Properties

Label 198.3.k.a.53.4
Level $198$
Weight $3$
Character 198.53
Analytic conductor $5.395$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [198,3,Mod(53,198)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(198, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 6])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("198.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 198.k (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39510923433\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 14 x^{14} + 255 x^{12} + 3946 x^{10} + 33929 x^{8} + 477466 x^{6} + 3733455 x^{4} + \cdots + 214358881 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 53.4
Root \(2.40294 + 2.28602i\) of defining polynomial
Character \(\chi\) \(=\) 198.53
Dual form 198.3.k.a.71.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34500 + 0.437016i) q^{2} +(1.61803 + 1.17557i) q^{4} +(2.68314 - 0.871805i) q^{5} +(1.80392 + 1.31063i) q^{7} +(1.66251 + 2.28825i) q^{8} +3.98981 q^{10} +(10.9772 - 0.707957i) q^{11} +(-1.39798 + 4.30255i) q^{13} +(1.85351 + 2.55113i) q^{14} +(1.23607 + 3.80423i) q^{16} +(14.0058 - 4.55076i) q^{17} +(-8.97019 + 6.51722i) q^{19} +(5.36628 + 1.74361i) q^{20} +(15.0737 + 3.84501i) q^{22} -11.0813i q^{23} +(-13.7862 + 10.0163i) q^{25} +(-3.76057 + 5.17598i) q^{26} +(1.37807 + 4.24128i) q^{28} +(13.3045 - 18.3121i) q^{29} +(-7.11534 + 21.8988i) q^{31} +5.65685i q^{32} +20.8265 q^{34} +(5.98279 + 1.94393i) q^{35} +(-16.2058 - 11.7742i) q^{37} +(-14.9130 + 4.84553i) q^{38} +(6.45565 + 4.69030i) q^{40} +(-23.8256 - 32.7931i) q^{41} -45.6612 q^{43} +(18.5937 + 11.7590i) q^{44} +(4.84271 - 14.9043i) q^{46} +(-6.81426 - 9.37903i) q^{47} +(-13.6054 - 41.8732i) q^{49} +(-22.9197 + 7.44706i) q^{50} +(-7.31994 + 5.31825i) q^{52} +(-37.2253 - 12.0952i) q^{53} +(28.8362 - 11.4695i) q^{55} +6.30674i q^{56} +(25.8972 - 18.8154i) q^{58} +(-54.7514 + 75.3588i) q^{59} +(-22.9159 - 70.5280i) q^{61} +(-19.1402 + 26.3443i) q^{62} +(-2.47214 + 7.60845i) q^{64} +12.7631i q^{65} +87.7093 q^{67} +(28.0116 + 9.10152i) q^{68} +(7.19731 + 5.22915i) q^{70} +(-63.8893 + 20.7589i) q^{71} +(-28.8781 - 20.9811i) q^{73} +(-16.6512 - 22.9184i) q^{74} -22.1755 q^{76} +(20.7299 + 13.1099i) q^{77} +(7.84946 - 24.1582i) q^{79} +(6.63309 + 9.12967i) q^{80} +(-17.7142 - 54.5188i) q^{82} +(20.8375 - 6.77051i) q^{83} +(33.6122 - 24.4207i) q^{85} +(-61.4141 - 19.9547i) q^{86} +(19.8697 + 23.9415i) q^{88} -34.9908i q^{89} +(-8.16089 + 5.92924i) q^{91} +(13.0269 - 17.9299i) q^{92} +(-5.06638 - 15.5927i) q^{94} +(-18.3865 + 25.3069i) q^{95} +(-33.7192 + 103.777i) q^{97} -62.2652i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 24 q^{7} - 24 q^{10} + 48 q^{13} - 16 q^{16} - 36 q^{19} + 48 q^{22} + 192 q^{25} - 32 q^{28} + 4 q^{31} - 112 q^{34} + 76 q^{37} - 72 q^{40} - 440 q^{43} - 36 q^{46} - 168 q^{49} + 24 q^{52}+ \cdots + 156 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/198\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(155\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34500 + 0.437016i 0.672499 + 0.218508i
\(3\) 0 0
\(4\) 1.61803 + 1.17557i 0.404508 + 0.293893i
\(5\) 2.68314 0.871805i 0.536628 0.174361i −0.0281501 0.999604i \(-0.508962\pi\)
0.564778 + 0.825243i \(0.308962\pi\)
\(6\) 0 0
\(7\) 1.80392 + 1.31063i 0.257703 + 0.187232i 0.709134 0.705074i \(-0.249086\pi\)
−0.451431 + 0.892306i \(0.649086\pi\)
\(8\) 1.66251 + 2.28825i 0.207813 + 0.286031i
\(9\) 0 0
\(10\) 3.98981 0.398981
\(11\) 10.9772 0.707957i 0.997927 0.0643598i
\(12\) 0 0
\(13\) −1.39798 + 4.30255i −0.107537 + 0.330966i −0.990318 0.138820i \(-0.955669\pi\)
0.882780 + 0.469786i \(0.155669\pi\)
\(14\) 1.85351 + 2.55113i 0.132393 + 0.182224i
\(15\) 0 0
\(16\) 1.23607 + 3.80423i 0.0772542 + 0.237764i
\(17\) 14.0058 4.55076i 0.823871 0.267692i 0.133409 0.991061i \(-0.457408\pi\)
0.690461 + 0.723369i \(0.257408\pi\)
\(18\) 0 0
\(19\) −8.97019 + 6.51722i −0.472115 + 0.343012i −0.798265 0.602306i \(-0.794249\pi\)
0.326150 + 0.945318i \(0.394249\pi\)
\(20\) 5.36628 + 1.74361i 0.268314 + 0.0871805i
\(21\) 0 0
\(22\) 15.0737 + 3.84501i 0.685167 + 0.174773i
\(23\) 11.0813i 0.481796i −0.970550 0.240898i \(-0.922558\pi\)
0.970550 0.240898i \(-0.0774419\pi\)
\(24\) 0 0
\(25\) −13.7862 + 10.0163i −0.551449 + 0.400651i
\(26\) −3.76057 + 5.17598i −0.144637 + 0.199076i
\(27\) 0 0
\(28\) 1.37807 + 4.24128i 0.0492169 + 0.151474i
\(29\) 13.3045 18.3121i 0.458776 0.631452i −0.515478 0.856903i \(-0.672386\pi\)
0.974254 + 0.225451i \(0.0723856\pi\)
\(30\) 0 0
\(31\) −7.11534 + 21.8988i −0.229527 + 0.706412i 0.768273 + 0.640122i \(0.221116\pi\)
−0.997800 + 0.0662901i \(0.978884\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 20.8265 0.612545
\(35\) 5.98279 + 1.94393i 0.170937 + 0.0555407i
\(36\) 0 0
\(37\) −16.2058 11.7742i −0.437994 0.318221i 0.346843 0.937923i \(-0.387254\pi\)
−0.784837 + 0.619702i \(0.787254\pi\)
\(38\) −14.9130 + 4.84553i −0.392448 + 0.127514i
\(39\) 0 0
\(40\) 6.45565 + 4.69030i 0.161391 + 0.117258i
\(41\) −23.8256 32.7931i −0.581111 0.799831i 0.412705 0.910865i \(-0.364584\pi\)
−0.993817 + 0.111033i \(0.964584\pi\)
\(42\) 0 0
\(43\) −45.6612 −1.06189 −0.530944 0.847407i \(-0.678163\pi\)
−0.530944 + 0.847407i \(0.678163\pi\)
\(44\) 18.5937 + 11.7590i 0.422585 + 0.267249i
\(45\) 0 0
\(46\) 4.84271 14.9043i 0.105276 0.324007i
\(47\) −6.81426 9.37903i −0.144984 0.199554i 0.730348 0.683075i \(-0.239358\pi\)
−0.875333 + 0.483521i \(0.839358\pi\)
\(48\) 0 0
\(49\) −13.6054 41.8732i −0.277662 0.854556i
\(50\) −22.9197 + 7.44706i −0.458394 + 0.148941i
\(51\) 0 0
\(52\) −7.31994 + 5.31825i −0.140768 + 0.102274i
\(53\) −37.2253 12.0952i −0.702365 0.228212i −0.0640042 0.997950i \(-0.520387\pi\)
−0.638361 + 0.769737i \(0.720387\pi\)
\(54\) 0 0
\(55\) 28.8362 11.4695i 0.524294 0.208537i
\(56\) 6.30674i 0.112620i
\(57\) 0 0
\(58\) 25.8972 18.8154i 0.446504 0.324404i
\(59\) −54.7514 + 75.3588i −0.927990 + 1.27727i 0.0326490 + 0.999467i \(0.489606\pi\)
−0.960639 + 0.277801i \(0.910394\pi\)
\(60\) 0 0
\(61\) −22.9159 70.5280i −0.375671 1.15620i −0.943025 0.332723i \(-0.892033\pi\)
0.567354 0.823474i \(-0.307967\pi\)
