.548074i \(-0.184639\pi\)
−0.892861 + 0.450332i \(0.851306\pi\)
\(348\) 0 0
\(349\) 14.9569 0.800624 0.400312 0.916379i \(-0.368902\pi\)
0.400312 + 0.916379i \(0.368902\pi\)
\(350\) −28.7886 49.8633i −1.53882 2.66531i
\(351\) 0 0
\(352\) 1.34686 2.33282i 0.0717877 0.124340i
\(353\) −20.2998 −1.08045 −0.540225 0.841521i \(-0.681661\pi\)
−0.540225 + 0.841521i \(0.681661\pi\)
\(354\) 0 0
\(355\) −21.7894 + 37.7404i −1.15646 + 2.00305i
\(356\) 9.19327 + 15.9232i 0.487242 + 0.843928i
\(357\) 0 0
\(358\) −24.6042 −1.30037
\(359\) −0.967788 −0.0510779 −0.0255390 0.999674i \(-0.508130\pi\)
−0.0255390 + 0.999674i \(0.508130\pi\)
\(360\) 0 0
\(361\) 9.43546 + 16.3427i 0.496603 + 0.860142i
\(362\) 0.918274 1.59050i 0.0482634 0.0835947i
\(363\) 0 0
\(364\) 7.11027 + 12.3153i 0.372679 + 0.645499i
\(365\) 35.0716 1.83573
\(366\) 0 0
\(367\) 2.44838 + 4.24073i 0.127805 + 0.221364i 0.922826 0.385218i \(-0.125874\pi\)
−0.795021 + 0.606582i \(0.792540\pi\)
\(368\) −0.147957 0.256269i −0.00771278 0.0133589i
\(369\) 0 0
\(370\) −24.8093 0.125468i −1.28977 0.00652278i
\(371\) −12.1726 + 21.0836i −0.631970 + 1.09460i
\(372\) 0 0
\(373\) 19.6595 1.01793 0.508965 0.860787i \(-0.330028\pi\)
0.508965 + 0.860787i \(0.330028\pi\)
\(374\) 14.6502 0.757544
\(375\) 0 0
\(376\) 3.83844 6.64837i 0.197952 0.342863i
\(377\) −4.96927 + 8.60702i −0.255930 + 0.443284i
\(378\) 0 0
\(379\) 5.06580 + 8.77422i 0.260213 + 0.450701i 0.966298 0.257425i \(-0.0828740\pi\)
−0.706086 + 0.708126i \(0.749541\pi\)
\(380\) 0.732663 1.26901i 0.0375848 0.0650988i
\(381\) 0 0
\(382\) −8.45520 + 14.6448i −0.432606 + 0.749295i
\(383\) 4.43692 0.226716 0.113358 0.993554i \(-0.463839\pi\)
0.113358 + 0.993554i \(0.463839\pi\)
\(384\) 0 0
\(385\) −54.3667 −2.77078
\(386\) 10.3364 + 17.9031i 0.526108 + 0.911246i
\(387\) 0 0
\(388\) 0.696052 1.20560i 0.0353367 0.0612050i
\(389\) 0.450298 + 0.779939i 0.0228310 + 0.0395445i 0.877215 0.480097i \(-0.159399\pi\)
−0.854384 + 0.519642i \(0.826065\pi\)
\(390\) 0 0
\(391\) 0.804687 1.39376i 0.0406948 0.0704854i
\(392\) −8.74321 + 15.1437i −0.441599 + 0.764872i
\(393\) 0 0
\(394\) 7.80217 + 13.5138i 0.393068 + 0.680814i
\(395\) 28.9289 + 50.1064i 1.45557 + 2.52113i
\(396\) 0 0
\(397\) −10.9614 −0.550138 −0.275069 0.961424i \(-0.588701\pi\)
−0.275069 + 0.961424i \(0.588701\pi\)
\(398\) −10.2576 −0.514169
\(399\) 0 0
\(400\) 11.6356 0.581779
\(401\) 8.41549 + 14.5761i 0.420250 + 0.727894i 0.995964 0.0897573i \(-0.0286091\pi\)
−0.575714 + 0.817651i \(0.695276\pi\)
\(402\) 0 0
\(403\) −2.81633 4.87803i −0.140291 0.242992i
\(404\) −1.38693 + 2.40224i −0.0690025 + 0.119516i
\(405\) 0 0
\(406\) −17.1132 −0.849315
\(407\) −8.26427 + 14.1484i −0.409645 + 0.701310i
\(408\) 0 0
\(409\) 2.97026 5.14465i 0.146870 0.254387i −0.783199 0.621771i \(-0.786413\pi\)
0.930069 + 0.367385i \(0.119747\pi\)
\(410\) −10.0537 −0.496518
\(411\) 0 0
\(412\) −0.774343 1.34120i −0.0381491 0.0660762i
\(413\) −32.4587 −1.59719
\(414\) 0 0
\(415\) −50.9345 −2.50027
\(416\) −2.87378 −0.140899
\(417\) 0 0
\(418\) −0.483879 0.838103i −0.0236673 0.0409929i
\(419\) −12.0195 + 20.8184i −0.587191 + 1.01704i 0.407408 + 0.913246i \(0.366433\pi\)
−0.994598 + 0.103798i \(0.966901\pi\)
\(420\) 0 0
\(421\) −4.13010 + 7.15355i −0.201289 + 0.348642i −0.948944 0.315445i \(-0.897846\pi\)
0.747655 + 0.664087i \(0.231180\pi\)
\(422\) 10.6091 + 18.3755i 0.516442 + 0.894503i
\(423\) 0 0
\(424\) −2.45992 4.26070i −0.119464 0.206918i
\(425\) 31.6410 + 54.8038i 1.53481 + 2.65837i
\(426\) 0 0
\(427\) −10.2624 + 17.7749i −0.496630 + 0.860189i
