Properties

Label 198.3.j.b.73.2
Level $198$
Weight $3$
Character 198.73
Analytic conductor $5.395$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [198,3,Mod(19,198)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("198.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(198, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 198.j (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39510923433\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.6879707136000000000000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 73.2
Root \(0.492303 - 0.159959i\) of defining polynomial
Character \(\chi\) \(=\) 198.73
Dual form 198.3.j.b.19.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.831254 + 1.14412i) q^{2} +(-0.618034 - 1.90211i) q^{4} +(-1.74791 + 1.26993i) q^{5} +(-1.27622 + 0.414669i) q^{7} +(2.68999 + 0.874032i) q^{8} -3.05545i q^{10} +(-10.9966 - 0.273421i) q^{11} +(-6.36050 + 8.75447i) q^{13} +(0.586431 - 1.80485i) q^{14} +(-3.23607 + 2.35114i) q^{16} +(-15.8880 - 21.8679i) q^{17} +(-9.95521 - 3.23464i) q^{19} +(3.49581 + 2.53986i) q^{20} +(9.45379 - 12.3542i) q^{22} -14.1912 q^{23} +(-6.28297 + 19.3370i) q^{25} +(-4.72900 - 14.5544i) q^{26} +(1.57749 + 2.17124i) q^{28} +(11.7472 - 3.81689i) q^{29} +(-20.7370 - 15.0663i) q^{31} -5.65685i q^{32} +38.2266 q^{34} +(1.70411 - 2.34551i) q^{35} +(-9.00782 - 27.7232i) q^{37} +(11.9761 - 8.70117i) q^{38} +(-5.81182 + 1.88837i) q^{40} +(10.1746 + 3.30593i) q^{41} -41.5007i q^{43} +(6.27620 + 21.0858i) q^{44} +(11.7965 - 16.2364i) q^{46} +(-21.6045 + 66.4919i) q^{47} +(-38.1850 + 27.7431i) q^{49} +(-16.9011 - 23.2624i) q^{50} +(20.5830 + 6.68782i) q^{52} +(48.5045 + 35.2406i) q^{53} +(19.5683 - 13.4870i) q^{55} -3.79546 q^{56} +(-5.39790 + 16.6130i) q^{58} +(16.2078 + 49.8825i) q^{59} +(64.7817 + 89.1643i) q^{61} +(34.4753 - 11.2017i) q^{62} +(6.47214 + 4.70228i) q^{64} -23.3794i q^{65} +60.0831 q^{67} +(-31.7760 + 43.7359i) q^{68} +(1.26700 + 3.89943i) q^{70} +(56.0995 - 40.7587i) q^{71} +(-69.7313 + 22.6571i) q^{73} +(39.2065 + 12.7390i) q^{74} +20.9350i q^{76} +(14.1475 - 4.21101i) q^{77} +(-58.9228 + 81.1003i) q^{79} +(2.67056 - 8.21915i) q^{80} +(-12.2401 + 8.89294i) q^{82} +(-59.8908 - 82.4326i) q^{83} +(55.5414 + 18.0465i) q^{85} +(47.4819 + 34.4976i) q^{86} +(-29.3418 - 10.3469i) q^{88} +55.9575 q^{89} +(4.48718 - 13.8101i) q^{91} +(8.77063 + 26.9932i) q^{92} +(-58.1161 - 79.9899i) q^{94} +(21.5085 - 6.98855i) q^{95} +(141.226 + 102.607i) q^{97} -66.7499i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 8 q^{5} + 60 q^{7} + 4 q^{11} - 60 q^{13} + 32 q^{14} - 16 q^{16} + 60 q^{17} + 16 q^{20} - 48 q^{22} + 8 q^{23} - 48 q^{25} - 48 q^{26} + 40 q^{28} + 160 q^{29} + 32 q^{31} - 64 q^{34}+ \cdots + 324 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/198\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(155\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831254 + 1.14412i −0.415627 + 0.572061i
\(3\) 0 0
\(4\) −0.618034 1.90211i −0.154508 0.475528i
\(5\) −1.74791 + 1.26993i −0.349581 + 0.253986i −0.748693 0.662916i \(-0.769318\pi\)
0.399112 + 0.916902i \(0.369318\pi\)
\(6\) 0 0
\(7\) −1.27622 + 0.414669i −0.182317 + 0.0592384i −0.398753 0.917058i \(-0.630557\pi\)
0.216436 + 0.976297i \(0.430557\pi\)
\(8\) 2.68999 + 0.874032i 0.336249 + 0.109254i
\(9\) 0 0
\(10\) 3.05545i 0.305545i
\(11\) −10.9966 0.273421i −0.999691 0.0248564i
\(12\) 0 0
\(13\) −6.36050 + 8.75447i −0.489269 + 0.673421i −0.980253 0.197748i \(-0.936637\pi\)
0.490984 + 0.871169i \(0.336637\pi\)
\(14\) 0.586431 1.80485i 0.0418879 0.128918i
\(15\) 0 0
\(16\) −3.23607 + 2.35114i −0.202254 + 0.146946i
\(17\) −15.8880 21.8679i −0.934588 1.28635i −0.958043 0.286625i \(-0.907467\pi\)
0.0234551 0.999725i \(-0.492533\pi\)
\(18\) 0 0
\(19\) −9.95521 3.23464i −0.523958 0.170244i 0.0350827 0.999384i \(-0.488831\pi\)
−0.559041 + 0.829140i \(0.688831\pi\)
\(20\) 3.49581 + 2.53986i 0.174791 + 0.126993i
\(21\) 0 0
\(22\) 9.45379 12.3542i 0.429718 0.561554i
\(23\) −14.1912 −0.617007 −0.308504 0.951223i \(-0.599828\pi\)
−0.308504 + 0.951223i \(0.599828\pi\)
\(24\) 0 0
\(25\) −6.28297 + 19.3370i −0.251319 + 0.773479i
\(26\) −4.72900 14.5544i −0.181885 0.559784i
\(27\) 0 0
\(28\) 1.57749 + 2.17124i 0.0563391 + 0.0775441i
\(29\) 11.7472 3.81689i 0.405075 0.131617i −0.0993909 0.995048i \(-0.531689\pi\)
0.504466 + 0.863432i \(0.331689\pi\)
\(30\) 0 0
\(31\) −20.7370 15.0663i −0.668934 0.486009i 0.200734 0.979646i \(-0.435667\pi\)
−0.869668 + 0.493637i \(0.835667\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 38.2266 1.12431
\(35\) 1.70411 2.34551i 0.0486890 0.0670146i
\(36\) 0 0
\(37\) −9.00782 27.7232i −0.243455 0.749276i −0.995887 0.0906063i \(-0.971120\pi\)
0.752432 0.658670i \(-0.228880\pi\)
\(38\) 11.9761 8.70117i 0.315161 0.228978i
\(39\) 0 0
\(40\) −5.81182 + 1.88837i −0.145295 + 0.0472093i
\(41\) 10.1746 + 3.30593i 0.248161 + 0.0806325i 0.430456 0.902611i \(-0.358353\pi\)
−0.182295 + 0.983244i \(0.558353\pi\)
\(42\) 0 0
\(43\) 41.5007i 0.965132i −0.875859 0.482566i \(-0.839705\pi\)
0.875859 0.482566i \(-0.160295\pi\)
\(44\) 6.27620 + 21.0858i 0.142641 + 0.479222i
\(45\) 0 0
\(46\) 11.7965 16.2364i 0.256445 0.352966i
\(47\) −21.6045 + 66.4919i −0.459671 + 1.41472i 0.405892 + 0.913921i \(0.366961\pi\)