\(62\) −19.1402 + 26.3443i −0.308713 + 0.424908i
\(63\) 0 0
\(64\) −2.47214 + 7.60845i −0.0386271 + 0.118882i
\(65\) 12.7631i 0.196356i
\(66\) 0 0
\(67\) 87.7093 1.30909 0.654547 0.756021i \(-0.272859\pi\)
0.654547 + 0.756021i \(0.272859\pi\)
\(68\) 28.0116 + 9.10152i 0.411935 + 0.133846i
\(69\) 0 0
\(70\) 7.19731 + 5.22915i 0.102819 + 0.0747021i
\(71\) −63.8893 + 20.7589i −0.899850 + 0.292379i −0.722175 0.691710i \(-0.756857\pi\)
−0.177675 + 0.984089i \(0.556857\pi\)
\(72\) 0 0
\(73\) −28.8781 20.9811i −0.395590 0.287413i 0.372152 0.928172i \(-0.378620\pi\)
−0.767742 + 0.640759i \(0.778620\pi\)
\(74\) −16.6512 22.9184i −0.225017 0.309709i
\(75\) 0 0
\(76\) −22.1755 −0.291783
\(77\) 20.7299 + 13.1099i 0.269219 + 0.170258i
\(78\) 0 0
\(79\) 7.84946 24.1582i 0.0993603 0.305800i −0.889005 0.457897i \(-0.848603\pi\)
0.988365 + 0.152098i \(0.0486028\pi\)
\(80\) 6.63309 + 9.12967i 0.0829136 + 0.114121i
\(81\) 0 0
\(82\) −17.7142 54.5188i −0.216027 0.664863i
\(83\) 20.8375 6.77051i 0.251054 0.0815724i −0.180786 0.983522i \(-0.557864\pi\)
0.431841 + 0.901950i \(0.357864\pi\)
\(84\) 0 0
\(85\) 33.6122 24.4207i 0.395437 0.287302i
\(86\) −61.4141 19.9547i −0.714118 0.232031i
\(87\) 0 0
\(88\) 19.8697 + 23.9415i 0.225791 + 0.272063i
\(89\) 34.9908i 0.393155i −0.980488 0.196577i \(-0.937017\pi\)
0.980488 0.196577i \(-0.0629827\pi\)
\(90\) 0 0
\(91\) −8.16089 + 5.92924i −0.0896801 + 0.0651564i
\(92\) 13.0269 17.9299i 0.141596 0.194891i
\(93\) 0 0
\(94\) −5.06638 15.5927i −0.0538976 0.165880i
\(95\) −18.3865 + 25.3069i −0.193542 + 0.266388i
\(96\) 0 0
\(97\) −33.7192 + 103.777i −0.347621 + 1.06987i 0.612545 + 0.790436i \(0.290146\pi\)
−0.960166 + 0.279432i \(0.909854\pi\)
\(98\) 62.2652i 0.635359i
\(99\) 0 0
\(100\) −34.0814 −0.340814
\(101\) 171.987 + 55.8819i 1.70284 + 0.553286i 0.989116 0.147140i \(-0.0470067\pi\)
0.713725 + 0.700426i \(0.247007\pi\)
\(102\) 0 0
\(103\) 163.062 + 118.472i 1.58313 + 1.15021i 0.912997 + 0.407967i \(0.133762\pi\)
0.670131 + 0.742243i \(0.266238\pi\)
\(104\) −12.1695 + 3.95410i −0.117014 + 0.0380202i
\(105\) 0 0
\(106\) −44.7822 32.5361i −0.422473 0.306945i
\(107\) −53.7458 73.9747i −0.502297 0.691353i 0.480300 0.877104i \(-0.340528\pi\)
−0.982597 + 0.185752i \(0.940528\pi\)
\(108\) 0 0
\(109\) −207.818 −1.90659 −0.953295 0.302040i \(-0.902332\pi\)
−0.953295 + 0.302040i \(0.902332\pi\)
\(110\) 43.7969 2.82462i 0.398154 0.0256783i
\(111\) 0 0
\(112\) −2.75615 + 8.48255i −0.0246085 + 0.0757371i
\(113\) −37.3186 51.3646i −0.330253 0.454554i 0.611310 0.791391i \(-0.290643\pi\)
−0.941563 + 0.336837i \(0.890643\pi\)
\(114\) 0 0
\(115\) −9.66075 29.7327i −0.0840065 0.258545i
\(116\) 43.0543 13.9892i 0.371158 0.120597i
\(117\) 0 0
\(118\) −106.573 + 77.4302i −0.903165 + 0.656188i
\(119\) 31.2297 + 10.1472i 0.262435 + 0.0852702i
\(120\) 0 0
\(121\) 119.998 15.5428i 0.991716 0.128453i
\(122\) 104.875i 0.859628i
\(123\) 0 0
\(124\) −37.2564 + 27.0684i −0.300455 + 0.218293i
\(125\) −69.7150 + 95.9544i −0.557720 + 0.767635i
\(126\) 0 0
\(127\) 20.3921 + 62.7604i 0.160568 + 0.494176i 0.998682 0.0513177i \(-0.0163421\pi\)
−0.838115 + 0.545494i \(0.816342\pi\)
\(128\) −6.65003 + 9.15298i −0.0519534 + 0.0715077i
\(129\) 0 0
\(130\) −5.57769 + 17.1664i −0.0429053 + 0.132049i
\(131\) 59.5648i 0.454693i 0.973814 + 0.227347i \(0.0730050\pi\)
−0.973814 + 0.227347i \(0.926995\pi\)
\(132\) 0 0
\(133\) −24.7232 −0.185888
\(134\) 117.969 + 38.3304i 0.880364 + 0.286048i
\(135\) 0 0
\(136\) 33.6980 + 24.4830i 0.247780 + 0.180022i
\(137\) 180.893 58.7758i 1.32039 0.429020i 0.437761 0.899092i \(-0.355772\pi\)
0.882629 + 0.470071i \(0.155772\pi\)
\(138\) 0 0
\(139\) 189.818 + 137.911i 1.36560 + 0.992165i 0.998067 + 0.0621540i \(0.0197970\pi\)
0.367531 + 0.930011i \(0.380203\pi\)
\(140\) 7.39513 + 10.1785i 0.0528224 + 0.0727038i
\(141\) 0 0
\(142\) −95.0029 −0.669035
\(143\) −12.2999 + 48.2197i −0.0860134 + 0.337201i
\(144\) 0 0
\(145\) 19.7333 60.7329i 0.136092 0.418848i
\(146\) −29.6718 40.8397i −0.203232 0.279724i
\(147\) 0 0
\(148\) −12.3801 38.1021i −0.0836495 0.257447i
\(149\) 143.042 46.4770i 0.960011 0.311926i 0.213234 0.977001i \(-0.431600\pi\)
0.746777 + 0.665075i \(0.231600\pi\)
\(150\) 0 0
\(151\) 41.1188 29.8745i 0.272310 0.197845i −0.443246 0.896400i \(-0.646173\pi\)
0.715556 + 0.698555i \(0.246173\pi\)
\(152\) −29.8260 9.69106i −0.196224 0.0637570i
\(153\) 0 0
\(154\) 22.1524 + 26.6921i 0.143847 + 0.173325i
\(155\) 64.9607i 0.419101i
\(156\) 0 0
\(157\) 83.4844 60.6550i 0.531748 0.386338i −0.289263 0.957250i \(-0.593410\pi\)
0.821011 + 0.570912i \(0.193410\pi\)
\(158\) 21.1150 29.0623i 0.133639 0.183939i
\(159\) 0 0
\(160\) 4.93168 + 15.1781i 0.0308230 + 0.0948634i
\(161\) 14.5235 19.9898i 0.0902078 0.124160i
\(162\) 0 0
\(163\) −83.2710 + 256.282i −0.510865 + 1.57228i 0.279817 + 0.960053i \(0.409726\pi\)
−0.790682 + 0.612227i \(0.790274\pi\)
\(164\) 81.0690i 0.494323i
\(165\) 0 0
\(166\) 30.9852 0.186658
\(167\) 201.473 + 65.4625i 1.20642 + 0.391991i 0.842121 0.539289i \(-0.181307\pi\)
0.364304 + 0.931280i \(0.381307\pi\)
\(168\) 0 0
\(169\) 120.166 + 87.3059i 0.711043 + 0.516603i
\(170\) 55.8805 18.1567i 0.328709 0.106804i
\(171\) 0 0
\(172\) −73.8813 53.6779i −0.429543 0.312081i
\(173\) −71.0891 97.8458i −0.410920 0.565583i 0.552523 0.833498i \(-0.313665\pi\)
−0.963442 + 0.267915i \(0.913665\pi\)
\(174\) 0 0
\(175\) −37.9969 −0.217125
\(176\) 16.2618 + 40.8846i 0.0923965 + 0.232299i
\(177\) 0 0
\(178\) 15.2915 47.0625i 0.0859074 0.264396i
\(179\) −27.4907 37.8377i −0.153579 0.211384i 0.725294 0.688440i \(-0.241704\pi\)
−0.878873 + 0.477056i \(0.841704\pi\)
\(180\) 0 0
\(181\) −87.2836 268.631i −0.482230 1.48415i −0.835953 0.548801i \(-0.815084\pi\)
0.353723 0.935350i \(-0.384916\pi\)
\(182\) −13.5675 + 4.40836i −0.0745470 + 0.0242218i
\(183\) 0 0
\(184\) 25.3568 18.4228i 0.137808 0.100124i
\(185\) −53.7472 17.4635i −0.290526 0.0943975i
\(186\) 0 0
\(187\) 150.523 59.8701i 0.804934 0.320161i
\(188\) 23.1862i 0.123331i
\(189\) 0 0
\(190\) −35.7894 + 26.0025i −0.188365 + 0.136855i
\(191\) −210.191 + 289.303i −1.10048 + 1.51468i −0.265727 + 0.964048i \(0.585612\pi\)
−0.834750 + 0.550628i \(0.814388\pi\)