\(428\) 5.19514 8.99825i 0.251117 0.434947i
\(429\) 0 0
\(430\) 16.0126 27.7346i 0.772196 1.33748i
\(431\) −0.940710 + 1.62936i −0.0453124 + 0.0784834i −0.887792 0.460245i \(-0.847762\pi\)
0.842480 + 0.538728i \(0.181095\pi\)
\(432\) 0 0
\(433\) −4.97802 −0.239229 −0.119614 0.992820i \(-0.538166\pi\)
−0.119614 + 0.992820i \(0.538166\pi\)
\(434\) 4.84946 8.39951i 0.232782 0.403189i
\(435\) 0 0
\(436\) −9.23262 15.9914i −0.442162 0.765848i
\(437\) −0.106312 −0.00508557
\(438\) 0 0
\(439\) 3.99894 + 6.92636i 0.190859 + 0.330577i 0.945535 0.325520i \(-0.105539\pi\)
−0.754676 + 0.656097i \(0.772206\pi\)
\(440\) 5.49339 9.51483i 0.261887 0.453602i
\(441\) 0 0
\(442\) −7.81475 13.5355i −0.371710 0.643820i
\(443\) −10.2402 + 17.7365i −0.486525 + 0.842685i −0.999880 0.0154907i \(-0.995069\pi\)
0.513355 + 0.858176i \(0.328402\pi\)
\(444\) 0 0
\(445\) 37.4963 + 64.9456i 1.77750 + 3.07871i
\(446\) −8.98920 + 15.5698i −0.425651 + 0.737249i
\(447\) 0 0
\(448\) −2.47419 4.28542i −0.116894 0.202467i
\(449\) 16.2173 28.0891i 0.765340 1.32561i −0.174726 0.984617i \(-0.555904\pi\)
0.940066 0.340991i \(-0.110763\pi\)
\(450\) 0 0
\(451\) −3.31993 + 5.75029i −0.156330 + 0.270771i
\(452\) −7.99901 + 13.8547i −0.376242 + 0.651670i
\(453\) 0 0
\(454\) −3.04228 5.26939i −0.142781 0.247305i
\(455\) 29.0004 + 50.2303i 1.35956 + 2.35483i
\(456\) 0 0
\(457\) 12.4242 + 21.5194i 0.581180 + 1.00663i 0.995340 + 0.0964294i \(0.0307422\pi\)
−0.414160 + 0.910204i \(0.635924\pi\)
\(458\) −14.9476 −0.698456
\(459\) 0 0
\(460\) −0.603468 1.04524i −0.0281368 0.0487344i
\(461\) −33.2803 −1.55002 −0.775010 0.631949i \(-0.782255\pi\)
−0.775010 + 0.631949i \(0.782255\pi\)
\(462\) 0 0
\(463\) −30.2977 −1.40806 −0.704028 0.710172i \(-0.748617\pi\)
−0.704028 + 0.710172i \(0.748617\pi\)
\(464\) 1.72918 2.99502i 0.0802750 0.139040i
\(465\) 0 0
\(466\) 13.7687 0.637825
\(467\) −0.866573 −0.0401002 −0.0200501 0.999799i \(-0.506383\pi\)
−0.0200501 + 0.999799i \(0.506383\pi\)
\(468\) 0 0
\(469\) 1.40054 + 2.42581i 0.0646710 + 0.112013i
\(470\) 15.6557 27.1165i 0.722145 1.25079i
\(471\) 0 0
\(472\) 3.27974 5.68067i 0.150962 0.261474i
\(473\) −10.5753 18.3170i −0.486254 0.842217i
\(474\) 0 0
\(475\) 2.09013 3.62021i 0.0959017 0.166107i
\(476\) 13.4563 23.3069i 0.616767 1.06827i
\(477\) 0 0
\(478\) 2.62191 4.54128i 0.119923 0.207714i
\(479\) 12.2144 0.558089 0.279045 0.960278i \(-0.409982\pi\)
0.279045 + 0.960278i \(0.409982\pi\)
\(480\) 0 0
\(481\) 17.4803 + 0.0884032i 0.797032 + 0.00403084i
\(482\) 15.4037 + 26.6799i 0.701618 + 1.21524i
\(483\) 0 0
\(484\) 1.87195 + 3.24232i 0.0850887 + 0.147378i
\(485\) 2.83897 4.91724i 0.128911 0.223280i
\(486\) 0 0
\(487\) −32.8770 −1.48980 −0.744899 0.667177i \(-0.767503\pi\)
−0.744899 + 0.667177i \(0.767503\pi\)
\(488\) −2.07388 3.59207i −0.0938803 0.162605i
\(489\) 0 0
\(490\) −35.6607 + 61.7662i −1.61099 + 2.79031i
\(491\) 1.47498 + 2.55474i 0.0665650 + 0.115294i 0.897387 0.441244i \(-0.145463\pi\)
−0.830822 + 0.556538i \(0.812129\pi\)
\(492\) 0 0
\(493\) 18.8088 0.847106
\(494\) −0.516224 + 0.894126i −0.0232260 + 0.0402287i
\(495\) 0 0
\(496\) 0.980010 + 1.69743i 0.0440038 + 0.0762168i
\(497\) 52.8712 2.37160
\(498\) 0 0
\(499\) −0.369989 −0.0165630 −0.00828150 0.999966i \(-0.502636\pi\)
−0.00828150 + 0.999966i \(0.502636\pi\)
\(500\) 27.0643 1.21035
\(501\) 0 0
\(502\) 15.4213 0.688284
\(503\) −10.7459 18.6124i −0.479136 0.829888i 0.520578 0.853814i \(-0.325717\pi\)
−0.999714 + 0.0239263i \(0.992383\pi\)
\(504\) 0 0
\(505\) −5.65685 + 9.79795i −0.251726 + 0.436003i
\(506\) −0.797107 −0.0354357
\(507\) 0 0