−0.865563 + 0.500800i \(0.833039\pi\)
\(48\) 0 0
\(49\) −38.1850 + 27.7431i −0.779287 + 0.566185i
\(50\) −16.9011 23.2624i −0.338023 0.465249i
\(51\) 0 0
\(52\) 20.5830 + 6.68782i 0.395827 + 0.128612i
\(53\) 48.5045 + 35.2406i 0.915180 + 0.664917i 0.942320 0.334714i \(-0.108640\pi\)
−0.0271395 + 0.999632i \(0.508640\pi\)
\(54\) 0 0
\(55\) 19.5683 13.4870i 0.355786 0.245218i
\(56\) −3.79546 −0.0677760
\(57\) 0 0
\(58\) −5.39790 + 16.6130i −0.0930672 + 0.286431i
\(59\) 16.2078 + 49.8825i 0.274708 + 0.845466i 0.989296 + 0.145920i \(0.0466142\pi\)
−0.714588 + 0.699546i \(0.753386\pi\)
\(60\) 0 0
\(61\) 64.7817 + 89.1643i 1.06199 + 1.46171i 0.877926 + 0.478797i \(0.158927\pi\)
0.184069 + 0.982913i \(0.441073\pi\)
\(62\) 34.4753 11.2017i 0.556054 0.180673i
\(63\) 0 0
\(64\) 6.47214 + 4.70228i 0.101127 + 0.0734732i
\(65\) 23.3794i 0.359683i
\(66\) 0 0
\(67\) 60.0831 0.896762 0.448381 0.893843i \(-0.352001\pi\)
0.448381 + 0.893843i \(0.352001\pi\)
\(68\) −31.7760 + 43.7359i −0.467294 + 0.643175i
\(69\) 0 0
\(70\) 1.26700 + 3.89943i 0.0181000 + 0.0557061i
\(71\) 56.0995 40.7587i 0.790134 0.574066i −0.117869 0.993029i \(-0.537606\pi\)
0.908003 + 0.418963i \(0.137606\pi\)
\(72\) 0 0
\(73\) −69.7313 + 22.6571i −0.955224 + 0.310371i −0.744836 0.667247i \(-0.767473\pi\)
−0.210387 + 0.977618i \(0.567473\pi\)
\(74\) 39.2065 + 12.7390i 0.529818 + 0.172148i
\(75\) 0 0
\(76\) 20.9350i 0.275461i
\(77\) 14.1475 4.21101i 0.183733 0.0546884i
\(78\) 0 0
\(79\) −58.9228 + 81.1003i −0.745859 + 1.02659i 0.252401 + 0.967623i \(0.418780\pi\)
−0.998260 + 0.0589638i \(0.981220\pi\)
\(80\) 2.67056 8.21915i 0.0333820 0.102739i
\(81\) 0 0
\(82\) −12.2401 + 8.89294i −0.149269 + 0.108450i
\(83\) −59.8908 82.4326i −0.721575 0.993163i −0.999470 0.0325518i \(-0.989637\pi\)
0.277895 0.960612i \(-0.410363\pi\)
\(84\) 0 0
\(85\) 55.5414 + 18.0465i 0.653429 + 0.212312i
\(86\) 47.4819 + 34.4976i 0.552115 + 0.401135i
\(87\) 0 0
\(88\) −29.3418 10.3469i −0.333430 0.117578i
\(89\) 55.9575 0.628736 0.314368 0.949301i \(-0.398207\pi\)
0.314368 + 0.949301i \(0.398207\pi\)
\(90\) 0 0
\(91\) 4.48718 13.8101i 0.0493097 0.151760i
\(92\) 8.77063 + 26.9932i 0.0953329 + 0.293404i
\(93\) 0 0
\(94\) −58.1161 79.9899i −0.618256 0.850956i
\(95\) 21.5085 6.98855i 0.226406 0.0735636i
\(96\) 0 0
\(97\) 141.226 + 102.607i 1.45594 + 1.05780i 0.984398 + 0.175956i \(0.0563017\pi\)
0.471540 + 0.881845i \(0.343698\pi\)
\(98\) 66.7499i 0.681121i
\(99\) 0 0
\(100\) 40.6642 0.406642
\(101\) 18.9336 26.0599i 0.187461 0.258019i −0.704934 0.709273i \(-0.749023\pi\)
0.892395 + 0.451254i \(0.149023\pi\)
\(102\) 0 0
\(103\) −54.8453 168.797i −0.532479 1.63880i −0.749034 0.662532i \(-0.769482\pi\)
0.216555 0.976270i \(-0.430518\pi\)
\(104\) −24.7614 + 17.9902i −0.238090 + 0.172983i
\(105\) 0 0
\(106\) −80.6392 + 26.2013i −0.760747 + 0.247182i
\(107\) −163.085 52.9896i −1.52416 0.495230i −0.577206 0.816599i \(-0.695857\pi\)
−0.946954 + 0.321369i \(0.895857\pi\)
\(108\) 0 0
\(109\) 199.946i 1.83437i −0.398466 0.917183i \(-0.630457\pi\)
0.398466 0.917183i \(-0.369543\pi\)
\(110\) −0.835424 + 33.5996i −0.00759477 + 0.305451i
\(111\) 0 0
\(112\) 3.15499 4.34247i 0.0281696 0.0387721i
\(113\) −57.2171 + 176.096i −0.506346 + 1.55837i 0.292150 + 0.956373i \(0.405629\pi\)
−0.798496 + 0.602000i \(0.794371\pi\)
\(114\) 0 0
\(115\) 24.8048 18.0218i 0.215694 0.156711i
\(116\) −14.5203 19.9855i −0.125175 0.172289i
\(117\) 0 0
\(118\) −70.5445 22.9213i −0.597835 0.194248i
\(119\) 29.3445 + 21.3201i 0.246593 + 0.179160i
\(120\) 0 0
\(121\) 120.850 + 6.01340i 0.998764 + 0.0496975i
\(122\) −155.865 −1.27758
\(123\) 0 0
\(124\) −15.8416 + 48.7555i −0.127755 + 0.393190i
\(125\) −30.2656 93.1478i −0.242125 0.745183i
\(126\) 0 0
\(127\) −90.8759 125.080i −0.715558 0.984882i −0.999660 0.0260874i \(-0.991695\pi\)
0.284101 0.958794i \(-0.408305\pi\)
\(128\) −10.7600 + 3.49613i −0.0840623 + 0.0273135i
\(129\) 0 0
\(130\) 26.7489 + 19.4342i 0.205761 + 0.149494i
\(131\) 105.137i 0.802575i −0.915952 0.401288i \(-0.868563\pi\)
0.915952 0.401288i \(-0.131437\pi\)
\(132\) 0 0
\(133\) 14.0463 0.105612
\(134\) −49.9443 + 68.7424i −0.372718 + 0.513003i
\(135\) 0 0
\(136\) −23.6253 72.7113i −0.173716 0.534642i
\(137\) −69.0877 + 50.1952i −0.504290 + 0.366388i −0.810653 0.585527i \(-0.800888\pi\)
0.306363 + 0.951915i \(0.400888\pi\)
\(138\) 0 0
\(139\) −98.5146 + 32.0093i −0.708738 + 0.230283i −0.641134 0.767429i \(-0.721536\pi\)
−0.0676046 + 0.997712i \(0.521536\pi\)
\(140\) −5.51463 1.79181i −0.0393902 0.0127986i
\(141\) 0 0
\(142\) 98.0656i 0.690603i
\(143\) 72.3375 94.5303i 0.505857 0.661051i
\(144\) 0 0
\(145\) −15.6858 + 21.5896i −0.108178 + 0.148894i
\(146\) 32.0420 98.6150i 0.219465 0.675445i
\(147\) 0 0
\(148\) −47.1655 + 34.2678i −0.318686 + 0.231539i
\(149\) 53.4827 + 73.6126i 0.358944 + 0.494045i 0.949854 0.312693i \(-0.101231\pi\)
−0.590910 + 0.806738i \(0.701231\pi\)
\(150\) 0 0
\(151\) −58.4781 19.0007i −0.387272 0.125832i 0.108908 0.994052i \(-0.465264\pi\)
−0.496180 + 0.868220i \(0.665264\pi\)
\(152\) −23.9523 17.4023i −0.157581 0.114489i
\(153\) 0 0
\(154\) −6.94223 + 19.6869i −0.0450794 + 0.127837i
\(155\) 55.3793 0.357286
\(156\) 0 0
\(157\) −40.7412 + 125.388i −0.259498 + 0.798652i 0.733412 + 0.679784i \(0.237927\pi\)
