Properties

Label 1984.2.cm
Level $1984$
Weight $2$
Character orbit 1984.cm
Rep. character $\chi_{1984}(49,\cdot)$
Character field $\Q(\zeta_{60})$
Dimension $992$
Sturm bound $512$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.cm (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 496 \)
Character field: \(\Q(\zeta_{60})\)
Sturm bound: \(512\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1984, [\chi])\).

Total New Old
Modular forms 4224 1056 3168
Cusp forms 3968 992 2976
Eisenstein series 256 64 192

Trace form

\( 992 q + 18 q^{3} - 8 q^{5} + 18 q^{11} - 18 q^{13} + 56 q^{15} - 36 q^{17} + 66 q^{19} - 6 q^{21} + 24 q^{27} - 12 q^{29} + 32 q^{31} - 24 q^{33} + 18 q^{35} - 8 q^{37} + 18 q^{43} - 42 q^{45} + 24 q^{47}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1984, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1984, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1984, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(496, [\chi])\)\(^{\oplus 3}\)