\(508\) 7.60717 + 13.1760i 0.337514 + 0.584591i
\(509\) 3.12995 5.42124i 0.138733 0.240292i −0.788284 0.615311i \(-0.789030\pi\)
0.927017 + 0.375019i \(0.122364\pi\)
\(510\) 0 0
\(511\) −21.2750 36.8494i −0.941151 1.63012i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 5.96221 10.3268i 0.262982 0.455498i
\(515\) −3.15829 5.47032i −0.139171 0.241051i
\(516\) 0 0
\(517\) −10.3396 17.9088i −0.454737 0.787628i
\(518\) 14.9179 + 26.1430i 0.655454 + 1.14866i
\(519\) 0 0
\(520\) −11.7212 −0.514009
\(521\) 7.69612 13.3301i 0.337173 0.584001i −0.646727 0.762722i \(-0.723863\pi\)
0.983900 + 0.178721i \(0.0571959\pi\)
\(522\) 0 0
\(523\) −14.3709 + 24.8912i −0.628397 + 1.08842i 0.359477 + 0.933154i \(0.382955\pi\)
−0.987873 + 0.155261i \(0.950378\pi\)
\(524\) 0.447688 0.775418i 0.0195573 0.0338743i
\(525\) 0 0
\(526\) −15.4194 26.7072i −0.672317 1.16449i
\(527\) −5.32994 + 9.23173i −0.232176 + 0.402141i
\(528\) 0 0
\(529\) 11.4562 19.8428i 0.498096 0.862728i
\(530\) −10.0332 17.3780i −0.435814 0.754853i
\(531\) 0 0
\(532\) −1.77778 −0.0770765
\(533\) 7.08372 0.306830
\(534\) 0 0
\(535\) 21.1893 36.7009i 0.916093 1.58672i
\(536\) −0.566061 −0.0244501
\(537\) 0 0
\(538\) −18.7661 −0.809062
\(539\) 23.5517 + 40.7928i 1.01444 + 1.75707i
\(540\) 0 0
\(541\) −26.9707 −1.15956 −0.579781 0.814772i \(-0.696862\pi\)
−0.579781 + 0.814772i \(0.696862\pi\)
\(542\) −1.55135 2.68702i −0.0666362 0.115417i
\(543\) 0 0
\(544\) 2.71933 + 4.71002i 0.116590 + 0.201940i
\(545\) −37.6568 65.2236i −1.61304 2.79387i
\(546\) 0 0
\(547\) 4.30857 7.46266i 0.184221 0.319080i −0.759093 0.650983i \(-0.774357\pi\)
0.943314 + 0.331902i \(0.107690\pi\)
\(548\) −3.53417 + 6.12135i −0.150972 + 0.261491i
\(549\) 0 0
\(550\) 15.6715 27.1438i 0.668233 1.15741i
\(551\) −0.621233 1.07601i −0.0264654 0.0458394i
\(552\) 0 0
\(553\) 35.0975 60.7907i 1.49250 2.58508i
\(554\) 2.57324 + 4.45699i 0.109327 + 0.189359i
\(555\) 0 0
\(556\) −3.83262 + 6.63828i −0.162539 + 0.281526i
\(557\) −16.0140 27.7370i −0.678533 1.17525i −0.975423 0.220342i \(-0.929283\pi\)
0.296890 0.954912i \(-0.404051\pi\)
\(558\) 0 0
\(559\) −11.2823 + 19.5414i −0.477188 + 0.826515i
\(560\) −10.0914 17.4788i −0.426440 0.738615i
\(561\) 0 0
\(562\) −8.01445 −0.338069
\(563\) −1.61380 2.79518i −0.0680134 0.117803i 0.830013 0.557744i \(-0.188333\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(564\) 0 0
\(565\) −32.6253 + 56.5087i −1.37256 + 2.37734i
\(566\) −6.09395 −0.256148
\(567\) 0 0
\(568\) −5.34228 + 9.25310i −0.224157 + 0.388251i
\(569\) 10.5932 18.3479i 0.444089 0.769185i −0.553899 0.832584i \(-0.686861\pi\)
0.997988 + 0.0633988i \(0.0201940\pi\)
\(570\) 0 0
\(571\) 16.3465 28.3130i 0.684081 1.18486i −0.289643 0.957135i \(-0.593537\pi\)
0.973725 0.227729i \(-0.0731300\pi\)
\(572\) −3.87057 + 6.70402i −0.161837 + 0.280309i
\(573\) 0 0
\(574\) 6.09875 + 10.5633i 0.254557 + 0.440905i
\(575\) −1.72156 2.98183i −0.0717941 0.124351i
\(576\) 0 0
\(577\) −20.3587 35.2622i −0.847542 1.46799i −0.883395 0.468628i \(-0.844748\pi\)
0.0358537 0.999357i \(-0.488585\pi\)
\(578\) −6.28952 + 10.8938i −0.261609 + 0.453121i
\(579\) 0 0
\(580\) 7.05274 12.2157i 0.292849 0.507230i
\(581\) 30.8977 + 53.5163i 1.28185 + 2.22023i
\(582\) 0 0
\(583\) −13.2526 −0.548868
\(584\) 8.59878 0.355820
\(585\) 0 0
\(586\) 5.16113 0.213204
\(587\) −5.64417 9.77599i −0.232960 0.403498i 0.725718 0.687992i \(-0.241508\pi\)
−0.958678 + 0.284494i \(0.908174\pi\)
\(588\) 0 0
\(589\) 0.704167 0.0290147
\(590\) 13.3770 23.1696i 0.550721 0.953877i
\(591\) 0 0
\(592\) −6.08268 0.0307620i −0.249997 0.00126431i