−0.992910 + 0.118868i \(0.962073\pi\)
\(158\) −43.8089 134.830i −0.277271 0.853354i
\(159\) 0 0
\(160\) 7.18380 + 9.88765i 0.0448987 + 0.0617978i
\(161\) 18.1111 5.88464i 0.112491 0.0365506i
\(162\) 0 0
\(163\) 12.4028 + 9.01116i 0.0760908 + 0.0552832i 0.625180 0.780480i \(-0.285025\pi\)
−0.549090 + 0.835764i \(0.685025\pi\)
\(164\) 21.3964i 0.130466i
\(165\) 0 0
\(166\) 144.097 0.868057
\(167\) 91.9802 126.600i 0.550780 0.758083i −0.439338 0.898322i \(-0.644787\pi\)
0.990118 + 0.140239i \(0.0447870\pi\)
\(168\) 0 0
\(169\) 16.0390 + 49.3630i 0.0949054 + 0.292089i
\(170\) −66.8165 + 48.5450i −0.393038 + 0.285559i
\(171\) 0 0
\(172\) −78.9390 + 25.6488i −0.458948 + 0.149121i
\(173\) −157.889 51.3013i −0.912654 0.296539i −0.185204 0.982700i \(-0.559295\pi\)
−0.727450 + 0.686161i \(0.759295\pi\)
\(174\) 0 0
\(175\) 27.2836i 0.155906i
\(176\) 36.2286 24.9698i 0.205844 0.141874i
\(177\) 0 0
\(178\) −46.5149 + 64.0223i −0.261320 + 0.359676i
\(179\) −32.0420 + 98.6153i −0.179006 + 0.550923i −0.999794 0.0203097i \(-0.993535\pi\)
0.820788 + 0.571233i \(0.193535\pi\)
\(180\) 0 0
\(181\) 173.073 125.745i 0.956207 0.694725i 0.00394032 0.999992i \(-0.498746\pi\)
0.952267 + 0.305267i \(0.0987458\pi\)
\(182\) 12.0705 + 16.6136i 0.0663214 + 0.0912836i
\(183\) 0 0
\(184\) −38.1742 12.4035i −0.207468 0.0674105i
\(185\) 50.9513 + 37.0183i 0.275412 + 0.200099i
\(186\) 0 0
\(187\) 168.735 + 244.817i 0.902325 + 1.30918i
\(188\) 139.827 0.743763
\(189\) 0 0
\(190\) −9.88330 + 30.4177i −0.0520173 + 0.160093i
\(191\) −16.5296 50.8728i −0.0865422 0.266350i 0.898415 0.439147i \(-0.144719\pi\)
−0.984957 + 0.172798i \(0.944719\pi\)
\(192\) 0 0
\(193\) −52.5357 72.3091i −0.272205 0.374659i 0.650927 0.759140i \(-0.274380\pi\)
−0.923133 + 0.384481i \(0.874380\pi\)
\(194\) −234.789 + 76.2877i −1.21025 + 0.393235i
\(195\) 0 0
\(196\) 76.3701 + 55.4861i 0.389643 + 0.283092i
\(197\) 146.368i 0.742986i 0.928436 + 0.371493i \(0.121154\pi\)
−0.928436 + 0.371493i \(0.878846\pi\)
\(198\) 0 0
\(199\) −224.072 −1.12599 −0.562994 0.826461i \(-0.690351\pi\)
−0.562994 + 0.826461i \(0.690351\pi\)
\(200\) −33.8023 + 46.5249i −0.169011 + 0.232624i
\(201\) 0 0
\(202\) 14.0771 + 43.3247i 0.0696884 + 0.214479i
\(203\) −13.4092 + 9.74238i −0.0660554 + 0.0479920i
\(204\) 0 0
\(205\) −21.9826 + 7.14257i −0.107232 + 0.0348418i
\(206\) 238.714 + 77.5630i 1.15881 + 0.376520i
\(207\) 0 0
\(208\) 43.2845i 0.208098i
\(209\) 108.589 + 38.2920i 0.519565 + 0.183215i
\(210\) 0 0
\(211\) 100.375 138.154i 0.475710 0.654758i −0.501964 0.864889i \(-0.667389\pi\)
0.977673 + 0.210130i \(0.0673889\pi\)
\(212\) 37.0542 114.041i 0.174784 0.537929i
\(213\) 0 0
\(214\) 196.192 142.542i 0.916784 0.666082i
\(215\) 52.7029 + 72.5393i 0.245130 + 0.337392i
\(216\) 0 0
\(217\) 32.7124 + 10.6289i 0.150749 + 0.0489812i
\(218\) 228.763 + 166.206i 1.04937 + 0.762412i
\(219\) 0 0
\(220\) −37.7476 28.8856i −0.171580 0.131298i
\(221\) 292.498 1.32352
\(222\) 0 0
\(223\) −99.6457 + 306.678i −0.446842 + 1.37524i 0.433610 + 0.901101i \(0.357240\pi\)
−0.880451 + 0.474137i \(0.842760\pi\)
\(224\) 2.34572 + 7.21939i 0.0104720 + 0.0322294i
\(225\) 0 0
\(226\) −153.914 211.844i −0.681034 0.937363i
\(227\) −355.469 + 115.499i −1.56594 + 0.508806i −0.958387 0.285472i \(-0.907850\pi\)
−0.607555 + 0.794277i \(0.707850\pi\)
\(228\) 0 0
\(229\) 89.7934 + 65.2387i 0.392111 + 0.284885i 0.766320 0.642459i \(-0.222086\pi\)
−0.374209 + 0.927344i \(0.622086\pi\)
\(230\) 43.3604i 0.188524i
\(231\) 0 0
\(232\) 34.9359 0.150586
\(233\) −137.117 + 188.725i −0.588484 + 0.809979i −0.994593 0.103845i \(-0.966885\pi\)
0.406109 + 0.913825i \(0.366885\pi\)
\(234\) 0 0
\(235\) −46.6773 143.658i −0.198627 0.611310i
\(236\) 84.8651 61.6581i 0.359598 0.261263i
\(237\) 0 0
\(238\) −48.7855 + 15.8514i −0.204981 + 0.0666024i
\(239\) 282.107 + 91.6620i 1.18036 + 0.383523i 0.832501 0.554023i \(-0.186908\pi\)
0.347861 + 0.937546i \(0.386908\pi\)
\(240\) 0 0
\(241\) 30.0448i 0.124667i −0.998055 0.0623336i \(-0.980146\pi\)
0.998055 0.0623336i \(-0.0198543\pi\)
\(242\) −107.337 + 133.269i −0.443543 + 0.550699i
\(243\) 0 0
\(244\) 129.563 178.329i 0.530997 0.730855i
\(245\) 31.5122 96.9845i 0.128621 0.395855i
\(246\) 0 0
\(247\) 91.6376 66.5786i 0.371003 0.269549i
\(248\) −42.6139 58.6530i −0.171830 0.236504i
\(249\) 0 0
\(250\) 131.731 + 42.8020i 0.526924 + 0.171208i
\(251\) −142.859 103.793i −0.569161 0.413520i 0.265639 0.964072i \(-0.414417\pi\)
−0.834800 + 0.550553i \(0.814417\pi\)
\(252\) 0 0
\(253\) 156.055 + 3.88016i 0.616817 + 0.0153366i
\(254\) 218.648 0.860818
\(255\) 0 0
\(256\) 4.94427 15.2169i 0.0193136 0.0594410i
\(257\) −71.5241 220.129i −0.278304 0.856531i −0.988326 0.152352i \(-0.951315\pi\)
0.710022 0.704179i \(-0.248685\pi\)
\(258\) 0 0
\(259\) 22.9919 + 31.6457i 0.0887719 + 0.122184i
\(260\) −44.4702 + 14.4492i −0.171039 + 0.0555740i
\(261\) 0 0
\(262\) 120.290 + 87.3958i 0.459122 + 0.333572i
\(263\) 55.9320i 0.212669i −0.994330 0.106335i \(-0.966089\pi\)
0.994330 0.106335i \(-0.0339115\pi\)
\(264\) 0 0
\(265\) −129.534 −0.488809
\(266\) −11.6761 + 16.0707i −0.0438950 + 0.0604163i
\(267\) 0 0
\(268\) −37.1334 114.285i −0.138557 0.426436i
\(269\) 1.67109 1.21412i 0.00621222 0.00451344i −0.584675 0.811268i \(-0.698778\pi\)
