Properties

Label 1984.2.bk
Level $1984$
Weight $2$
Character orbit 1984.bk
Rep. character $\chi_{1984}(193,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $496$
Sturm bound $512$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.bk (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{15})\)
Sturm bound: \(512\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1984, [\chi])\).

Total New Old
Modular forms 2144 528 1616
Cusp forms 1952 496 1456
Eisenstein series 192 32 160

Trace form

\( 496 q + 8 q^{5} + 40 q^{9} + 26 q^{13} - 18 q^{17} + 54 q^{21} - 224 q^{25} + 12 q^{29} - 24 q^{33} + 16 q^{37} - 18 q^{41} + 126 q^{45} + 32 q^{49} + 42 q^{53} - 20 q^{57} + 96 q^{61} + 12 q^{65} - 12 q^{69}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1984, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1984, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1984, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(62, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(124, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(248, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(496, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(992, [\chi])\)\(^{\oplus 2}\)