\(593\) 6.64250 0.272775 0.136387 0.990656i \(-0.456451\pi\)
0.136387 + 0.990656i \(0.456451\pi\)
\(594\) 0 0
\(595\) 54.8837 95.0614i 2.25001 3.89714i
\(596\) 1.76498 + 3.05704i 0.0722964 + 0.125221i
\(597\) 0 0
\(598\) 0.425195 + 0.736460i 0.0173875 + 0.0301161i
\(599\) −33.4805 −1.36798 −0.683988 0.729493i \(-0.739756\pi\)
−0.683988 + 0.729493i \(0.739756\pi\)
\(600\) 0 0
\(601\) 15.8923 0.648262 0.324131 0.946012i \(-0.394928\pi\)
0.324131 + 0.946012i \(0.394928\pi\)
\(602\) −38.8540 −1.58357
\(603\) 0 0
\(604\) −1.13793 1.97095i −0.0463016 0.0801967i
\(605\) 7.63508 + 13.2243i 0.310410 + 0.537646i
\(606\) 0 0
\(607\) 18.0329 31.2339i 0.731933 1.26774i −0.224123 0.974561i \(-0.571952\pi\)
0.956056 0.293184i \(-0.0947148\pi\)
\(608\) 0.179633 0.311133i 0.00728506 0.0126181i
\(609\) 0 0
\(610\) −8.45869 14.6509i −0.342482 0.593197i
\(611\) −11.0308 + 19.1059i −0.446259 + 0.772943i
\(612\) 0 0
\(613\) −10.5010 18.1882i −0.424130 0.734615i 0.572208 0.820108i \(-0.306087\pi\)
−0.996339 + 0.0854929i \(0.972754\pi\)
\(614\) 29.9546 1.20887
\(615\) 0 0
\(616\) −13.3295 −0.537061
\(617\) 17.0831 29.5887i 0.687738 1.19120i −0.284830 0.958578i \(-0.591937\pi\)
0.972568 0.232619i \(-0.0747294\pi\)
\(618\) 0 0
\(619\) −3.48390 + 6.03430i −0.140030 + 0.242539i −0.927508 0.373804i \(-0.878053\pi\)
0.787478 + 0.616343i \(0.211387\pi\)
\(620\) 3.99714 + 6.92325i 0.160529 + 0.278045i
\(621\) 0 0
\(622\) 3.66058 6.34032i 0.146776 0.254224i
\(623\) 45.4918 78.7940i 1.82259 3.15682i
\(624\) 0 0
\(625\) 52.2087 2.08835
\(626\) −17.7450 −0.709234
\(627\) 0 0
\(628\) 5.17802 8.96859i 0.206625 0.357886i
\(629\) −16.3959 28.7332i −0.653749 1.14567i
\(630\) 0 0
\(631\) 21.2519 + 36.8094i 0.846025 + 1.46536i 0.884728 + 0.466108i \(0.154344\pi\)
−0.0387024 + 0.999251i \(0.512322\pi\)
\(632\) 7.09273 + 12.2850i 0.282134 + 0.488670i
\(633\) 0 0
\(634\) 6.45120 0.256210
\(635\) 31.0272 + 53.7406i 1.23127 + 2.13263i
\(636\) 0 0
\(637\) 25.1260 43.5196i 0.995530 1.72431i
\(638\) −4.65791 8.06773i −0.184408 0.319404i
\(639\) 0 0
\(640\) 4.07867 0.161224
\(641\) 24.0766 0.950967 0.475484 0.879725i \(-0.342273\pi\)
0.475484 + 0.879725i \(0.342273\pi\)
\(642\) 0 0
\(643\) −18.6736 32.3437i −0.736416 1.27551i −0.954099 0.299491i \(-0.903183\pi\)
0.217683 0.976019i \(-0.430150\pi\)
\(644\) −0.732146 + 1.26811i −0.0288506 + 0.0499707i
\(645\) 0 0
\(646\) 1.95392 0.0768760
\(647\) −8.21733 + 14.2328i −0.323057 + 0.559551i −0.981117 0.193415i \(-0.938044\pi\)
0.658060 + 0.752965i \(0.271377\pi\)
\(648\) 0 0
\(649\) −8.83467 15.3021i −0.346791 0.600660i
\(650\) −33.4380 −1.31155
\(651\) 0 0
\(652\) 0.937663 + 1.62408i 0.0367217 + 0.0636039i
\(653\) −1.27488 −0.0498898 −0.0249449 0.999689i \(-0.507941\pi\)
−0.0249449 + 0.999689i \(0.507941\pi\)
\(654\) 0 0
\(655\) 1.82597 3.16268i 0.0713466 0.123576i
\(656\) −2.46495 −0.0962401
\(657\) 0 0
\(658\) −37.9880 −1.48093
\(659\) 7.98464 + 13.8298i 0.311037 + 0.538733i 0.978587 0.205833i \(-0.0659902\pi\)
−0.667550 + 0.744565i \(0.732657\pi\)
\(660\) 0 0
\(661\) 17.5395 0.682206 0.341103 0.940026i \(-0.389200\pi\)
0.341103 + 0.940026i \(0.389200\pi\)
\(662\) −6.10487 −0.237272
\(663\) 0 0
\(664\) −12.4880 −0.484628
\(665\) −7.25098 −0.281181
\(666\) 0 0
\(667\) −1.02337 −0.0396252
\(668\) 20.0417 0.775438
\(669\) 0 0
\(670\) −2.30878 −0.0891958
\(671\) −11.1729 −0.431325
\(672\) 0 0
\(673\) 3.29894 + 5.71394i 0.127165 + 0.220256i 0.922577 0.385813i \(-0.126079\pi\)
−0.795412 + 0.606069i \(0.792746\pi\)
\(674\) −26.4706 −1.01961
\(675\) 0 0
\(676\) −4.74140 −0.182362