0.590887 + 0.806754i \(0.298778\pi\)
\(270\) 0 0
\(271\) −27.3691 + 8.89274i −0.100993 + 0.0328146i −0.359078 0.933308i \(-0.616909\pi\)
0.258085 + 0.966122i \(0.416909\pi\)
\(272\) 102.829 + 33.4112i 0.378049 + 0.122835i
\(273\) 0 0
\(274\) 120.770i 0.440766i
\(275\) 74.3784 210.923i 0.270467 0.766993i
\(276\) 0 0
\(277\) 12.3226 16.9606i 0.0444859 0.0612296i −0.786195 0.617979i \(-0.787952\pi\)
0.830680 + 0.556749i \(0.187952\pi\)
\(278\) 45.2680 139.321i 0.162835 0.501154i
\(279\) 0 0
\(280\) 6.63411 4.81996i 0.0236932 0.0172141i
\(281\) 166.769 + 229.538i 0.593484 + 0.816861i 0.995092 0.0989509i \(-0.0315487\pi\)
−0.401608 + 0.915812i \(0.631549\pi\)
\(282\) 0 0
\(283\) −233.553 75.8861i −0.825277 0.268149i −0.134222 0.990951i \(-0.542854\pi\)
−0.691055 + 0.722803i \(0.742854\pi\)
\(284\) −112.199 81.5174i −0.395067 0.287033i
\(285\) 0 0
\(286\) 48.0235 + 161.342i 0.167914 + 0.564132i
\(287\) −14.3559 −0.0500206
\(288\) 0 0
\(289\) −136.473 + 420.020i −0.472224 + 1.45336i
\(290\) −11.6623 35.8929i −0.0402149 0.123769i
\(291\) 0 0
\(292\) 86.1927 + 118.634i 0.295180 + 0.406281i
\(293\) 106.632 34.6468i 0.363931 0.118249i −0.121342 0.992611i \(-0.538720\pi\)
0.485274 + 0.874362i \(0.338720\pi\)
\(294\) 0 0
\(295\) −91.6769 66.6072i −0.310769 0.225787i
\(296\) 82.4484i 0.278542i
\(297\) 0 0
\(298\) −128.680 −0.431811
\(299\) 90.2629 124.236i 0.301883 0.415506i
\(300\) 0 0
\(301\) 17.2091 + 52.9640i 0.0571729 + 0.175960i
\(302\) 70.3492 51.1117i 0.232944 0.169244i
\(303\) 0 0
\(304\) 39.8208 12.9386i 0.130990 0.0425611i
\(305\) −226.465 73.5828i −0.742507 0.241255i
\(306\) 0 0
\(307\) 14.8337i 0.0483183i 0.999708 + 0.0241592i \(0.00769085\pi\)
−0.999708 + 0.0241592i \(0.992309\pi\)
\(308\) −16.7534 24.3075i −0.0543942 0.0789206i
\(309\) 0 0
\(310\) −46.0343 + 63.3608i −0.148498 + 0.204390i
\(311\) −85.4662 + 263.038i −0.274811 + 0.845781i 0.714458 + 0.699678i \(0.246673\pi\)
−0.989269 + 0.146103i \(0.953327\pi\)
\(312\) 0 0
\(313\) −162.854 + 118.320i −0.520299 + 0.378019i −0.816717 0.577039i \(-0.804208\pi\)
0.296417 + 0.955058i \(0.404208\pi\)
\(314\) −109.593 150.843i −0.349024 0.480390i
\(315\) 0 0
\(316\) 190.678 + 61.9551i 0.603412 + 0.196061i
\(317\) −388.142 282.001i −1.22442 0.889594i −0.227962 0.973670i \(-0.573206\pi\)
−0.996459 + 0.0840757i \(0.973206\pi\)
\(318\) 0 0
\(319\) −130.223 + 38.7609i −0.408221 + 0.121507i
\(320\) −17.2842 −0.0540133
\(321\) 0 0
\(322\) −8.32214 + 25.6129i −0.0258451 + 0.0795432i
\(323\) 87.4333 + 269.092i 0.270691 + 0.833102i
\(324\) 0 0
\(325\) −129.322 177.997i −0.397915 0.547683i
\(326\) −20.6198 + 6.69977i −0.0632508 + 0.0205514i
\(327\) 0 0
\(328\) 24.4802 + 17.7859i 0.0746346 + 0.0542252i
\(329\) 93.8170i 0.285158i
\(330\) 0 0
\(331\) 406.762 1.22889 0.614444 0.788961i \(-0.289380\pi\)
0.614444 + 0.788961i \(0.289380\pi\)
\(332\) −119.782 + 164.865i −0.360788 + 0.496582i
\(333\) 0 0
\(334\) 68.3869 + 210.473i 0.204751 + 0.630159i
\(335\) −105.020 + 76.3012i −0.313491 + 0.227765i
\(336\) 0 0
\(337\) −338.761 + 110.070i −1.00523 + 0.326618i −0.764952 0.644087i \(-0.777237\pi\)
−0.240274 + 0.970705i \(0.577237\pi\)
\(338\) −69.8098 22.6826i −0.206538 0.0671083i
\(339\) 0 0
\(340\) 116.799i 0.343528i
\(341\) 223.917 + 171.348i 0.656647 + 0.502486i
\(342\) 0 0
\(343\) 75.8770 104.436i 0.221216 0.304477i
\(344\) 36.2729 111.637i 0.105445 0.324525i
\(345\) 0 0
\(346\) 189.941 138.000i 0.548962 0.398844i
\(347\) 185.698 + 255.591i 0.535152 + 0.736574i 0.987905 0.155062i \(-0.0495578\pi\)
−0.452752 + 0.891636i \(0.649558\pi\)
\(348\) 0 0
\(349\) −61.5955 20.0136i −0.176491 0.0573455i 0.219438 0.975626i \(-0.429578\pi\)
−0.395930 + 0.918281i \(0.629578\pi\)
\(350\) 31.2158 + 22.6796i 0.0891880 + 0.0647988i
\(351\) 0 0
\(352\) −1.54670 + 62.2062i −0.00439404 + 0.176722i
\(353\) −518.482 −1.46879 −0.734394 0.678723i \(-0.762533\pi\)
−0.734394 + 0.678723i \(0.762533\pi\)
\(354\) 0 0
\(355\) −46.2961 + 142.485i −0.130412 + 0.401366i
\(356\) −34.5836 106.437i −0.0971450 0.298982i
\(357\) 0 0
\(358\) −86.1929 118.634i −0.240762 0.331381i
\(359\) −413.135 + 134.236i −1.15079 + 0.373915i −0.821442 0.570292i \(-0.806830\pi\)
−0.329351 + 0.944207i \(0.606830\pi\)
\(360\) 0 0
\(361\) −203.412 147.787i −0.563468 0.409383i
\(362\) 302.544i 0.835756i
\(363\) 0 0
\(364\) −29.0417 −0.0797848
\(365\) 93.1110 128.156i 0.255099 0.351113i
\(366\) 0 0
\(367\) −190.780 587.161i −0.519837 1.59989i −0.774305 0.632812i \(-0.781901\pi\)
0.254468 0.967081i \(-0.418099\pi\)
\(368\) 45.9236 33.3654i 0.124792 0.0906670i
\(369\) 0 0
\(370\) −84.7069 + 27.5230i −0.228938 + 0.0743864i
\(371\) −76.5157 24.8614i −0.206242 0.0670120i
\(372\) 0 0
\(373\) 307.758i 0.825087i −0.910938 0.412544i \(-0.864640\pi\)
0.910938 0.412544i \(-0.135360\pi\)
\(374\) −420.362 10.4519i −1.12396 0.0279464i
\(375\) 0 0
\(376\) −116.232 + 159.980i −0.309128 + 0.425478i
\(377\) −41.3030 + 127.118i −0.109557 + 0.337182i
\(378\) 0 0
\(379\) 131.079 95.2347i 0.345856 0.251279i −0.401273 0.915959i \(-0.631432\pi\)
0.747128 + 0.664680i \(0.231432\pi\)
\(380\) −26.5860 36.5925i −0.0699632 0.0962961i
\(381\) 0 0
\(382\) 71.9450 + 23.3763i 0.188338 + 0.0611946i
\(383\) −154.593 112.319i −0.403638 0.293260i 0.367383 0.930070i \(-0.380254\pi\)