\(192\) 0 0
\(193\) −11.4931 35.3722i −0.0595499 0.183276i 0.916856 0.399217i \(-0.130718\pi\)
−0.976406 + 0.215941i \(0.930718\pi\)
\(194\) −90.7046 + 124.844i −0.467549 + 0.643526i
\(195\) 0 0
\(196\) 27.2109 83.7465i 0.138831 0.427278i
\(197\) 129.220i 0.655937i −0.944689 0.327969i \(-0.893636\pi\)
0.944689 0.327969i \(-0.106364\pi\)
\(198\) 0 0
\(199\) −93.6837 −0.470772 −0.235386 0.971902i \(-0.575635\pi\)
−0.235386 + 0.971902i \(0.575635\pi\)
\(200\) −45.8394 14.8941i −0.229197 0.0744706i
\(201\) 0 0
\(202\) 206.901 + 150.322i 1.02426 + 0.744169i
\(203\) 48.0006 15.5963i 0.236456 0.0768293i
\(204\) 0 0
\(205\) −92.5166 67.2172i −0.451300 0.327889i
\(206\) 167.544 + 230.605i 0.813321 + 1.11944i
\(207\) 0 0
\(208\) −18.0959 −0.0869995
\(209\) −93.8536 + 77.8914i −0.449060 + 0.372686i
\(210\) 0 0
\(211\) 89.4980 275.447i 0.424161 1.30543i −0.479634 0.877469i \(-0.659231\pi\)
0.903795 0.427965i \(-0.140769\pi\)
\(212\) −46.0130 63.3315i −0.217043 0.298734i
\(213\) 0 0
\(214\) −39.9598 122.984i −0.186728 0.574689i
\(215\) −122.515 + 39.8077i −0.569839 + 0.185152i
\(216\) 0 0
\(217\) −41.5366 + 30.1781i −0.191413 + 0.139070i
\(218\) −279.515 90.8199i −1.28218 0.416605i
\(219\) 0 0
\(220\) 60.1411 + 15.3409i 0.273369 + 0.0697312i
\(221\) 66.6226i 0.301460i
\(222\) 0 0
\(223\) −116.475 + 84.6244i −0.522311 + 0.379481i −0.817474 0.575966i \(-0.804626\pi\)
0.295163 + 0.955447i \(0.404626\pi\)
\(224\) −7.41402 + 10.2045i −0.0330983 + 0.0455559i
\(225\) 0 0
\(226\) −27.7462 85.3941i −0.122771 0.377850i
\(227\) 24.4076 33.5941i 0.107522 0.147992i −0.751865 0.659317i \(-0.770845\pi\)
0.859387 + 0.511326i \(0.170845\pi\)
\(228\) 0 0
\(229\) −39.1019 + 120.343i −0.170751 + 0.525516i −0.999414 0.0342310i \(-0.989102\pi\)
0.828663 + 0.559747i \(0.189102\pi\)
\(230\) 44.2123i 0.192227i
\(231\) 0 0
\(232\) 64.0214 0.275954
\(233\) −189.364 61.5282i −0.812723 0.264070i −0.126972 0.991906i \(-0.540526\pi\)
−0.685751 + 0.727837i \(0.740526\pi\)
\(234\) 0 0
\(235\) −26.4603 19.2245i −0.112597 0.0818066i
\(236\) −177.179 + 57.5690i −0.750759 + 0.243937i
\(237\) 0 0
\(238\) 37.5694 + 27.2958i 0.157855 + 0.114688i
\(239\) −144.854 199.374i −0.606084 0.834203i 0.390164 0.920745i \(-0.372418\pi\)
−0.996248 + 0.0865424i \(0.972418\pi\)
\(240\) 0 0
\(241\) −439.621 −1.82415 −0.912076 0.410021i \(-0.865521\pi\)
−0.912076 + 0.410021i \(0.865521\pi\)
\(242\) 168.189 + 31.5359i 0.694995 + 0.130314i
\(243\) 0 0
\(244\) 45.8319 141.056i 0.187836 0.578098i
\(245\) −73.0106 100.491i −0.298003 0.410165i
\(246\) 0 0
\(247\) −15.5005 47.7057i −0.0627551 0.193140i
\(248\) −61.9391 + 20.1252i −0.249754 + 0.0811501i
\(249\) 0 0
\(250\) −135.700 + 98.5918i −0.542800 + 0.394367i
\(251\) −153.228 49.7869i −0.610471 0.198354i −0.0125660 0.999921i \(-0.504000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(252\) 0 0
\(253\) −7.84509 121.642i −0.0310083 0.480797i
\(254\) 93.3242i 0.367418i
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.0505636 + 0.0367366i
\(257\) −63.6815 + 87.6500i −0.247788 + 0.341051i −0.914735 0.404054i \(-0.867601\pi\)
0.666947 + 0.745105i \(0.267601\pi\)
\(258\) 0 0
\(259\) −13.8024 42.4795i −0.0532912 0.164013i
\(260\) −15.0040 + 20.6512i −0.0577075 + 0.0794276i
\(261\) 0 0
\(262\) −26.0308 + 80.1145i −0.0993541 + 0.305780i
\(263\) 263.126i 1.00048i −0.865887 0.500240i \(-0.833245\pi\)
0.865887 0.500240i \(-0.166755\pi\)
\(264\) 0 0
\(265\) −110.426 −0.416700
\(266\) −33.2526 10.8044i −0.125010 0.0406181i
\(267\) 0 0
\(268\) 141.917 + 103.108i 0.529540 + 0.384733i
\(269\) 302.144 98.1724i 1.12321 0.364953i 0.312218 0.950010i \(-0.398928\pi\)
0.810992 + 0.585057i \(0.198928\pi\)
\(270\) 0 0
\(271\) −35.1264 25.5208i −0.129618 0.0941729i 0.521087 0.853503i \(-0.325527\pi\)
−0.650705 + 0.759331i \(0.725527\pi\)
\(272\) 34.6242 + 47.6562i 0.127295 + 0.175207i
\(273\) 0 0
\(274\) 268.987 0.981704
\(275\) −144.243 + 119.711i −0.524520 + 0.435312i
\(276\) 0 0
\(277\) 109.009 335.496i 0.393535 1.21118i −0.536561 0.843862i \(-0.680277\pi\)
0.930096 0.367316i \(-0.119723\pi\)
\(278\) 195.036 + 268.443i 0.701567 + 0.965624i
\(279\) 0 0
\(280\) 5.49825 + 16.9219i 0.0196366 + 0.0604353i
\(281\) −170.582 + 55.4255i −0.607054 + 0.197244i −0.596384 0.802699i \(-0.703396\pi\)
−0.0106699 + 0.999943i \(0.503396\pi\)
\(282\) 0 0
\(283\) −167.826 + 121.933i −0.593026 + 0.430859i −0.843397 0.537291i \(-0.819448\pi\)
0.250370 + 0.968150i \(0.419448\pi\)
\(284\) −127.779 41.5178i −0.449925 0.146189i
\(285\) 0 0
\(286\) −37.6161 + 59.4801i −0.131525 + 0.207972i
\(287\) 90.3826i 0.314922i
\(288\) 0 0
\(289\) −58.3528 + 42.3958i −0.201913 + 0.146698i
\(290\) 53.0825 73.0618i 0.183043 0.251937i
\(291\) 0 0
\(292\) −22.0609 67.8964i −0.0755509 0.232522i
\(293\) 230.223 316.875i 0.785745 1.08149i −0.208880 0.977941i \(-0.566982\pi\)
0.994625 0.103544i \(-0.0330183\pi\)
\(294\) 0 0
\(295\) −81.2075 + 249.931i −0.275280 + 0.847223i
\(296\) 56.6575i 0.191411i
\(297\) 0 0
\(298\) 212.702 0.713764
\(299\) 47.6779 + 15.4915i 0.159458 + 0.0518110i
\(300\) 0 0
\(301\) −82.3692 59.8447i −0.273652 0.198820i
\(302\) 68.3603 22.2116i 0.226358 0.0735483i
\(303\) 0 0
\(304\) −35.8808 26.0689i −0.118029 0.0857530i
\(305\) −122.973 169.258i −0.403191 0.554945i
\(306\) 0 0
\(307\) 82.4090 0.268433 0.134217 0.990952i \(-0.457148\pi\)
0.134217 + 0.990952i \(0.457148\pi\)
\(308\) 18.1300 + 45.5817i 0.0588637 + 0.147992i
\(309\) 0 0
\(310\) −28.3889 + 87.3720i −0.0915770 + 0.281845i
\(311\) 210.988 + 290.400i 0.678418 + 0.933762i 0.999914 0.0131491i \(-0.00418561\pi\)
−0.321496 + 0.946911i \(0.604186\pi\)
\(312\) 0 0
\(313\) 130.603 + 401.956i 0.417264 + 1.28421i 0.910211 + 0.414146i \(0.135920\pi\)
−0.492947 + 0.870059i \(0.664080\pi\)
\(314\) 138.794 45.0968i 0.442018 0.143620i
\(315\) 0 0
\(316\) 41.1003 29.8611i 0.130064 0.0944973i
\(317\) 356.602 + 115.867i 1.12493 + 0.365511i 0.811646 0.584150i \(-0.198572\pi\)
0.313281 + 0.949661i \(0.398572\pi\)
\(318\) 0 0
\(319\) 133.082 210.434i 0.417185 0.659669i
\(320\) 22.5698i 0.0705305i
\(321\) 0 0
\(322\) 28.2699 20.5393i 0.0877946 0.0637865i
\(323\) −95.9764 + 132.100i −0.297140 + 0.408979i