\(677\) −3.41586 + 5.91644i −0.131282 + 0.227387i −0.924171 0.381979i \(-0.875243\pi\)
0.792889 + 0.609366i \(0.208576\pi\)
\(678\) 0 0
\(679\) −6.88866 −0.264362
\(680\) 11.0913 + 19.2106i 0.425330 + 0.736694i
\(681\) 0 0
\(682\) 5.27974 0.202172
\(683\) −18.4475 31.9520i −0.705873 1.22261i −0.966376 0.257135i \(-0.917222\pi\)
0.260502 0.965473i \(-0.416112\pi\)
\(684\) 0 0
\(685\) −14.4147 + 24.9670i −0.550758 + 0.953940i
\(686\) 51.8908 1.98120
\(687\) 0 0
\(688\) 3.92593 6.79991i 0.149675 0.259244i
\(689\) 7.06926 + 12.2443i 0.269317 + 0.466471i
\(690\) 0 0
\(691\) −46.7453 −1.77828 −0.889138 0.457639i \(-0.848695\pi\)
−0.889138 + 0.457639i \(0.848695\pi\)
\(692\) 13.9219 0.529231
\(693\) 0 0
\(694\) −1.05120 1.82073i −0.0399030 0.0691139i
\(695\) −15.6320 + 27.0754i −0.592955 + 1.02703i
\(696\) 0 0
\(697\) −6.70301 11.6100i −0.253895 0.439759i
\(698\) 14.9569 0.566127
\(699\) 0 0
\(700\) −28.7886 49.8633i −1.08811 1.88466i
\(701\) −5.64416 9.77597i −0.213177 0.369233i 0.739530 0.673123i \(-0.235048\pi\)
−0.952707 + 0.303890i \(0.901714\pi\)
\(702\) 0 0
\(703\) −1.10222 + 1.88700i −0.0415710 + 0.0711694i
\(704\) 1.34686 2.33282i 0.0507616 0.0879216i
\(705\) 0 0
\(706\) −20.2998 −0.763993
\(707\) 13.7261 0.516224
\(708\) 0 0
\(709\) 5.62324 9.73975i 0.211185 0.365784i −0.740900 0.671615i \(-0.765601\pi\)
0.952086 + 0.305831i \(0.0989343\pi\)
\(710\) −21.7894 + 37.7404i −0.817742 + 1.41637i
\(711\) 0 0
\(712\) 9.19327 + 15.9232i 0.344532 + 0.596747i
\(713\) 0.289999 0.502292i 0.0108605 0.0188110i
\(714\) 0 0
\(715\) −15.7868 + 27.3435i −0.590392 + 1.02259i
\(716\) −24.6042 −0.919502
\(717\) 0 0
\(718\) −0.967788 −0.0361175
\(719\) 7.44352 + 12.8926i 0.277597 + 0.480811i 0.970787 0.239943i \(-0.0771288\pi\)
−0.693190 + 0.720755i \(0.743795\pi\)
\(720\) 0 0
\(721\) −3.83174 + 6.63677i −0.142701 + 0.247166i
\(722\) 9.43546 + 16.3427i 0.351152 + 0.608212i
\(723\) 0 0
\(724\) 0.918274 1.59050i 0.0341274 0.0591103i
\(725\) 20.1200 34.8488i 0.747236 1.29425i
\(726\) 0 0
\(727\) −12.7157 22.0243i −0.471600 0.816835i 0.527872 0.849324i \(-0.322990\pi\)
−0.999472 + 0.0324890i \(0.989657\pi\)
\(728\) 7.11027 + 12.3153i 0.263524 + 0.456437i
\(729\) 0 0
\(730\) 35.0716 1.29806
\(731\) 42.7036 1.57945
\(732\) 0 0
\(733\) 18.6537 0.688990 0.344495 0.938788i \(-0.388050\pi\)
0.344495 + 0.938788i \(0.388050\pi\)
\(734\) 2.44838 + 4.24073i 0.0903715 + 0.156528i
\(735\) 0 0
\(736\) −0.147957 0.256269i −0.00545376 0.00944619i
\(737\) −0.762403 + 1.32052i −0.0280835 + 0.0486420i
\(738\) 0 0
\(739\) 5.66251 0.208299 0.104149 0.994562i \(-0.466788\pi\)
0.104149 + 0.994562i \(0.466788\pi\)
\(740\) −24.8093 0.125468i −0.912007 0.00461230i
\(741\) 0 0
\(742\) −12.1726 + 21.0836i −0.446870 + 0.774002i
\(743\) −4.76308 −0.174740 −0.0873702 0.996176i \(-0.527846\pi\)
−0.0873702 + 0.996176i \(0.527846\pi\)
\(744\) 0 0
\(745\) 7.19878 + 12.4686i 0.263743 + 0.456816i
\(746\) 19.6595 0.719786
\(747\) 0 0
\(748\) 14.6502 0.535664
\(749\) −51.4151 −1.87867
\(750\) 0 0
\(751\) 8.90826 + 15.4296i 0.325067 + 0.563033i 0.981526 0.191329i \(-0.0612797\pi\)
−0.656459 + 0.754362i \(0.727946\pi\)
\(752\) 3.83844 6.64837i 0.139973 0.242441i
\(753\) 0 0
\(754\) −4.96927 + 8.60702i −0.180970 + 0.313449i
\(755\) −4.64123 8.03885i −0.168912 0.292564i
\(756\) 0 0
\(757\) 1.08317 + 1.87611i 0.0393685 + 0.0681882i 0.885038 0.465518i \(-0.154132\pi\)
−0.845670 + 0.533706i \(0.820799\pi\)
\(758\) 5.06580 + 8.77422i 0.183998 + 0.318694i
\(759\) 0 0
\(760\) 0.732663 1.26901i 0.0265765 0.0460318i