−0.771021 + 0.636810i \(0.780254\pi\)
\(384\) 0 0
\(385\) −19.3808 + 25.3267i −0.0503397 + 0.0657837i
\(386\) 126.401 0.327464
\(387\) 0 0
\(388\) 107.887 332.042i 0.278059 0.855779i
\(389\) −100.541 309.435i −0.258461 0.795462i −0.993128 0.117034i \(-0.962661\pi\)
0.734666 0.678428i \(-0.237339\pi\)
\(390\) 0 0
\(391\) 225.469 + 310.332i 0.576648 + 0.793687i
\(392\) −126.966 + 41.2537i −0.323893 + 0.105239i
\(393\) 0 0
\(394\) −167.463 121.669i −0.425034 0.308805i
\(395\) 216.584i 0.548313i
\(396\) 0 0
\(397\) 37.1303 0.0935272 0.0467636 0.998906i \(-0.485109\pi\)
0.0467636 + 0.998906i \(0.485109\pi\)
\(398\) 186.260 256.365i 0.467991 0.644134i
\(399\) 0 0
\(400\) −25.1319 77.3479i −0.0628297 0.193370i
\(401\) 448.881 326.131i 1.11940 0.813294i 0.135285 0.990807i \(-0.456805\pi\)
0.984119 + 0.177512i \(0.0568050\pi\)
\(402\) 0 0
\(403\) 263.795 85.7121i 0.654577 0.212685i
\(404\) −61.2704 19.9080i −0.151660 0.0492772i
\(405\) 0 0
\(406\) 23.4402i 0.0577345i
\(407\) 91.4753 + 307.324i 0.224755 + 0.755096i
\(408\) 0 0
\(409\) −9.54089 + 13.1319i −0.0233274 + 0.0321074i −0.820521 0.571616i \(-0.806317\pi\)
0.797194 + 0.603723i \(0.206317\pi\)
\(410\) 10.1011 31.0880i 0.0246369 0.0758245i
\(411\) 0 0
\(412\) −287.174 + 208.644i −0.697024 + 0.506418i
\(413\) −41.3694 56.9402i −0.100168 0.137870i
\(414\) 0 0
\(415\) 209.367 + 68.0274i 0.504498 + 0.163921i
\(416\) 49.5228 + 35.9804i 0.119045 + 0.0864913i
\(417\) 0 0
\(418\) −134.076 + 92.4088i −0.320756 + 0.221074i
\(419\) −287.971 −0.687281 −0.343640 0.939101i \(-0.611660\pi\)
−0.343640 + 0.939101i \(0.611660\pi\)
\(420\) 0 0
\(421\) 207.751 639.393i 0.493471 1.51875i −0.325855 0.945420i \(-0.605652\pi\)
0.819326 0.573328i \(-0.194348\pi\)
\(422\) 74.6282 + 229.682i 0.176844 + 0.544270i
\(423\) 0 0
\(424\) 99.6755 + 137.192i 0.235084 + 0.323565i
\(425\) 522.684 169.830i 1.22984 0.399601i
\(426\) 0 0
\(427\) −119.649 86.9304i −0.280209 0.203584i
\(428\) 342.956i 0.801298i
\(429\) 0 0
\(430\) −126.803 −0.294892
\(431\) 352.378 485.006i 0.817581 1.12530i −0.172528 0.985005i \(-0.555193\pi\)
0.990109 0.140300i \(-0.0448066\pi\)
\(432\) 0 0
\(433\) 225.782 + 694.886i 0.521437 + 1.60482i 0.771256 + 0.636525i \(0.219629\pi\)
−0.249819 + 0.968293i \(0.580371\pi\)
\(434\) −39.3531 + 28.5917i −0.0906754 + 0.0658795i
\(435\) 0 0
\(436\) −380.320 + 123.573i −0.872293 + 0.283425i
\(437\) 141.276 + 45.9034i 0.323286 + 0.105042i
\(438\) 0 0
\(439\) 633.002i 1.44192i 0.692978 + 0.720959i \(0.256298\pi\)
−0.692978 + 0.720959i \(0.743702\pi\)
\(440\) 64.4265 19.1766i 0.146424 0.0435832i
\(441\) 0 0
\(442\) −243.140 + 334.653i −0.550090 + 0.757134i
\(443\) −54.1925 + 166.787i −0.122331 + 0.376495i −0.993405 0.114656i \(-0.963424\pi\)
0.871075 + 0.491151i \(0.163424\pi\)
\(444\) 0 0
\(445\) −97.8085 + 71.0620i −0.219794 + 0.159690i
\(446\) −268.046 368.934i −0.601001 0.827207i
\(447\) 0 0
\(448\) −10.2098 3.31735i −0.0227896 0.00740480i
\(449\) −43.3782 31.5161i −0.0966108 0.0701919i 0.538431 0.842670i \(-0.319017\pi\)
−0.635042 + 0.772478i \(0.719017\pi\)
\(450\) 0 0
\(451\) −110.982 39.1360i −0.246080 0.0867760i
\(452\) 370.317 0.819285
\(453\) 0 0
\(454\) 163.340 502.709i 0.359780 1.10729i
\(455\) 9.69470 + 29.8372i 0.0213070 + 0.0655763i
\(456\) 0 0
\(457\) −91.5322 125.983i −0.200289 0.275675i 0.697044 0.717029i \(-0.254498\pi\)
−0.897333 + 0.441354i \(0.854498\pi\)
\(458\) −149.282 + 48.5048i −0.325944 + 0.105906i
\(459\) 0 0
\(460\) −49.6097 36.0435i −0.107847 0.0783555i
\(461\) 550.272i 1.19365i −0.802372 0.596824i \(-0.796429\pi\)
0.802372 0.596824i \(-0.203571\pi\)
\(462\) 0 0
\(463\) 857.277 1.85157 0.925785 0.378050i \(-0.123405\pi\)
0.925785 + 0.378050i \(0.123405\pi\)
\(464\) −29.0406 + 39.9710i −0.0625875 + 0.0861443i
\(465\) 0 0
\(466\) −101.946 313.757i −0.218768 0.673298i
\(467\) 10.1109 7.34601i 0.0216508 0.0157302i −0.576907 0.816810i \(-0.695741\pi\)
0.598558 + 0.801079i \(0.295741\pi\)
\(468\) 0 0
\(469\) −76.6792 + 24.9146i −0.163495 + 0.0531228i
\(470\) 203.163 + 66.0116i 0.432261 + 0.140450i
\(471\) 0 0
\(472\) 148.350i 0.314300i
\(473\) −11.3472 + 456.367i −0.0239898 + 0.964834i
\(474\) 0 0
\(475\) 125.096 172.180i 0.263361 0.362485i
\(476\) 22.4172 68.9931i 0.0470950 0.144944i
\(477\) 0 0
\(478\) −339.375 + 246.570i −0.709989 + 0.515837i
\(479\) 77.0500 + 106.050i 0.160856 + 0.221399i 0.881836 0.471557i \(-0.156308\pi\)
−0.720980 + 0.692956i \(0.756308\pi\)
\(480\) 0 0
\(481\) 299.996 + 97.4747i 0.623693 + 0.202650i
\(482\) 34.3749 + 24.9749i 0.0713173 + 0.0518151i
\(483\) 0 0
\(484\) −63.2515 233.588i −0.130685 0.482619i
\(485\) −377.153 −0.777635
\(486\) 0 0
\(487\) −5.81646 + 17.9012i −0.0119435 + 0.0367582i −0.956851 0.290580i \(-0.906152\pi\)
0.944907 + 0.327338i \(0.106152\pi\)
\(488\) 96.3298 + 296.473i 0.197397 + 0.607526i
\(489\) 0 0
\(490\) 84.7676 + 116.673i 0.172995 + 0.238107i
\(491\) 674.188 219.057i 1.37309 0.446145i 0.472700 0.881223i \(-0.343279\pi\)
0.900392 + 0.435079i \(0.143279\pi\)
\(492\) 0 0
\(493\) −270.107 196.244i −0.547883 0.398061i
\(494\) 160.188i 0.324268i
\(495\) 0 0
\(496\) 102.529 0.206712
\(497\) −54.6940 + 75.2798i −0.110048 + 0.151468i
\(498\) 0 0
\(499\) 133.801 + 411.799i 0.268139 + 0.825248i 0.990954 + 0.134205i \(0.0428482\pi\)