\(324\) 0 0
\(325\) −23.8226 73.3185i −0.0733004 0.225596i
\(326\) −223.999 + 308.307i −0.687112 + 0.945729i
\(327\) 0 0
\(328\) 35.4284 109.038i 0.108014 0.332431i
\(329\) 25.8500i 0.0785714i
\(330\) 0 0
\(331\) −166.263 −0.502305 −0.251152 0.967948i \(-0.580810\pi\)
−0.251152 + 0.967948i \(0.580810\pi\)
\(332\) 41.6750 + 13.5410i 0.125527 + 0.0407862i
\(333\) 0 0
\(334\) 242.372 + 176.094i 0.725666 + 0.527227i
\(335\) 235.336 76.4655i 0.702497 0.228255i
\(336\) 0 0
\(337\) 508.288 + 369.293i 1.50827 + 1.09583i 0.966936 + 0.255021i \(0.0820823\pi\)
0.541339 + 0.840805i \(0.317918\pi\)
\(338\) 123.469 + 169.941i 0.365293 + 0.502783i
\(339\) 0 0
\(340\) 83.0939 0.244394
\(341\) −62.6031 + 245.425i −0.183587 + 0.719720i
\(342\) 0 0
\(343\) 64.0998 197.279i 0.186880 0.575157i
\(344\) −75.9121 104.484i −0.220675 0.303733i
\(345\) 0 0
\(346\) −52.8545 162.669i −0.152759 0.470143i
\(347\) 541.504 175.945i 1.56053 0.507047i 0.603580 0.797302i \(-0.293740\pi\)
0.956949 + 0.290256i \(0.0937403\pi\)
\(348\) 0 0
\(349\) 72.1627 52.4293i 0.206770 0.150227i −0.479581 0.877498i \(-0.659211\pi\)
0.686351 + 0.727270i \(0.259211\pi\)
\(350\) −51.1057 16.6052i −0.146016 0.0474435i
\(351\) 0 0
\(352\) 4.00481 + 62.0964i 0.0113773 + 0.176410i
\(353\) 490.203i 1.38868i 0.719649 + 0.694338i \(0.244303\pi\)
−0.719649 + 0.694338i \(0.755697\pi\)
\(354\) 0 0
\(355\) −153.326 + 111.398i −0.431905 + 0.313798i
\(356\) 41.1341 56.6162i 0.115545 0.159034i
\(357\) 0 0
\(358\) −20.4392 62.9055i −0.0570928 0.175714i
\(359\) 281.600 387.589i 0.784401 1.07964i −0.210382 0.977619i \(-0.567471\pi\)
0.994783 0.102016i \(-0.0325292\pi\)
\(360\) 0 0
\(361\) −73.5650 + 226.410i −0.203781 + 0.627174i
\(362\) 399.453i 1.10346i
\(363\) 0 0
\(364\) −20.1748 −0.0554254
\(365\) −95.7754 31.1193i −0.262398 0.0852584i
\(366\) 0 0
\(367\) −3.71416 2.69850i −0.0101203 0.00735285i 0.582714 0.812678i \(-0.301991\pi\)
−0.592834 + 0.805325i \(0.701991\pi\)
\(368\) 42.1558 13.6973i 0.114554 0.0372208i
\(369\) 0 0
\(370\) −64.6580 46.9768i −0.174751 0.126964i
\(371\) −51.2993 70.6074i −0.138273 0.190316i
\(372\) 0 0
\(373\) −127.560 −0.341984 −0.170992 0.985272i \(-0.554697\pi\)
−0.170992 + 0.985272i \(0.554697\pi\)
\(374\) 228.617 14.7443i 0.611275 0.0394232i
\(375\) 0 0
\(376\) 10.1328 31.1854i 0.0269488 0.0829399i
\(377\) 60.1893 + 82.8434i 0.159653 + 0.219744i
\(378\) 0 0
\(379\) 97.6391 + 300.502i 0.257623 + 0.792882i 0.993302 + 0.115551i \(0.0368635\pi\)
−0.735678 + 0.677331i \(0.763137\pi\)
\(380\) −59.5001 + 19.3327i −0.156579 + 0.0508757i
\(381\) 0 0
\(382\) −409.137 + 297.255i −1.07104 + 0.778155i
\(383\) 269.358 + 87.5199i 0.703286 + 0.228511i 0.638762 0.769405i \(-0.279447\pi\)
0.0645242 + 0.997916i \(0.479447\pi\)
\(384\) 0 0
\(385\) 67.0505 + 17.1033i 0.174157 + 0.0444241i
\(386\) 52.5982i 0.136265i
\(387\) 0 0
\(388\) −176.556 + 128.276i −0.455042 + 0.330607i
\(389\) 173.179 238.360i 0.445189 0.612750i −0.526166 0.850382i \(-0.676371\pi\)
0.971355 + 0.237632i \(0.0763711\pi\)
\(390\) 0 0
\(391\) −50.4284 155.203i −0.128973 0.396938i
\(392\) 73.1971 100.747i 0.186727 0.257008i
\(393\) 0 0
\(394\) 56.4711 173.800i 0.143328 0.441117i
\(395\) 71.6630i 0.181425i
\(396\) 0 0
\(397\) 354.576 0.893138 0.446569 0.894749i \(-0.352646\pi\)
0.446569 + 0.894749i \(0.352646\pi\)
\(398\) −126.004 40.9413i −0.316594 0.102867i
\(399\) 0 0
\(400\) −55.1449 40.0651i −0.137862 0.100163i
\(401\) 38.8054 12.6086i 0.0967715 0.0314430i −0.260231 0.965546i \(-0.583799\pi\)
0.357003 + 0.934103i \(0.383799\pi\)
\(402\) 0 0
\(403\) −84.2735 61.2283i −0.209115 0.151931i
\(404\) 212.588 + 292.602i 0.526207 + 0.724261i
\(405\) 0 0
\(406\) 71.3765 0.175804
\(407\) −186.230 117.775i −0.457567 0.289373i
\(408\) 0 0
\(409\) −147.530 + 454.050i −0.360708 + 1.11015i 0.591917 + 0.805999i \(0.298371\pi\)
−0.952625 + 0.304147i \(0.901629\pi\)
\(410\) −95.0595 130.838i −0.231852 0.319118i
\(411\) 0 0
\(412\) 124.568 + 383.382i 0.302350 + 0.930539i
\(413\) −197.534 + 64.1828i −0.478292 + 0.155406i
\(414\) 0 0
\(415\) 50.0074 36.3325i 0.120500 0.0875482i
\(416\) −24.3389 7.90819i −0.0585070 0.0190101i
\(417\) 0 0
\(418\) −160.273 + 63.7481i −0.383427 + 0.152507i
\(419\) 75.9631i 0.181296i 0.995883 + 0.0906481i \(0.0288938\pi\)
−0.995883 + 0.0906481i \(0.971106\pi\)
\(420\) 0 0
\(421\) 225.960 164.170i 0.536722 0.389951i −0.286144 0.958187i \(-0.592374\pi\)
0.822866 + 0.568235i \(0.192374\pi\)
\(422\) 240.749 331.363i 0.570496 0.785220i
\(423\) 0 0
\(424\) −34.2105 105.289i −0.0806852 0.248323i
\(425\) −147.505 + 203.024i −0.347072 + 0.477703i
\(426\) 0 0
\(427\) 51.0973 157.261i 0.119666 0.368293i
\(428\) 182.876i 0.427279i
\(429\) 0 0
\(430\) −182.179 −0.423673
\(431\) −565.456 183.728i −1.31196 0.426282i −0.432235 0.901761i \(-0.642275\pi\)
−0.879727 + 0.475479i \(0.842275\pi\)
\(432\) 0 0
\(433\) 127.561 + 92.6786i 0.294598 + 0.214038i 0.725260 0.688475i \(-0.241720\pi\)
−0.430661 + 0.902514i \(0.641720\pi\)
\(434\) −69.0550 + 22.4373i −0.159113 + 0.0516989i
\(435\) 0 0
\(436\) −336.257 244.305i −0.771232 0.560333i
\(437\) 72.2194 + 99.4014i 0.165262 + 0.227463i
\(438\) 0 0
\(439\) 265.463 0.604699 0.302349 0.953197i \(-0.402229\pi\)
0.302349 + 0.953197i \(0.402229\pi\)
\(440\) 74.1854 + 46.9160i 0.168603 + 0.106627i
\(441\) 0 0
\(442\) −29.1151 + 89.6072i −0.0658714 + 0.202731i
\(443\) −35.1370 48.3619i −0.0793160 0.109169i 0.767515 0.641030i \(-0.221493\pi\)
−0.846831 + 0.531861i \(0.821493\pi\)
\(444\) 0 0
\(445\) −30.5051 93.8852i −0.0685509 0.210978i
\(446\) −193.641 + 62.9179i −0.434173 + 0.141071i
\(447\) 0 0
\(448\) −14.4314 + 10.4850i −0.0322129 + 0.0234040i
\(449\) −264.409 85.9116i −0.588884 0.191340i −0.000607294 1.00000i \(-0.500193\pi\)
−0.588276 + 0.808660i \(0.700193\pi\)
\(450\) 0 0
\(451\) −284.754 343.109i −0.631384 0.760773i
\(452\) 126.980i 0.280930i
\(453\) 0 0
\(454\) 47.5093 34.5175i 0.104646 0.0760297i
\(455\) −16.7277 + 23.0237i −0.0367642 + 0.0506015i
\(456\) 0 0
\(457\) 101.783 + 313.255i 0.222720 + 0.685460i 0.998515 + 0.0544760i \(0.0173488\pi\)
−0.775795 + 0.630984i \(0.782651\pi\)
\(458\) −105.184 + 144.773i −0.229659 + 0.316099i