\(761\) −4.25013 + 7.36144i −0.154067 + 0.266852i −0.932719 0.360604i \(-0.882571\pi\)
0.778652 + 0.627456i \(0.215904\pi\)
\(762\) 0 0
\(763\) −45.6865 + 79.1313i −1.65396 + 2.86475i
\(764\) −8.45520 + 14.6448i −0.305899 + 0.529832i
\(765\) 0 0
\(766\) 4.43692 0.160312
\(767\) −9.42523 + 16.3250i −0.340325 + 0.589461i
\(768\) 0 0
\(769\) −7.78195 13.4787i −0.280624 0.486055i 0.690914 0.722937i \(-0.257208\pi\)
−0.971539 + 0.236881i \(0.923875\pi\)
\(770\) −54.3667 −1.95924
\(771\) 0 0
\(772\) 10.3364 + 17.9031i 0.372014 + 0.644348i
\(773\) −12.3527 + 21.3954i −0.444294 + 0.769540i −0.998003 0.0631705i \(-0.979879\pi\)
0.553709 + 0.832710i \(0.313212\pi\)
\(774\) 0 0
\(775\) 11.4030 + 19.7505i 0.409607 + 0.709461i
\(776\) 0.696052 1.20560i 0.0249868 0.0432784i
\(777\) 0 0
\(778\) 0.450298 + 0.779939i 0.0161440 + 0.0279622i
\(779\) −0.442785 + 0.766927i −0.0158644 + 0.0274780i
\(780\) 0 0
\(781\) 14.3906 + 24.9252i 0.514935 + 0.891894i
\(782\) 0.804687 1.39376i 0.0287756 0.0498407i
\(783\) 0 0
\(784\) −8.74321 + 15.1437i −0.312258 + 0.540846i
\(785\) 21.1194 36.5800i 0.753785 1.30559i
\(786\) 0 0
\(787\) 4.71774 + 8.17137i 0.168169 + 0.291278i 0.937776 0.347240i \(-0.112881\pi\)
−0.769607 + 0.638518i \(0.779548\pi\)
\(788\) 7.80217 + 13.5138i 0.277941 + 0.481408i
\(789\) 0 0
\(790\) 28.9289 + 50.1064i 1.02925 + 1.78271i
\(791\) 79.1642 2.81475
\(792\) 0 0
\(793\) 5.95988 + 10.3228i 0.211641 + 0.366574i
\(794\) −10.9614 −0.389006
\(795\) 0 0
\(796\) −10.2576 −0.363572
\(797\) 9.65670 16.7259i 0.342058 0.592462i −0.642757 0.766070i \(-0.722209\pi\)
0.984815 + 0.173609i \(0.0555428\pi\)
\(798\) 0 0
\(799\) 41.7519 1.47708
\(800\) 11.6356 0.411380
\(801\) 0 0
\(802\) 8.41549 + 14.5761i 0.297161 + 0.514699i
\(803\) 11.5813 20.0595i 0.408696 0.707883i
\(804\) 0 0
\(805\) −2.98618 + 5.17222i −0.105249 + 0.182297i
\(806\) −2.81633 4.87803i −0.0992011 0.171821i
\(807\) 0 0
\(808\) −1.38693 + 2.40224i −0.0487921 + 0.0845105i
\(809\) −4.56673 + 7.90981i −0.160558 + 0.278094i −0.935069 0.354466i \(-0.884663\pi\)
0.774511 + 0.632560i \(0.217996\pi\)
\(810\) 0 0
\(811\) 8.80739 15.2548i 0.309269 0.535670i −0.668933 0.743322i \(-0.733249\pi\)
0.978203 + 0.207652i \(0.0665822\pi\)
\(812\) −17.1132 −0.600557
\(813\) 0 0
\(814\) −8.26427 + 14.1484i −0.289662 + 0.495901i
\(815\) 3.82442 + 6.62409i 0.133964 + 0.232032i
\(816\) 0 0
\(817\) −1.41045 2.44297i −0.0493454 0.0854688i
\(818\) 2.97026 5.14465i 0.103853 0.179878i
\(819\) 0 0
\(820\) −10.0537 −0.351091
\(821\) −23.6018 40.8795i −0.823709 1.42671i −0.902902 0.429846i \(-0.858568\pi\)
0.0791935 0.996859i \(-0.474766\pi\)
\(822\) 0 0
\(823\) 2.56932 4.45019i 0.0895609 0.155124i −0.817765 0.575553i \(-0.804787\pi\)
0.907326 + 0.420429i \(0.138120\pi\)
\(824\) −0.774343 1.34120i −0.0269755 0.0467230i
\(825\) 0 0
\(826\) −32.4587 −1.12938
\(827\) 12.8003 22.1707i 0.445110 0.770952i −0.552950 0.833214i \(-0.686498\pi\)
0.998060 + 0.0622618i \(0.0198314\pi\)
\(828\) 0 0
\(829\) 15.7572 + 27.2923i 0.547271 + 0.947900i 0.998460 + 0.0554724i \(0.0176665\pi\)
−0.451190 + 0.892428i \(0.649000\pi\)
\(830\) −50.9345 −1.76796
\(831\) 0 0
\(832\) −2.87378 −0.0996303
\(833\) −95.1027 −3.29511
\(834\) 0 0
\(835\) 81.7437 2.82886
\(836\) −0.483879 0.838103i −0.0167353 0.0289864i
\(837\) 0 0
\(838\) −12.0195 + 20.8184i −0.415206 + 0.719159i
\(839\) −26.4795 −0.914173 −0.457087 0.889422i \(-0.651107\pi\)
−0.457087 + 0.889422i \(0.651107\pi\)
\(840\) 0 0
\(841\) 8.51990 + 14.7569i 0.293790 + 0.508859i
\(842\) −4.13010 + 7.15355i −0.142333 + 0.246527i
\(843\) 0 0
