Properties

Label 1984.2.i
Level $1984$
Weight $2$
Character orbit 1984.i
Rep. character $\chi_{1984}(129,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $124$
Sturm bound $512$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(512\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1984, [\chi])\).

Total New Old
Modular forms 536 132 404
Cusp forms 488 124 364
Eisenstein series 48 8 40

Trace form

\( 124 q + 2 q^{5} - 60 q^{9} - 6 q^{13} - 2 q^{17} + 6 q^{21} - 56 q^{25} + 8 q^{29} + 4 q^{33} - 6 q^{37} - 2 q^{41} - 36 q^{45} - 52 q^{49} - 22 q^{53} + 10 q^{57} - 56 q^{61} + 18 q^{65} - 48 q^{69} - 2 q^{73}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1984, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1984, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1984, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(62, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(124, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(248, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(496, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(992, [\chi])\)\(^{\oplus 2}\)