−0.722814 + 0.691042i \(0.757152\pi\)
\(500\) −158.473 + 115.137i −0.316945 + 0.230274i
\(501\) 0 0
\(502\) 237.505 77.1700i 0.473117 0.153725i
\(503\) 82.4069 + 26.7756i 0.163831 + 0.0532318i 0.389784 0.920906i \(-0.372550\pi\)
−0.225953 + 0.974138i \(0.572550\pi\)
\(504\) 0 0
\(505\) 69.5945i 0.137811i
\(506\) −134.160 + 175.320i −0.265139 + 0.346483i
\(507\) 0 0
\(508\) −181.752 + 250.160i −0.357779 + 0.492441i
\(509\) −127.798 + 393.322i −0.251077 + 0.772735i 0.743501 + 0.668735i \(0.233164\pi\)
−0.994577 + 0.104000i \(0.966836\pi\)
\(510\) 0 0
\(511\) 79.5973 57.8309i 0.155768 0.113172i
\(512\) 13.3001 + 18.3060i 0.0259767 + 0.0357538i
\(513\) 0 0
\(514\) 311.309 + 101.150i 0.605659 + 0.196791i
\(515\) 310.224 + 225.391i 0.602377 + 0.437652i
\(516\) 0 0
\(517\) 255.757 725.278i 0.494694 1.40286i
\(518\) −55.3186 −0.106793
\(519\) 0 0
\(520\) 20.4343 62.8904i 0.0392968 0.120943i
\(521\) 131.733 + 405.433i 0.252847 + 0.778182i 0.994246 + 0.107118i \(0.0341623\pi\)
−0.741400 + 0.671064i \(0.765838\pi\)
\(522\) 0 0
\(523\) 493.752 + 679.592i 0.944077 + 1.29941i 0.954109 + 0.299461i \(0.0968067\pi\)
−0.0100317 + 0.999950i \(0.503193\pi\)
\(524\) −199.983 + 64.9785i −0.381647 + 0.124005i
\(525\) 0 0
\(526\) 63.9931 + 46.4937i 0.121660 + 0.0883910i
\(527\) 692.848i 1.31470i
\(528\) 0 0
\(529\) −327.611 −0.619302
\(530\) 107.676 148.203i 0.203162 0.279629i
\(531\) 0 0
\(532\) −8.68112 26.7177i −0.0163179 0.0502213i
\(533\) −93.6573 + 68.0460i −0.175717 + 0.127666i
\(534\) 0 0
\(535\) 352.350 114.486i 0.658599 0.213992i
\(536\) 161.623 + 52.5145i 0.301536 + 0.0979748i
\(537\) 0 0
\(538\) 2.92117i 0.00542968i
\(539\) 427.491 294.639i 0.793119 0.546640i
\(540\) 0 0
\(541\) 398.981 549.150i 0.737488 1.01507i −0.261271 0.965266i \(-0.584142\pi\)
0.998759 0.0498001i \(-0.0158584\pi\)
\(542\) 12.5762 38.7057i 0.0232034 0.0714127i
\(543\) 0 0
\(544\) −123.704 + 89.8761i −0.227397 + 0.165213i
\(545\) 253.917 + 349.487i 0.465903 + 0.641260i
\(546\) 0 0
\(547\) −1000.68 325.141i −1.82940 0.594407i −0.999324 0.0367506i \(-0.988299\pi\)
−0.830072 0.557656i \(-0.811701\pi\)
\(548\) 138.175 + 100.390i 0.252145 + 0.183194i
\(549\) 0 0
\(550\) 179.495 + 260.429i 0.326354 + 0.473507i
\(551\) −129.292 −0.234649
\(552\) 0 0
\(553\) 41.5687 127.935i 0.0751695 0.231348i
\(554\) 9.16180 + 28.1971i 0.0165375 + 0.0508973i
\(555\) 0 0
\(556\) 121.771 + 167.603i 0.219012 + 0.301444i
\(557\) 888.124 288.569i 1.59448 0.518077i 0.628744 0.777613i \(-0.283569\pi\)
0.965734 + 0.259535i \(0.0835694\pi\)
\(558\) 0 0
\(559\) 363.317 + 263.965i 0.649940 + 0.472209i
\(560\) 11.5968i 0.0207086i
\(561\) 0 0
\(562\) −401.247 −0.713962
\(563\) −27.4743 + 37.8151i −0.0487998 + 0.0671672i −0.832720 0.553695i \(-0.813217\pi\)
0.783920 + 0.620862i \(0.213217\pi\)
\(564\) 0 0
\(565\) −123.619 380.461i −0.218795 0.673383i
\(566\) 280.965 204.133i 0.496405 0.360659i
\(567\) 0 0
\(568\) 186.532 60.6079i 0.328401 0.106704i
\(569\) −929.644 302.060i −1.63382 0.530861i −0.658676 0.752427i \(-0.728883\pi\)
−0.975145 + 0.221566i \(0.928883\pi\)
\(570\) 0 0
\(571\) 477.709i 0.836618i 0.908305 + 0.418309i \(0.137377\pi\)
−0.908305 + 0.418309i \(0.862623\pi\)
\(572\) −224.514 79.1711i −0.392508 0.138411i
\(573\) 0 0
\(574\) 11.9334 16.4249i 0.0207899 0.0286149i
\(575\) 89.1626 274.414i 0.155065 0.477242i
\(576\) 0 0
\(577\) −623.214 + 452.791i −1.08009 + 0.784734i −0.977699 0.210010i \(-0.932650\pi\)
−0.102394 + 0.994744i \(0.532650\pi\)
\(578\) −367.111 505.285i −0.635140 0.874196i
\(579\) 0 0
\(580\) 50.7603 + 16.4930i 0.0875177 + 0.0284362i
\(581\) 110.616 + 80.3672i 0.190389 + 0.138326i
\(582\) 0 0
\(583\) −523.750 400.789i −0.898370 0.687460i
\(584\) −207.380 −0.355103
\(585\) 0 0
\(586\) −48.9980 + 150.800i −0.0836143 + 0.257338i
\(587\) 337.777 + 1039.57i 0.575430 + 1.77099i 0.634710 + 0.772750i \(0.281119\pi\)
−0.0592805 + 0.998241i \(0.518881\pi\)
\(588\) 0 0
\(589\) 157.707 + 217.065i 0.267753 + 0.368531i
\(590\) 152.414 49.5222i 0.258328 0.0839359i
\(591\) 0 0
\(592\) 94.3311 + 68.5355i 0.159343 + 0.115769i
\(593\) 141.847i 0.239203i −0.992822 0.119601i \(-0.961838\pi\)
0.992822 0.119601i \(-0.0381617\pi\)
\(594\) 0 0
\(595\) −78.3664 −0.131708
\(596\) 106.965 147.225i 0.179472 0.247022i
\(597\) 0 0
\(598\) 67.1101 + 206.544i 0.112224 + 0.345391i
\(599\) 171.663 124.720i 0.286582 0.208214i −0.435201 0.900333i \(-0.643323\pi\)
0.721783 + 0.692119i \(0.243323\pi\)
\(600\) 0 0
\(601\) 266.370 86.5488i 0.443211 0.144008i −0.0789057 0.996882i \(-0.525143\pi\)
0.522117 + 0.852874i \(0.325143\pi\)
\(602\) −74.9024 24.3373i −0.124423 0.0404274i
\(603\) 0 0
\(604\) 122.975i 0.203601i
\(605\) −218.872 + 142.961i −0.361772 + 0.236298i
\(606\) 0 0
\(607\) −218.388 + 300.585i −0.359783 + 0.495198i −0.950088 0.311982i \(-0.899007\pi\)
0.590305 + 0.807180i \(0.299007\pi\)
\(608\) −18.2979 + 56.3152i −0.0300952 + 0.0926236i
\(609\) 0 0
\(610\) 272.437 197.937i 0.446619 0.324487i
\(611\) −444.686 612.058i −0.727800 1.00173i
\(612\) 0 0
\(613\) 82.7051 + 26.8725i 0.134919 + 0.0438377i 0.375698 0.926742i \(-0.377403\pi\)
−0.240779 + 0.970580i \(0.577403\pi\)
\(614\) −16.9716 12.3306i −0.0276410 0.0200824i
\(615\) 0 0
\(616\) 41.7371 + 1.03776i 0.0677551 + 0.00168467i