\(459\) 0 0
\(460\) 19.3215 59.4654i 0.0420032 0.129273i
\(461\) 628.919i 1.36425i 0.731236 + 0.682124i \(0.238944\pi\)
−0.731236 + 0.682124i \(0.761056\pi\)
\(462\) 0 0
\(463\) −509.930 −1.10136 −0.550680 0.834716i \(-0.685632\pi\)
−0.550680 + 0.834716i \(0.685632\pi\)
\(464\) 86.1086 + 27.9784i 0.185579 + 0.0602983i
\(465\) 0 0
\(466\) −227.806 165.511i −0.488854 0.355173i
\(467\) −210.460 + 68.3826i −0.450664 + 0.146430i −0.525550 0.850762i \(-0.676141\pi\)
0.0748865 + 0.997192i \(0.476141\pi\)
\(468\) 0 0
\(469\) 158.221 + 114.954i 0.337358 + 0.245105i
\(470\) −27.1876 37.4205i −0.0578460 0.0796182i
\(471\) 0 0
\(472\) −263.464 −0.558187
\(473\) −501.232 + 32.3262i −1.05969 + 0.0683428i
\(474\) 0 0
\(475\) 58.3867 179.696i 0.122919 0.378307i
\(476\) 38.6021 + 53.1312i 0.0810968 + 0.111620i
\(477\) 0 0
\(478\) −107.698 331.462i −0.225310 0.693434i
\(479\) 245.892 79.8953i 0.513345 0.166796i −0.0408778 0.999164i \(-0.513015\pi\)
0.554223 + 0.832368i \(0.313015\pi\)
\(480\) 0 0
\(481\) 73.3145 53.2661i 0.152421 0.110740i
\(482\) −591.288 192.121i −1.22674 0.398592i
\(483\) 0 0
\(484\) 212.432 + 115.917i 0.438909 + 0.239498i
\(485\) 307.845i 0.634733i
\(486\) 0 0
\(487\) 361.333 262.523i 0.741956 0.539063i −0.151367 0.988478i \(-0.548368\pi\)
0.893323 + 0.449415i \(0.148368\pi\)
\(488\) 123.287 169.691i 0.252638 0.347727i
\(489\) 0 0
\(490\) −54.2831 167.066i −0.110782 0.340952i
\(491\) −261.208 + 359.522i −0.531992 + 0.732224i −0.987432 0.158042i \(-0.949482\pi\)
0.455441 + 0.890266i \(0.349482\pi\)
\(492\) 0 0
\(493\) 103.006 317.021i 0.208938 0.643045i
\(494\) 70.9380i 0.143599i
\(495\) 0 0
\(496\) −92.1030 −0.185691
\(497\) −142.459 46.2876i −0.286637 0.0931340i
\(498\) 0 0
\(499\) −608.499 442.100i −1.21944 0.885973i −0.223384 0.974731i \(-0.571710\pi\)
−0.996053 + 0.0887576i \(0.971710\pi\)
\(500\) −225.602 + 73.3026i −0.451205 + 0.146605i
\(501\) 0 0
\(502\) −184.334 133.926i −0.367199 0.266786i
\(503\) −196.115 269.929i −0.389890 0.536638i 0.568280 0.822835i \(-0.307609\pi\)
−0.958171 + 0.286197i \(0.907609\pi\)
\(504\) 0 0
\(505\) 510.183 1.01026
\(506\) 42.6077 167.036i 0.0842050 0.330111i
\(507\) 0 0
\(508\) −40.7842 + 125.521i −0.0802838 + 0.247088i
\(509\) −208.025 286.322i −0.408693 0.562518i 0.554206 0.832380i \(-0.313022\pi\)
−0.962899 + 0.269862i \(0.913022\pi\)
\(510\) 0 0
\(511\) −24.5953 75.6967i −0.0481318 0.148134i
\(512\) −21.5200 + 6.99226i −0.0420312 + 0.0136568i
\(513\) 0 0
\(514\) −123.956 + 90.0592i −0.241159 + 0.175212i
\(515\) 540.803 + 175.718i 1.05010 + 0.341199i
\(516\) 0 0
\(517\) −81.4414 98.1312i −0.157527 0.189809i
\(518\) 63.1666i 0.121943i
\(519\) 0 0
\(520\) −29.2052 + 21.2188i −0.0561638 + 0.0408054i
\(521\) −460.803 + 634.240i −0.884458 + 1.21735i 0.0907083 + 0.995878i \(0.471087\pi\)
−0.975166 + 0.221474i \(0.928913\pi\)
\(522\) 0 0
\(523\) 129.129 + 397.420i 0.246902 + 0.759885i 0.995318 + 0.0966555i \(0.0308145\pi\)
−0.748416 + 0.663229i \(0.769185\pi\)
\(524\) −70.0226 + 96.3779i −0.133631 + 0.183927i
\(525\) 0 0
\(526\) 114.990 353.904i 0.218613 0.672821i
\(527\) 339.090i 0.643435i
\(528\) 0 0
\(529\) 406.205 0.767873
\(530\) −148.522 48.2577i −0.280230 0.0910523i
\(531\) 0 0
\(532\) −40.0029 29.0638i −0.0751935 0.0546313i
\(533\) 174.402 56.6666i 0.327208 0.106316i
\(534\) 0 0
\(535\) −208.699 151.629i −0.390092 0.283418i
\(536\) 145.817 + 200.700i 0.272047 + 0.374441i
\(537\) 0 0
\(538\) 449.285 0.835103
\(539\) −178.994 450.019i −0.332085 0.834914i
\(540\) 0 0
\(541\) −11.8020 + 36.3229i −0.0218152 + 0.0671404i −0.961371 0.275254i \(-0.911238\pi\)
0.939556 + 0.342395i \(0.111238\pi\)
\(542\) −36.0919 49.6763i −0.0665903 0.0916536i
\(543\) 0 0
\(544\) 25.7430 + 79.2288i 0.0473217 + 0.145641i
\(545\) −557.606 + 181.177i −1.02313 + 0.332435i
\(546\) 0 0
\(547\) 741.060 538.411i 1.35477 0.984299i 0.356013 0.934481i \(-0.384136\pi\)
0.998758 0.0498175i \(-0.0158640\pi\)
\(548\) 361.787 + 117.552i 0.660195 + 0.214510i
\(549\) 0 0
\(550\) −246.322 + 97.9740i −0.447858 + 0.178135i
\(551\) 250.972i 0.455484i
\(552\) 0 0
\(553\) 45.8221 33.2917i 0.0828610 0.0602021i
\(554\) 293.234 403.603i 0.529304 0.728524i
\(555\) 0 0
\(556\) 145.008 + 446.289i 0.260806 + 0.802678i
\(557\) 456.163 627.854i 0.818964 1.12721i −0.170914 0.985286i \(-0.554672\pi\)
0.989878 0.141921i \(-0.0453280\pi\)
\(558\) 0 0
\(559\) 63.8336 196.460i 0.114192 0.351448i
\(560\) 25.1627i 0.0449334i
\(561\) 0 0
\(562\) −253.654 −0.451342
\(563\) 371.042 + 120.559i 0.659045 + 0.214137i 0.619398 0.785077i \(-0.287377\pi\)
0.0396470 + 0.999214i \(0.487377\pi\)
\(564\) 0 0
\(565\) −144.911 105.284i −0.256480 0.186343i
\(566\) −279.013 + 90.6567i −0.492955 + 0.160171i
\(567\) 0 0
\(568\) −153.718 111.683i −0.270630 0.196624i
\(569\) 61.3644 + 84.4609i 0.107846 + 0.148437i 0.859528 0.511088i \(-0.170757\pi\)
−0.751682 + 0.659525i \(0.770757\pi\)
\(570\) 0 0
\(571\) −66.1095 −0.115778 −0.0578892 0.998323i \(-0.518437\pi\)
−0.0578892 + 0.998323i \(0.518437\pi\)
\(572\) −76.5873 + 63.5616i −0.133894 + 0.111122i
\(573\) 0 0
\(574\) 39.4986 121.564i 0.0688130 0.211785i
\(575\) 110.993 + 152.769i 0.193032 + 0.265686i
\(576\) 0 0
\(577\) 297.125 + 914.456i 0.514948 + 1.58485i 0.783377 + 0.621547i \(0.213495\pi\)
−0.268429 + 0.963299i \(0.586505\pi\)
\(578\) −97.0120 + 31.5211i −0.167841 + 0.0545348i
\(579\) 0 0
\(580\) 103.325 75.0700i 0.178147 0.129431i
\(581\) 46.4628 + 15.0967i 0.0799704 + 0.0259840i
\(582\) 0 0
\(583\) −417.193 106.418i −0.715596 0.182535i
\(584\) 100.961i 0.172879i
\(585\) 0 0
\(586\) 448.129 325.585i 0.764726 0.555606i
\(587\) 387.993 534.026i 0.660976 0.909755i −0.338537 0.940953i \(-0.609932\pi\)
0.999513 + 0.0311975i \(0.00993209\pi\)
\(588\) 0 0
\(589\) −78.8933 242.809i −0.133944 0.412239i
\(590\) −218.448 + 300.667i −0.370250 + 0.509606i
\(591\) 0 0
\(592\) 24.7602 76.2042i 0.0418247 0.128723i
\(593\) 883.670i 1.49017i 0.666970 + 0.745084i \(0.267591\pi\)
−0.666970 + 0.745084i \(0.732409\pi\)
\(594\) 0 0
\(595\) 92.6401 0.155698
\(596\) 286.083 + 92.9541i 0.480005 + 0.155963i
\(597\) 0 0
\(598\) 57.3566 + 41.6720i 0.0959141 + 0.0696857i