\(844\) 10.6091 + 18.3755i 0.365179 + 0.632509i
\(845\) −19.3386 −0.665269
\(846\) 0 0
\(847\) 9.26312 16.0442i 0.318285 0.551285i
\(848\) −2.45992 4.26070i −0.0844739 0.146313i
\(849\) 0 0
\(850\) 31.6410 + 54.8038i 1.08528 + 1.87975i
\(851\) 0.892092 + 1.56335i 0.0305805 + 0.0535911i
\(852\) 0 0
\(853\) −4.84077 −0.165745 −0.0828724 0.996560i \(-0.526409\pi\)
−0.0828724 + 0.996560i \(0.526409\pi\)
\(854\) −10.2624 + 17.7749i −0.351170 + 0.608245i
\(855\) 0 0
\(856\) 5.19514 8.99825i 0.177566 0.307554i
\(857\) 5.98835 10.3721i 0.204558 0.354305i −0.745434 0.666580i \(-0.767758\pi\)
0.949992 + 0.312275i \(0.101091\pi\)
\(858\) 0 0
\(859\) −4.83688 8.37773i −0.165032 0.285844i 0.771634 0.636066i \(-0.219440\pi\)
−0.936667 + 0.350222i \(0.886106\pi\)
\(860\) 16.0126 27.7346i 0.546025 0.945743i
\(861\) 0 0
\(862\) −0.940710 + 1.62936i −0.0320407 + 0.0554961i
\(863\) −10.6682 18.4778i −0.363148 0.628991i 0.625329 0.780361i \(-0.284965\pi\)
−0.988477 + 0.151370i \(0.951631\pi\)
\(864\) 0 0
\(865\) 56.7828 1.93067
\(866\) −4.97802 −0.169160
\(867\) 0 0
\(868\) 4.84946 8.39951i 0.164601 0.285098i
\(869\) 38.2116 1.29624
\(870\) 0 0
\(871\) 1.62673 0.0551197
\(872\) −9.23262 15.9914i −0.312656 0.541536i
\(873\) 0 0
\(874\) −0.106312 −0.00359604
\(875\) −66.9622 115.982i −2.26374 3.92091i
\(876\) 0 0
\(877\) −0.927137 1.60585i −0.0313072 0.0542257i 0.849947 0.526868i \(-0.176634\pi\)
−0.881254 + 0.472642i \(0.843300\pi\)
\(878\) 3.99894 + 6.92636i 0.134958 + 0.233753i
\(879\) 0 0
\(880\) 5.49339 9.51483i 0.185182 0.320745i
\(881\) −2.98102 + 5.16327i −0.100433 + 0.173955i −0.911863 0.410494i \(-0.865356\pi\)
0.811430 + 0.584449i \(0.198689\pi\)
\(882\) 0 0
\(883\) 9.62006 16.6624i 0.323741 0.560736i −0.657516 0.753441i \(-0.728393\pi\)
0.981257 + 0.192705i \(0.0617261\pi\)
\(884\) −7.81475 13.5355i −0.262839 0.455250i
\(885\) 0 0
\(886\) −10.2402 + 17.7365i −0.344025 + 0.595869i
\(887\) −21.7165 37.6140i −0.729167 1.26295i −0.957236 0.289309i \(-0.906574\pi\)
0.228068 0.973645i \(-0.426759\pi\)
\(888\) 0 0
\(889\) 37.6431 65.1998i 1.26251 2.18673i
\(890\) 37.4963 + 64.9456i 1.25688 + 2.17698i
\(891\) 0 0
\(892\) −8.98920 + 15.5698i −0.300981 + 0.521314i
\(893\) −1.37902 2.38853i −0.0461470 0.0799290i
\(894\) 0 0
\(895\) −100.352 −3.35441
\(896\) −2.47419 4.28542i −0.0826568 0.143166i
\(897\) 0 0
\(898\) 16.2173 28.0891i 0.541177 0.937347i
\(899\) 6.77844 0.226074
\(900\) 0 0
\(901\) 13.3787 23.1725i 0.445708 0.771988i
\(902\) −3.31993 + 5.75029i −0.110542 + 0.191464i
\(903\) 0 0
\(904\) −7.99901 + 13.8547i −0.266043 + 0.460800i
\(905\) 3.74534 6.48712i 0.124499 0.215639i
\(906\) 0 0
\(907\) −15.2999 26.5002i −0.508024 0.879924i −0.999957 0.00929062i \(-0.997043\pi\)
0.491933 0.870633i \(-0.336291\pi\)
\(908\) −3.04228 5.26939i −0.100962 0.174871i
\(909\) 0 0
\(910\) 29.0004 + 50.2303i 0.961356 + 1.66512i
\(911\) −1.87114 + 3.24090i −0.0619935 + 0.107376i −0.895356 0.445350i \(-0.853079\pi\)
0.833363 + 0.552726i \(0.186412\pi\)
\(912\) 0 0
\(913\) −16.8195 + 29.1323i −0.556646 + 0.964139i
\(914\) 12.4242 + 21.5194i 0.410956 + 0.711798i
\(915\) 0 0
\(916\) −14.9476 −0.493883
\(917\) −4.43065 −0.146313
\(918\) 0 0
\(919\) −22.1894 −0.731961 −0.365980 0.930623i \(-0.619266\pi\)
−0.365980 + 0.930623i \(0.619266\pi\)
\(920\) −0.603468 1.04524i −0.0198957 0.0344604i
\(921\) 0 0
\(922\) −33.2803 −1.09603
\(923\) 15.3525 26.5914i 0.505334 0.875265i
\(924\) 0 0
\(925\) −70.7755 0.357934i −2.32708 0.0117688i
\(926\) −30.2977 −0.995646
\(927\) 0 0
\(928\) 1.72918 2.99502i 0.0567630 0.0983164i