\(617\) −853.166 −1.38277 −0.691383 0.722489i \(-0.742998\pi\)
−0.691383 + 0.722489i \(0.742998\pi\)
\(618\) 0 0
\(619\) 56.1260 172.738i 0.0906720 0.279060i −0.895430 0.445203i \(-0.853131\pi\)
0.986102 + 0.166143i \(0.0531315\pi\)
\(620\) −34.2263 105.338i −0.0552037 0.169900i
\(621\) 0 0
\(622\) −229.904 316.435i −0.369620 0.508738i
\(623\) −71.4141 + 23.2038i −0.114629 + 0.0372453i
\(624\) 0 0
\(625\) −240.033 174.394i −0.384053 0.279031i
\(626\) 284.679i 0.454758i
\(627\) 0 0
\(628\) 263.682 0.419876
\(629\) −463.134 + 637.449i −0.736301 + 1.01343i
\(630\) 0 0
\(631\) 301.955 + 929.322i 0.478534 + 1.47278i 0.841131 + 0.540831i \(0.181890\pi\)
−0.362597 + 0.931946i \(0.618110\pi\)
\(632\) −229.386 + 166.659i −0.362953 + 0.263701i
\(633\) 0 0
\(634\) 645.288 209.667i 1.01781 0.330705i
\(635\) 317.685 + 103.222i 0.500292 + 0.162555i
\(636\) 0 0
\(637\) 510.749i 0.801805i
\(638\) 63.9009 181.211i 0.100158 0.284029i
\(639\) 0 0
\(640\) 14.3676 19.7753i 0.0224494 0.0308989i
\(641\) 313.133 963.726i 0.488508 1.50347i −0.338328 0.941028i \(-0.609861\pi\)
0.826835 0.562444i \(-0.190139\pi\)
\(642\) 0 0
\(643\) −368.704 + 267.879i −0.573411 + 0.416608i −0.836343 0.548207i \(-0.815311\pi\)
0.262931 + 0.964815i \(0.415311\pi\)
\(644\) −22.3865 30.8124i −0.0347616 0.0478453i
\(645\) 0 0
\(646\) −380.553 123.649i −0.589092 0.191408i
\(647\) −516.200 375.041i −0.797836 0.579661i 0.112443 0.993658i \(-0.464132\pi\)
−0.910278 + 0.413997i \(0.864132\pi\)
\(648\) 0 0
\(649\) −164.592 552.969i −0.253608 0.852033i
\(650\) 311.150 0.478692
\(651\) 0 0
\(652\) 9.47490 29.1607i 0.0145321 0.0447251i
\(653\) −336.398 1035.33i −0.515157 1.58549i −0.782995 0.622027i \(-0.786309\pi\)
0.267838 0.963464i \(-0.413691\pi\)
\(654\) 0 0
\(655\) 133.517 + 183.770i 0.203843 + 0.280565i
\(656\) −40.6985 + 13.2237i −0.0620403 + 0.0201581i
\(657\) 0 0
\(658\) 107.338 + 77.9858i 0.163128 + 0.118519i
\(659\) 13.0543i 0.0198092i −0.999951 0.00990462i \(-0.996847\pi\)
0.999951 0.00990462i \(-0.00315279\pi\)
\(660\) 0 0
\(661\) −1062.94 −1.60808 −0.804040 0.594575i \(-0.797320\pi\)
−0.804040 + 0.594575i \(0.797320\pi\)
\(662\) −338.122 + 465.386i −0.510759 + 0.702999i
\(663\) 0 0
\(664\) −89.0571 274.090i −0.134122 0.412785i
\(665\) −24.5517 + 17.8378i −0.0369198 + 0.0268238i
\(666\) 0 0
\(667\) −166.706 + 54.1661i −0.249934 + 0.0812086i
\(668\) −297.654 96.7137i −0.445590 0.144781i
\(669\) 0 0
\(670\) 183.581i 0.274001i
\(671\) −687.999 998.217i −1.02533 1.48766i
\(672\) 0 0
\(673\) −32.6746 + 44.9727i −0.0485507 + 0.0668243i −0.832602 0.553872i \(-0.813150\pi\)
0.784051 + 0.620696i \(0.213150\pi\)
\(674\) 155.663 479.081i 0.230954 0.710802i
\(675\) 0 0
\(676\) 83.9814 61.0160i 0.124233 0.0902604i
\(677\) 134.729 + 185.439i 0.199009 + 0.273912i 0.896845 0.442345i \(-0.145853\pi\)
−0.697836 + 0.716258i \(0.745853\pi\)
\(678\) 0 0
\(679\) −222.783 72.3867i −0.328105 0.106608i
\(680\) 133.633 + 97.0900i 0.196519 + 0.142779i
\(681\) 0 0
\(682\) −382.174 + 113.755i −0.560373 + 0.166796i
\(683\) 518.623 0.759331 0.379666 0.925124i \(-0.376039\pi\)
0.379666 + 0.925124i \(0.376039\pi\)
\(684\) 0 0
\(685\) 57.0146 175.473i 0.0832330 0.256165i
\(686\) 56.4142 + 173.625i 0.0822365 + 0.253098i
\(687\) 0 0
\(688\) 97.5740 + 134.299i 0.141823 + 0.195202i
\(689\) −617.026 + 200.484i −0.895538 + 0.290978i
\(690\) 0 0
\(691\) −741.292 538.580i −1.07278 0.779421i −0.0963710 0.995345i \(-0.530724\pi\)
−0.976410 + 0.215924i \(0.930724\pi\)
\(692\) 332.029i 0.479810i
\(693\) 0 0
\(694\) −446.790 −0.643789
\(695\) 131.545 181.056i 0.189273 0.260512i
\(696\) 0 0
\(697\) −89.3602 275.023i −0.128207 0.394580i
\(698\) 74.0995 53.8364i 0.106160 0.0771296i
\(699\) 0 0
\(700\) −51.8965 + 16.8622i −0.0741378 + 0.0240888i
\(701\) −69.1203 22.4586i −0.0986024 0.0320379i 0.259300 0.965797i \(-0.416508\pi\)
−0.357903 + 0.933759i \(0.616508\pi\)
\(702\) 0 0
\(703\) 305.127i 0.434036i
\(704\) −69.8858 53.4787i −0.0992696 0.0759641i
\(705\) 0 0
\(706\) 430.990 593.207i 0.610468 0.840237i
\(707\) −13.3572 + 41.1093i −0.0188928 + 0.0581461i
\(708\) 0 0
\(709\) 405.483 294.601i 0.571908 0.415516i −0.263890 0.964553i \(-0.585006\pi\)
0.835798 + 0.549037i \(0.185006\pi\)
\(710\) −124.536 171.409i −0.175403 0.241422i
\(711\) 0 0
\(712\) 150.525 + 48.9086i 0.211412 + 0.0686919i
\(713\) 294.282 + 213.808i 0.412737 + 0.299871i
\(714\) 0 0
\(715\) −6.39241 + 257.094i −0.00894043 + 0.359571i
\(716\) 207.380 0.289638
\(717\) 0 0
\(718\) 189.838 584.261i 0.264398 0.813734i
\(719\) 75.9387 + 233.715i 0.105617 + 0.325056i 0.989875 0.141943i \(-0.0453350\pi\)
−0.884258 + 0.466999i \(0.845335\pi\)
\(720\) 0 0
\(721\) 139.989 + 192.679i 0.194160 + 0.267239i
\(722\) 338.174 109.879i 0.468385 0.152187i
\(723\) 0 0
\(724\) −346.147 251.490i −0.478104 0.347363i
\(725\) 251.136i 0.346395i
\(726\) 0 0
\(727\) 14.3190 0.0196960 0.00984799 0.999952i \(-0.496865\pi\)
0.00984799 + 0.999952i \(0.496865\pi\)
\(728\) 24.1410 33.2272i 0.0331607 0.0456418i
\(729\) 0 0
\(730\) 69.2276 + 213.061i 0.0948324 + 0.291864i
\(731\) −907.535 + 659.363i −1.24150 + 0.902001i
\(732\) 0 0
\(733\) 809.261 262.945i 1.10404 0.358724i 0.300384 0.953818i \(-0.402885\pi\)
0.803656 + 0.595094i \(0.202885\pi\)