\(599\) −223.184 + 72.5169i −0.372595 + 0.121063i −0.489328 0.872100i \(-0.662758\pi\)
0.116733 + 0.993163i \(0.462758\pi\)
\(600\) 0 0
\(601\) 126.159 + 91.6602i 0.209916 + 0.152513i 0.687776 0.725923i \(-0.258587\pi\)
−0.477860 + 0.878436i \(0.658587\pi\)
\(602\) −84.6332 116.488i −0.140587 0.193501i
\(603\) 0 0
\(604\) 101.651 0.168297
\(605\) 308.420 146.318i 0.509786 0.241848i
\(606\) 0 0
\(607\) −322.483 + 992.500i −0.531273 + 1.63509i 0.220293 + 0.975434i \(0.429298\pi\)
−0.751567 + 0.659657i \(0.770702\pi\)
\(608\) −36.8670 50.7431i −0.0606365 0.0834590i
\(609\) 0 0
\(610\) −91.4302 281.393i −0.149886 0.461301i
\(611\) 49.8800 16.2070i 0.0816367 0.0265254i
\(612\) 0 0
\(613\) 667.207 484.754i 1.08843 0.790790i 0.109296 0.994009i \(-0.465140\pi\)
0.979133 + 0.203219i \(0.0651403\pi\)
\(614\) 110.840 + 36.0141i 0.180521 + 0.0586548i
\(615\) 0 0
\(616\) 4.46490 + 69.2303i 0.00724822 + 0.112387i
\(617\) 513.392i 0.832078i −0.909347 0.416039i \(-0.863418\pi\)
0.909347 0.416039i \(-0.136582\pi\)
\(618\) 0 0
\(619\) −657.376 + 477.612i −1.06200 + 0.771586i −0.974457 0.224575i \(-0.927901\pi\)
−0.0875403 + 0.996161i \(0.527901\pi\)
\(620\) −76.3659 + 105.109i −0.123171 + 0.169530i
\(621\) 0 0
\(622\) 156.869 + 482.792i 0.252200 + 0.776193i
\(623\) 45.8598 63.1206i 0.0736112 0.101317i
\(624\) 0 0
\(625\) 28.2452 86.9298i 0.0451923 0.139088i
\(626\) 597.706i 0.954802i
\(627\) 0 0
\(628\) 206.385 0.328638
\(629\) −280.557 91.1584i −0.446036 0.144926i
\(630\) 0 0
\(631\) −483.503 351.286i −0.766249 0.556713i 0.134572 0.990904i \(-0.457034\pi\)
−0.900821 + 0.434191i \(0.857034\pi\)
\(632\) 68.3296 22.2016i 0.108116 0.0351292i
\(633\) 0 0
\(634\) 428.992 + 311.681i 0.676644 + 0.491611i
\(635\) 109.430 + 150.617i 0.172330 + 0.237192i
\(636\) 0 0
\(637\) 199.182 0.312688
\(638\) 270.958 224.875i 0.424699 0.352468i
\(639\) 0 0
\(640\) −9.86335 + 30.3563i −0.0154115 + 0.0474317i
\(641\) −479.564 660.063i −0.748150 1.02974i −0.998108 0.0614833i \(-0.980417\pi\)
0.249958 0.968257i \(-0.419583\pi\)
\(642\) 0 0
\(643\) −143.098 440.409i −0.222547 0.684928i −0.998531 0.0541765i \(-0.982747\pi\)
0.775985 0.630752i \(-0.217253\pi\)
\(644\) 46.9989 15.2709i 0.0729796 0.0237125i
\(645\) 0 0
\(646\) −186.818 + 135.731i −0.289192 + 0.210110i
\(647\) 945.308 + 307.149i 1.46106 + 0.474728i 0.928395 0.371596i \(-0.121189\pi\)
0.532668 + 0.846324i \(0.321189\pi\)
\(648\) 0 0
\(649\) −547.666 + 865.990i −0.843861 + 1.33435i
\(650\) 109.024i 0.167729i
\(651\) 0 0
\(652\) −436.013 + 316.782i −0.668731 + 0.485862i
\(653\) 359.048 494.187i 0.549843 0.756794i −0.440148 0.897925i \(-0.645074\pi\)
0.989991 + 0.141131i \(0.0450739\pi\)
\(654\) 0 0
\(655\) 51.9289 + 159.821i 0.0792808 + 0.244001i
\(656\) 95.3023 131.172i 0.145278 0.199958i
\(657\) 0 0
\(658\) 11.2969 34.7682i 0.0171685 0.0528391i
\(659\) 249.471i 0.378560i −0.981923 0.189280i \(-0.939385\pi\)
0.981923 0.189280i \(-0.0606154\pi\)
\(660\) 0 0
\(661\) −1210.43 −1.83121 −0.915604 0.402081i \(-0.868287\pi\)
−0.915604 + 0.402081i \(0.868287\pi\)
\(662\) −223.623 72.6595i −0.337799 0.109758i
\(663\) 0 0
\(664\) 50.1351 + 36.4253i 0.0755047 + 0.0548573i
\(665\) −66.3358 + 21.5538i −0.0997530 + 0.0324117i
\(666\) 0 0
\(667\) −202.922 147.431i −0.304231 0.221037i
\(668\) 249.034 + 342.766i 0.372806 + 0.513123i
\(669\) 0 0
\(670\) 349.943 0.522304
\(671\) −301.484 757.976i −0.449305 1.12962i
\(672\) 0 0
\(673\) −346.565 + 1066.62i −0.514955 + 1.58487i 0.268409 + 0.963305i \(0.413502\pi\)
−0.783364 + 0.621563i \(0.786498\pi\)
\(674\) 522.259 + 718.828i 0.774866 + 1.06651i
\(675\) 0 0
\(676\) 91.7989 + 282.528i 0.135797 + 0.417941i
\(677\) 227.144 73.8036i 0.335516 0.109016i −0.136414 0.990652i \(-0.543558\pi\)
0.471930 + 0.881636i \(0.343558\pi\)
\(678\) 0 0
\(679\) −196.840 + 143.013i −0.289897 + 0.210622i
\(680\) 111.761 + 36.3133i 0.164354 + 0.0534020i
\(681\) 0 0
\(682\) −191.455 + 302.737i −0.280726 + 0.443895i
\(683\) 1328.40i 1.94494i −0.233023 0.972471i \(-0.574862\pi\)
0.233023 0.972471i \(-0.425138\pi\)
\(684\) 0 0
\(685\) 434.121 315.408i 0.633754 0.460449i
\(686\) 172.428 237.327i 0.251353 0.345958i
\(687\) 0 0
\(688\) −56.4403 173.705i −0.0820354 0.252479i
\(689\) 104.081 143.255i 0.151061 0.207917i
\(690\) 0 0
\(691\) −12.6560 + 38.9513i −0.0183155 + 0.0563694i −0.959797 0.280697i \(-0.909435\pi\)
0.941481 + 0.337066i \(0.109435\pi\)
\(692\) 241.888i 0.349549i
\(693\) 0 0
\(694\) 805.212 1.16025
\(695\) 629.540 + 204.550i 0.905814 + 0.294317i
\(696\) 0 0
\(697\) −482.930 350.869i −0.692869 0.503399i
\(698\) 119.971 38.9810i 0.171878 0.0558466i
\(699\) 0 0
\(700\) −61.4802 44.6680i −0.0878289 0.0638114i
\(701\) 136.416 + 187.761i 0.194602 + 0.267847i 0.895156 0.445752i \(-0.147064\pi\)
−0.700554 + 0.713599i \(0.747064\pi\)
\(702\) 0 0
\(703\) 222.104 0.315938
\(704\) −21.7507 + 85.2696i −0.0308958 + 0.121122i
\(705\) 0 0
\(706\) −214.226 + 659.321i −0.303437 + 0.933883i
\(707\) 237.011 + 326.217i 0.335234 + 0.461410i
\(708\) 0 0
\(709\) 66.5049 + 204.681i 0.0938010 + 0.288690i 0.986939 0.161092i \(-0.0515017\pi\)
−0.893138 + 0.449782i \(0.851502\pi\)
\(710\) −254.906 + 82.8241i −0.359023 + 0.116654i
\(711\) 0 0
\(712\) 80.0675 58.1724i 0.112454 0.0817028i
\(713\) 242.667 + 78.8473i 0.340347 + 0.110585i
\(714\) 0 0
\(715\) 9.03575 + 140.103i 0.0126374 + 0.195949i
\(716\) 93.5399i 0.130642i
\(717\) 0 0
\(718\) 548.134 398.242i 0.763417 0.554655i
\(719\) −89.7795 + 123.571i −0.124867 + 0.171865i −0.866874 0.498528i \(-0.833874\pi\)
0.742007 + 0.670393i \(0.233874\pi\)
\(720\) 0 0
\(721\) 138.879 + 427.427i 0.192621 + 0.592825i
\(722\) −197.890 + 272.372i −0.274085 + 0.377246i
\(723\) 0 0
\(724\) 174.567 537.263i 0.241115 0.742076i
\(725\) 385.716i 0.532023i
\(726\) 0 0
\(727\) 610.733 0.840073 0.420037 0.907507i \(-0.362017\pi\)
0.420037 + 0.907507i \(0.362017\pi\)
\(728\) −27.1351 8.81673i −0.0372735 0.0121109i
\(729\) 0 0
\(730\) −115.218 83.7108i −0.157833 0.114672i
\(731\) −639.521 + 207.793i −0.874858 + 0.284259i
\(732\) 0 0
\(733\) 180.227 + 130.943i 0.245876 + 0.178640i 0.703897 0.710302i \(-0.251442\pi\)
−0.458021 + 0.888941i \(0.651442\pi\)
