Properties

Label 1984.2.bb
Level $1984$
Weight $2$
Character orbit 1984.bb
Rep. character $\chi_{1984}(511,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $248$
Sturm bound $512$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.bb (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 124 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(512\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1984, [\chi])\).

Total New Old
Modular forms 1072 264 808
Cusp forms 976 248 728
Eisenstein series 96 16 80

Trace form

\( 248 q + 16 q^{5} - 64 q^{9} + 10 q^{13} - 10 q^{17} - 30 q^{21} + 200 q^{25} + 10 q^{29} + 6 q^{33} - 6 q^{41} + 96 q^{45} + 44 q^{49} + 10 q^{53} - 60 q^{65} - 6 q^{69} - 10 q^{73} + 10 q^{77} - 40 q^{81}+ \cdots + 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1984, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1984, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1984, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(124, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(496, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(992, [\chi])\)\(^{\oplus 2}\)