\(929\) 13.7314 + 23.7836i 0.450514 + 0.780313i 0.998418 0.0562281i \(-0.0179074\pi\)
−0.547904 + 0.836541i \(0.684574\pi\)
\(930\) 0 0
\(931\) 3.14113 + 5.44060i 0.102946 + 0.178308i
\(932\) 13.7687 0.451010
\(933\) 0 0
\(934\) −0.866573 −0.0283551
\(935\) 59.7534 1.95414
\(936\) 0 0
\(937\) 19.8980 + 34.4643i 0.650039 + 1.12590i 0.983113 + 0.183000i \(0.0585808\pi\)
−0.333074 + 0.942901i \(0.608086\pi\)
\(938\) 1.40054 + 2.42581i 0.0457293 + 0.0792054i
\(939\) 0 0
\(940\) 15.6557 27.1165i 0.510633 0.884443i
\(941\) −13.7060 + 23.7395i −0.446803 + 0.773886i −0.998176 0.0603731i \(-0.980771\pi\)
0.551373 + 0.834259i \(0.314104\pi\)
\(942\) 0 0
\(943\) 0.364706 + 0.631690i 0.0118765 + 0.0205706i
\(944\) 3.27974 5.68067i 0.106746 0.184890i
\(945\) 0 0
\(946\) −10.5753 18.3170i −0.343834 0.595538i
\(947\) 41.0644 1.33441 0.667206 0.744873i \(-0.267490\pi\)
0.667206 + 0.744873i \(0.267490\pi\)
\(948\) 0 0
\(949\) −24.7110 −0.802153
\(950\) 2.09013 3.62021i 0.0678127 0.117455i
\(951\) 0 0
\(952\) 13.4563 23.3069i 0.436120 0.755382i
\(953\) −25.2544 43.7419i −0.818070 1.41694i −0.907102 0.420911i \(-0.861711\pi\)
0.0890318 0.996029i \(-0.471623\pi\)
\(954\) 0 0
\(955\) −34.4860 + 59.7315i −1.11594 + 1.93287i
\(956\) 2.62191 4.54128i 0.0847987 0.146876i
\(957\) 0 0
\(958\) 12.2144 0.394629
\(959\) 34.9768 1.12946
\(960\) 0 0
\(961\) 13.5792 23.5198i 0.438037 0.758703i
\(962\) 17.4803 + 0.0884032i 0.563587 + 0.00285023i
\(963\) 0 0
\(964\) 15.4037 + 26.6799i 0.496119 + 0.859303i
\(965\) 42.1587 + 73.0210i 1.35714 + 2.35063i
\(966\) 0 0
\(967\) −1.91874 −0.0617026 −0.0308513 0.999524i \(-0.509822\pi\)
−0.0308513 + 0.999524i \(0.509822\pi\)
\(968\) 1.87195 + 3.24232i 0.0601668 + 0.104212i
\(969\) 0 0
\(970\) 2.83897 4.91724i 0.0911538 0.157883i
\(971\) −15.2072 26.3397i −0.488024 0.845282i 0.511881 0.859056i \(-0.328949\pi\)
−0.999905 + 0.0137742i \(0.995615\pi\)
\(972\) 0 0
\(973\) 37.9304 1.21599
\(974\) −32.8770 −1.05345
\(975\) 0 0
\(976\) −2.07388 3.59207i −0.0663834 0.114979i
\(977\) −19.2141 + 33.2799i −0.614715 + 1.06472i 0.375719 + 0.926733i \(0.377396\pi\)
−0.990434 + 0.137984i \(0.955938\pi\)
\(978\) 0 0
\(979\) 49.5281 1.58292
\(980\) −35.6607 + 61.7662i −1.13914 + 1.97305i
\(981\) 0 0
\(982\) 1.47498 + 2.55474i 0.0470686 + 0.0815252i
\(983\) 26.4505 0.843641 0.421820 0.906679i \(-0.361391\pi\)
0.421820 + 0.906679i \(0.361391\pi\)
\(984\) 0 0
\(985\) 31.8225 + 55.1182i 1.01395 + 1.75621i
\(986\) 18.8088 0.598994
\(987\) 0 0
\(988\) −0.516224 + 0.894126i −0.0164233 + 0.0284460i
\(989\) −2.32347 −0.0738822
\(990\) 0 0
\(991\) 15.7162 0.499243 0.249621 0.968344i \(-0.419694\pi\)
0.249621 + 0.968344i \(0.419694\pi\)
\(992\) 0.980010 + 1.69743i 0.0311154 + 0.0538934i
\(993\) 0 0
\(994\) 52.8712 1.67697
\(995\) −41.8375 −1.32634
\(996\) 0 0
\(997\) 18.6072 0.589296 0.294648 0.955606i \(-0.404798\pi\)
0.294648 + 0.955606i \(0.404798\pi\)
\(998\) −0.369989 −0.0117118
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1998.2.h.b.1099.17 36
3.2 odd 2 666.2.h.b.655.3 yes 36
9.4 even 3 1998.2.g.b.1765.2 36
9.5 odd 6 666.2.g.b.211.11 36
37.10 even 3 1998.2.g.b.343.2 36
111.47 odd 6 666.2.g.b.565.11 yes 36
333.121 even 3 inner 1998.2.h.b.1009.17 36
333.158 odd 6 666.2.h.b.121.3 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
666.2.g.b.211.11 36 9.5 odd 6
666.2.g.b.565.11 yes 36 111.47 odd 6
666.2.h.b.121.3 yes 36 333.158 odd 6
666.2.h.b.655.3 yes 36 3.2 odd 2
1998.2.g.b.343.2 36 37.10 even 3
1998.2.g.b.1765.2 36 9.4 even 3
1998.2.h.b.1009.17 36 333.121 even 3 inner
1998.2.h.b.1099.17 36 1.1 even 1 trivial