\(734\) −3.81625 5.25262i −0.00519925 0.00715616i
\(735\) 0 0
\(736\) 62.6853 0.0851703
\(737\) 962.802 62.0944i 1.30638 0.0842530i
\(738\) 0 0
\(739\) −99.1503 + 305.153i −0.134168 + 0.412927i −0.995460 0.0951838i \(-0.969656\pi\)
0.861291 + 0.508111i \(0.169656\pi\)
\(740\) −66.4352 91.4402i −0.0897773 0.123568i
\(741\) 0 0
\(742\) −38.1408 117.385i −0.0514027 0.158201i
\(743\) 263.302 85.5519i 0.354377 0.115144i −0.126418 0.991977i \(-0.540348\pi\)
0.480795 + 0.876833i \(0.340348\pi\)
\(744\) 0 0
\(745\) 343.282 249.409i 0.460781 0.334777i
\(746\) −171.568 55.7457i −0.229983 0.0747262i
\(747\) 0 0
\(748\) 313.932 + 80.0782i 0.419696 + 0.107056i
\(749\) 203.885i 0.272210i
\(750\) 0 0
\(751\) −433.264 + 314.785i −0.576916 + 0.419154i −0.837611 0.546267i \(-0.816048\pi\)
0.260695 + 0.965421i \(0.416048\pi\)
\(752\) 27.2570 37.5161i 0.0362461 0.0498884i
\(753\) 0 0
\(754\) 44.7505 + 137.728i 0.0593508 + 0.182663i
\(755\) 84.2827 116.005i 0.111633 0.153649i
\(756\) 0 0
\(757\) 209.813 645.737i 0.277163 0.853021i −0.711476 0.702711i \(-0.751973\pi\)
0.988639 0.150310i \(-0.0480272\pi\)
\(758\) 446.845i 0.589505i
\(759\) 0 0
\(760\) −88.4762 −0.116416
\(761\) −534.529 173.679i −0.702404 0.228225i −0.0640263 0.997948i \(-0.520394\pi\)
−0.638378 + 0.769723i \(0.720394\pi\)
\(762\) 0 0
\(763\) −374.888 272.372i −0.491334 0.356975i
\(764\) −680.193 + 221.008i −0.890305 + 0.289278i
\(765\) 0 0
\(766\) 324.039 + 235.428i 0.423027 + 0.307347i
\(767\) −247.694 340.921i −0.322938 0.444487i
\(768\) 0 0
\(769\) −113.242 −0.147258 −0.0736291 0.997286i \(-0.523458\pi\)
−0.0736291 + 0.997286i \(0.523458\pi\)
\(770\) 82.7082 + 52.3060i 0.107413 + 0.0679299i
\(771\) 0 0
\(772\) 22.9863 70.7444i 0.0297749 0.0916378i
\(773\) 629.282 + 866.132i 0.814077 + 1.12048i 0.990681 + 0.136199i \(0.0434887\pi\)
−0.176604 + 0.984282i \(0.556511\pi\)
\(774\) 0 0
\(775\) −121.251 373.171i −0.156452 0.481511i
\(776\) −293.526 + 95.3724i −0.378255 + 0.122903i
\(777\) 0 0
\(778\) 337.092 244.911i 0.433280 0.314796i
\(779\) 427.440 + 138.884i 0.548703 + 0.178284i
\(780\) 0 0
\(781\) −686.629 + 273.105i −0.879167 + 0.349687i
\(782\) 230.785i 0.295122i
\(783\) 0 0
\(784\) 142.478 103.516i 0.181732 0.132036i
\(785\) 171.121 235.528i 0.217989 0.300036i
\(786\) 0 0
\(787\) 64.3376 + 198.011i 0.0817505 + 0.251602i 0.983575 0.180501i \(-0.0577718\pi\)
−0.901824 + 0.432103i \(0.857772\pi\)
\(788\) 151.907 209.082i 0.192775 0.265332i
\(789\) 0 0
\(790\) 31.3179 96.3865i 0.0396429 0.122008i
\(791\) 141.569i 0.178974i
\(792\) 0 0
\(793\) 335.487 0.423060
\(794\) 476.903 + 154.955i 0.600634 + 0.195158i
\(795\) 0 0
\(796\) −151.583 110.132i −0.190431 0.138356i
\(797\) −250.710 + 81.4605i −0.314567 + 0.102209i −0.462045 0.886856i \(-0.652884\pi\)
0.147479 + 0.989065i \(0.452884\pi\)
\(798\) 0 0
\(799\) −138.121 100.351i −0.172867 0.125595i
\(800\) −56.6606 77.9866i −0.0708258 0.0974833i
\(801\) 0 0
\(802\) 57.7033 0.0719492
\(803\) −331.854 209.870i −0.413267 0.261357i
\(804\) 0 0
\(805\) 21.5412 66.2971i 0.0267593 0.0823567i
\(806\) −86.5899 119.181i −0.107432 0.147867i
\(807\) 0 0
\(808\) 158.058 + 486.452i 0.195616 + 0.602045i
\(809\) −920.341 + 299.037i −1.13763 + 0.369638i −0.816470 0.577388i \(-0.804072\pi\)
−0.321158 + 0.947026i \(0.604072\pi\)
\(810\) 0 0
\(811\) 354.977 257.906i 0.437703 0.318010i −0.347019 0.937858i \(-0.612806\pi\)
0.784721 + 0.619849i \(0.212806\pi\)
\(812\) 96.0012 + 31.1927i 0.118228 + 0.0384146i
\(813\) 0 0
\(814\) −199.009 239.792i −0.244483 0.294585i
\(815\) 760.236i 0.932805i
\(816\) 0 0
\(817\) 409.589 297.584i 0.501333 0.364240i
\(818\) −396.854 + 546.223i −0.485152 + 0.667754i
\(819\) 0 0
\(820\) −70.6764 217.519i −0.0861907 0.265268i
\(821\) −162.007 + 222.984i −0.197329 + 0.271600i −0.896202 0.443645i \(-0.853685\pi\)
0.698874 + 0.715245i \(0.253685\pi\)
\(822\) 0 0
\(823\) 374.035 1151.16i 0.454477 1.39874i −0.417271 0.908782i \(-0.637013\pi\)
0.871748 0.489955i \(-0.162987\pi\)
\(824\) 570.086i 0.691852i
\(825\) 0 0
\(826\) −293.732 −0.355608
\(827\) −1037.13 336.983i −1.25408 0.407476i −0.394701 0.918810i \(-0.629152\pi\)
−0.859382 + 0.511333i \(0.829152\pi\)
\(828\) 0 0
\(829\) −1038.92 754.823i −1.25323 0.910522i −0.254821 0.966988i \(-0.582017\pi\)
−0.998404 + 0.0564665i \(0.982017\pi\)
\(830\) 83.1377 27.0131i 0.100166 0.0325459i
\(831\) 0 0
\(832\) −29.2798 21.2730i −0.0351920 0.0255685i
\(833\) −381.110 524.553i −0.457515 0.629716i
\(834\) 0 0
\(835\) 597.651 0.715750
\(836\) −243.425 + 15.6993i −0.291178 + 0.0187791i
\(837\) 0 0
\(838\) −33.1971 + 102.170i −0.0396147 + 0.121921i
\(839\) −311.504 428.748i −0.371280 0.511023i 0.581968 0.813211i \(-0.302283\pi\)
−0.953248 + 0.302189i \(0.902283\pi\)
\(840\) 0 0
\(841\) 101.561 + 312.571i 0.120762 + 0.371666i
\(842\) 375.660 122.059i 0.446152 0.144964i
\(843\) 0 0
\(844\) 468.618 340.471i 0.555234 0.403401i
\(845\) 398.537 + 129.492i 0.471641 + 0.153246i
\(846\) 0 0
\(847\) 236.837 + 129.234i 0.279619 + 0.152579i
\(848\) 156.564i 0.184628i
\(849\) 0 0
\(850\) −287.119 + 208.604i −0.337787 + 0.245417i
\(851\) −130.473 + 179.581i −0.153318 + 0.211024i
\(852\) 0 0
\(853\) −377.749 1162.59i −0.442847 1.36294i −0.884828 0.465919i \(-0.845724\pi\)
0.441980 0.897025i \(-0.354276\pi\)
\(854\) 137.451 189.186i 0.160950 0.221529i
\(855\) 0 0
\(856\) 79.9196 245.967i 0.0933640 0.287345i
\(857\) 1479.73i 1.72664i 0.504653 + 0.863322i \(0.331620\pi\)
−0.504653 + 0.863322i \(0.668380\pi\)
\(858\) 0 0
\(859\) 95.9499 0.111700 0.0558498 0.998439i \(-0.482213\pi\)
0.0558498 + 0.998439i \(0.482213\pi\)
\(860\) −245.031 79.6153i −0.284920 0.0925760i
\(861\) 0 0
\(862\) −680.244 494.226i −0.789147 0.573349i
\(863\) −1214.69 + 394.678i −1.40752 + 0.457332i −0.911616 0.411043i \(-0.865165\pi\)
−0.495908 + 0.868375i \(0.665165\pi\)
\(864\) 0 0
\(865\) −276.045 200.558i −0.319127 0.231859i
\(866\) 131.067 + 180.399i 0.151348 + 0.208313i
\(867\) 0 0
\(868\) −102.684 −0.118300
\(869\) 69.0621 270.746i 0.0794731 0.311560i
\(870\) 0 0
\(871\) −122.616 + 377.374i −0.140776 + 0.433265i
\(872\) −345.500 475.539i −0.396215 0.545343i
\(873\) 0 0
\(874\) 53.6948 + 165.256i 0.0614357 + 0.189080i
\(875\) −251.521 + 81.7240i −0.287452 + 0.0933989i
\(876\) 0 0
\(877\) −265.285 + 192.741i −0.302491 + 0.219773i −0.728668 0.684867i \(-0.759860\pi\)
0.426177 + 0.904640i \(0.359860\pi\)
\(878\) 357.047 + 116.011i 0.406659 + 0.132131i
\(879\) 0 0
\(880\) 79.2761 + 95.5222i 0.0900865 + 0.108548i
\(881\) 768.903i 0.872761i −0.899762 0.436381i \(-0.856260\pi\)
0.899762 0.436381i \(-0.143740\pi\)
\(882\) 0 0
\(883\) 564.755 410.318i 0.639586 0.464687i −0.220122 0.975472i \(-0.570645\pi\)
0.859708 + 0.510786i \(0.170645\pi\)
\(884\) −78.3196 + 107.798i −0.0885968 + 0.121943i
\(885\) 0 0
\(886\) −26.1242 80.4021i −0.0294856 0.0907472i
\(887\) −491.752 + 676.839i −0.554399 + 0.763065i −0.990601 0.136784i \(-0.956323\pi\)
0.436202 + 0.899849i \(0.356323\pi\)
\(888\) 0 0
\(889\) −45.4697 + 139.941i −0.0511470 + 0.157414i
\(890\) 139.607i 0.156861i
\(891\) 0 0
\(892\) −287.943 −0.322806
\(893\) 122.250 + 39.7216i 0.136899 + 0.0444811i
\(894\) 0 0
\(895\) −106.749 77.5573i −0.119272 0.0866563i
\(896\) −23.9923 + 7.79556i −0.0267771 + 0.00870040i
\(897\) 0 0
\(898\) −318.084 231.102i −0.354214 0.257352i
\(899\) 306.346 + 421.650i 0.340763 + 0.469021i
\(900\) 0 0
\(901\) −576.413 −0.639748
\(902\) −233.049 585.922i −0.258370 0.649581i
\(903\) 0 0
\(904\) 55.4925 170.788i 0.0613855 0.188925i
\(905\) −468.389 644.682i −0.517556 0.712355i
\(906\) 0 0
\(907\) −33.9257 104.413i −0.0374043 0.115119i 0.930611 0.366010i \(-0.119276\pi\)
−0.968015 + 0.250891i \(0.919276\pi\)
\(908\) 78.9845 25.6636i 0.0869874 0.0282639i
\(909\) 0 0
\(910\) −32.5604 + 23.6565i −0.0357807 + 0.0259962i
\(911\) −961.698 312.475i −1.05565 0.343002i −0.270767 0.962645i \(-0.587277\pi\)
−0.784884 + 0.619643i \(0.787277\pi\)
\(912\) 0 0
\(913\) 223.944 89.0733i 0.245284 0.0975611i
\(914\) 465.808i 0.509637i
\(915\) 0 0
\(916\) −204.740 + 148.752i −0.223515 + 0.162393i
\(917\) −78.0672 + 107.450i −0.0851332 + 0.117176i
\(918\) 0 0
\(919\) 229.979 + 707.803i 0.250249 + 0.770188i 0.994729 + 0.102542i \(0.0326977\pi\)
−0.744479 + 0.667645i \(0.767302\pi\)
\(920\) 51.9747 71.5370i 0.0564942 0.0777576i
\(921\) 0 0
\(922\) −274.848 + 845.894i −0.298099 + 0.917455i
\(923\) 303.908i 0.329261i
\(924\) 0 0
\(925\) 341.350 0.369027
\(926\) −685.854 222.847i −0.740663 0.240656i
\(927\) 0 0
\(928\) 103.589 + 75.2617i 0.111626 + 0.0811010i
\(929\) −172.202 + 55.9519i −0.185363 + 0.0602281i −0.400228 0.916416i \(-0.631069\pi\)
0.214865 + 0.976644i \(0.431069\pi\)
\(930\) 0 0
\(931\) 394.941 + 286.941i 0.424211 + 0.308207i
\(932\) −234.067 322.166i −0.251145 0.345672i
\(933\) 0 0
\(934\) −312.952 −0.335067
\(935\) 351.679 291.866i 0.376127 0.312157i
\(936\) 0 0
\(937\) 249.812 768.843i 0.266609 0.820537i −0.724710 0.689054i \(-0.758026\pi\)
0.991318 0.131483i \(-0.0419738\pi\)
\(938\) 162.570 + 223.758i 0.173315 + 0.238548i
\(939\) 0 0
\(940\) −20.2139 62.2119i −0.0215041 0.0661829i
\(941\) 124.609 40.4881i 0.132422 0.0430266i −0.242056 0.970262i \(-0.577822\pi\)
0.374478 + 0.927236i \(0.377822\pi\)
\(942\) 0 0
\(943\) −363.390 + 264.018i −0.385356 + 0.279977i
\(944\) −354.358 115.138i −0.375380 0.121968i
\(945\) 0 0
\(946\) −688.282 175.568i −0.727571 0.185589i
\(947\) 816.092i 0.861765i 0.902408 + 0.430883i \(0.141798\pi\)
−0.902408 + 0.430883i \(0.858202\pi\)
\(948\) 0 0
\(949\) 130.644 94.9181i 0.137664 0.100019i
\(950\) 157.060 216.174i 0.165326 0.227552i
\(951\) 0 0
\(952\) 28.7005 + 88.3310i 0.0301476 + 0.0927847i
\(953\) 588.175 809.554i 0.617183 0.849480i −0.379961 0.925003i \(-0.624063\pi\)
0.997144 + 0.0755229i \(0.0240626\pi\)
\(954\) 0 0
\(955\) −311.756 + 959.487i −0.326446 + 1.00470i
\(956\) 492.881i 0.515566i
\(957\) 0 0
\(958\) 365.640 0.381670
\(959\) 403.351 + 131.057i 0.420595 + 0.136660i
\(960\) 0 0
\(961\) 348.537 + 253.227i 0.362682 + 0.263504i
\(962\) 121.886 39.6032i 0.126701 0.0411675i
\(963\) 0 0
\(964\) −711.321 516.805i −0.737885 0.536105i
\(965\) −61.6754 84.8889i −0.0639123 0.0879677i
\(966\) 0 0
\(967\) 1675.29 1.73247 0.866233 0.499640i \(-0.166534\pi\)
0.866233 + 0.499640i \(0.166534\pi\)
\(968\) 235.063 + 248.744i 0.242833 + 0.256967i
\(969\) 0 0
\(970\) −134.533 + 414.051i −0.138694 + 0.426857i
\(971\) 828.699 + 1140.61i 0.853449 + 1.17467i 0.983092 + 0.183111i \(0.0586166\pi\)
−0.129644 + 0.991561i \(0.541383\pi\)
\(972\) 0 0
\(973\) 161.667 + 497.561i 0.166154 + 0.511368i
\(974\) 600.718 195.185i 0.616754 0.200395i
\(975\) 0 0
\(976\) 239.979 174.355i 0.245880 0.178642i
\(977\) −621.149 201.824i −0.635772 0.206575i −0.0266416 0.999645i \(-0.508481\pi\)
−0.609130 + 0.793070i \(0.708481\pi\)
\(978\) 0 0
\(979\) −24.7720 384.100i −0.0253033 0.392340i
\(980\) 248.426i 0.253496i
\(981\) 0 0
\(982\) −508.441 + 369.404i −0.517760 + 0.376175i
\(983\) 376.857 518.699i 0.383374 0.527669i −0.573100 0.819485i \(-0.694259\pi\)
0.956475 + 0.291816i \(0.0942595\pi\)
\(984\) 0 0
\(985\) −112.654 346.715i −0.114370 0.351995i
\(986\) 277.087 381.377i 0.281021 0.386792i
\(987\) 0 0
\(988\) 31.0010 95.4114i 0.0313776 0.0965702i
\(989\) 505.986i 0.511613i
\(990\) 0 0
\(991\) 435.813 0.439771 0.219886 0.975526i \(-0.429432\pi\)
0.219886 + 0.975526i \(0.429432\pi\)
\(992\) −123.878 40.2505i −0.124877 0.0405751i
\(993\) 0 0
\(994\) −171.378 124.513i −0.172412 0.125265i
\(995\) −251.367 + 81.6739i −0.252630 + 0.0820843i
\(996\) 0 0
\(997\) −341.582 248.174i −0.342610 0.248921i 0.403152 0.915133i \(-0.367915\pi\)
−0.745762 + 0.666212i \(0.767915\pi\)
\(998\) −625.225 860.548i −0.626477 0.862272i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 198.3.k.a.53.4 yes 16
3.2 odd 2 inner 198.3.k.a.53.1 16
11.4 even 5 2178.3.c.p.485.6 8
11.5 even 5 inner 198.3.k.a.71.1 yes 16
11.7 odd 10 2178.3.c.m.485.2 8
33.5 odd 10 inner 198.3.k.a.71.4 yes 16
33.26 odd 10 2178.3.c.p.485.3 8
33.29 even 10 2178.3.c.m.485.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
198.3.k.a.53.1 16 3.2 odd 2 inner
198.3.k.a.53.4 yes 16 1.1 even 1 trivial
198.3.k.a.71.1 yes 16 11.5 even 5 inner
198.3.k.a.71.4 yes 16 33.5 odd 10 inner
2178.3.c.m.485.2 8 11.7 odd 10
2178.3.c.m.485.7 8 33.29 even 10
2178.3.c.p.485.3 8 33.26 odd 10
2178.3.c.p.485.6 8 11.4 even 5