\(734\) 830.371 + 269.804i 1.13130 + 0.367580i
\(735\) 0 0
\(736\) 80.2774i 0.109073i
\(737\) −660.709 16.4280i −0.896485 0.0222903i
\(738\) 0 0
\(739\) −281.680 + 387.699i −0.381163 + 0.524626i −0.955892 0.293718i \(-0.905107\pi\)
0.574729 + 0.818344i \(0.305107\pi\)
\(740\) 38.9233 119.794i 0.0525991 0.161883i
\(741\) 0 0
\(742\) 92.0485 66.8772i 0.124055 0.0901309i
\(743\) −132.746 182.709i −0.178662 0.245907i 0.710288 0.703911i \(-0.248565\pi\)
−0.888950 + 0.458004i \(0.848565\pi\)
\(744\) 0 0
\(745\) −186.966 60.7488i −0.250960 0.0815420i
\(746\) 352.112 + 255.825i 0.472001 + 0.342928i
\(747\) 0 0
\(748\) 361.386 472.258i 0.483137 0.631361i
\(749\) 230.106 0.307217
\(750\) 0 0
\(751\) 86.2162 265.346i 0.114802 0.353324i −0.877104 0.480301i \(-0.840527\pi\)
0.991906 + 0.126977i \(0.0405275\pi\)
\(752\) −86.4181 265.968i −0.114918 0.353680i
\(753\) 0 0
\(754\) −111.105 152.923i −0.147354 0.202815i
\(755\) 126.344 41.0515i 0.167343 0.0543729i
\(756\) 0 0
\(757\) 404.416 + 293.826i 0.534236 + 0.388145i 0.821940 0.569574i \(-0.192892\pi\)
−0.287704 + 0.957719i \(0.592892\pi\)
\(758\) 229.135i 0.302289i
\(759\) 0 0
\(760\) 63.9660 0.0841658
\(761\) −780.973 + 1074.92i −1.02625 + 1.41251i −0.118515 + 0.992952i \(0.537814\pi\)
−0.907730 + 0.419554i \(0.862186\pi\)
\(762\) 0 0
\(763\) 82.9114 + 255.175i 0.108665 + 0.334436i
\(764\) −86.5499 + 62.8822i −0.113285 + 0.0823066i
\(765\) 0 0
\(766\) 257.013 83.5084i 0.335525 0.109019i
\(767\) −539.784 175.387i −0.703761 0.228666i
\(768\) 0 0
\(769\) 1064.10i 1.38375i 0.722019 + 0.691873i \(0.243214\pi\)
−0.722019 + 0.691873i \(0.756786\pi\)
\(770\) −12.8665 43.2269i −0.0167098 0.0561388i
\(771\) 0 0
\(772\) −105.071 + 144.618i −0.136103 + 0.187329i
\(773\) 3.55834 10.9514i 0.00460328 0.0141674i −0.948728 0.316092i \(-0.897629\pi\)
0.953332 + 0.301925i \(0.0976291\pi\)
\(774\) 0 0
\(775\) 421.626 306.329i 0.544034 0.395263i
\(776\) 290.216 + 399.447i 0.373989 + 0.514752i
\(777\) 0 0
\(778\) 437.607 + 142.187i 0.562477 + 0.182760i
\(779\) −90.5969 65.8225i −0.116299 0.0844961i
\(780\) 0 0
\(781\) −628.049 + 432.868i −0.804159 + 0.554249i
\(782\) −542.480 −0.693708
\(783\) 0 0
\(784\) 58.3416 179.557i 0.0744153 0.229027i
\(785\) −88.0226 270.906i −0.112131 0.345103i
\(786\) 0 0
\(787\) −660.564 909.188i −0.839344 1.15526i −0.986111 0.166087i \(-0.946887\pi\)
0.146767 0.989171i \(-0.453113\pi\)
\(788\) 278.409 90.4605i 0.353311 0.114798i
\(789\) 0 0
\(790\) 247.798 + 180.036i 0.313669 + 0.227894i
\(791\) 248.464i 0.314113i
\(792\) 0 0
\(793\) −1192.63 −1.50395
\(794\) −30.8647 + 42.4816i −0.0388724 + 0.0535033i
\(795\) 0 0
\(796\) 138.484 + 426.210i 0.173975 + 0.535439i
\(797\) 98.7861 71.7723i 0.123947 0.0900531i −0.524084 0.851666i \(-0.675592\pi\)
0.648032 + 0.761613i \(0.275592\pi\)
\(798\) 0 0
\(799\) 1797.29 583.976i 2.24943 0.730884i
\(800\) 109.386 + 35.5418i 0.136733 + 0.0444273i
\(801\) 0 0
\(802\) 784.673i 0.978395i
\(803\) 773.003 230.085i 0.962643 0.286532i
\(804\) 0 0
\(805\) −24.1834 + 33.2855i −0.0300414 + 0.0413485i
\(806\) −121.215 + 373.062i −0.150391 + 0.462856i
\(807\) 0 0
\(808\) 73.7085 53.5523i 0.0912233 0.0662776i
\(809\) 827.897 + 1139.50i 1.02336 + 1.40853i 0.909822 + 0.414998i \(0.136218\pi\)
0.113536 + 0.993534i \(0.463782\pi\)
\(810\) 0 0
\(811\) −11.2136 3.64351i −0.0138269 0.00449262i 0.302095 0.953278i \(-0.402314\pi\)
−0.315922 + 0.948785i \(0.602314\pi\)
\(812\) 26.8185 + 19.4848i 0.0330277 + 0.0239960i
\(813\) 0 0
\(814\) −427.656 150.805i −0.525375 0.185265i
\(815\) −33.1225 −0.0406411
\(816\) 0 0
\(817\) −134.240 + 413.148i −0.164308 + 0.505689i
\(818\) −7.09361 21.8319i −0.00867190 0.0266894i
\(819\) 0 0
\(820\) 27.1719 + 37.3990i 0.0331365 + 0.0456085i
\(821\) 801.903 260.554i 0.976740 0.317362i 0.223206 0.974771i \(-0.428348\pi\)
0.753534 + 0.657409i \(0.228348\pi\)
\(822\) 0 0
\(823\) 78.5581 + 57.0758i 0.0954534 + 0.0693509i 0.634488 0.772933i \(-0.281211\pi\)
−0.539035 + 0.842283i \(0.681211\pi\)
\(824\) 501.998i 0.609221i
\(825\) 0 0
\(826\) 99.5350 0.120502
\(827\) 466.210 641.683i 0.563736 0.775916i −0.428060 0.903751i \(-0.640803\pi\)
0.991796 + 0.127835i \(0.0408026\pi\)
\(828\) 0 0
\(829\) 480.733 + 1479.54i 0.579895 + 1.78473i 0.618869 + 0.785494i \(0.287591\pi\)
−0.0389734 + 0.999240i \(0.512409\pi\)
\(830\) −251.869 + 182.993i −0.303456 + 0.220474i
\(831\) 0 0
\(832\) −82.3320 + 26.7513i −0.0989567 + 0.0321530i
\(833\) 1213.37 + 394.247i 1.45662 + 0.473286i
\(834\) 0 0
\(835\) 338.093i 0.404902i
\(836\) 5.72408 230.214i 0.00684698 0.275376i
\(837\) 0 0
\(838\) 239.377 329.474i 0.285652 0.393167i
\(839\) −248.504 + 764.818i −0.296191 + 0.911582i 0.686628 + 0.727009i \(0.259090\pi\)
−0.982819 + 0.184573i \(0.940910\pi\)
\(840\) 0 0
\(841\) −556.956 + 404.652i −0.662254 + 0.481156i
\(842\) 558.850 + 769.191i 0.663717 + 0.913528i
\(843\) 0 0
\(844\) −324.820 105.540i −0.384857 0.125048i
\(845\) −90.7222 65.9135i −0.107364 0.0780042i
\(846\) 0 0
\(847\) −156.725 + 42.4385i −0.185036 + 0.0501045i
\(848\) −239.820 −0.282806
\(849\) 0 0
\(850\) −240.176 + 739.187i −0.282560 + 0.869631i
\(851\) 127.831 + 393.425i 0.150213 + 0.462309i
\(852\) 0 0
\(853\) 91.4258 + 125.837i 0.107181 + 0.147523i 0.859238 0.511576i \(-0.170938\pi\)
−0.752057 + 0.659098i \(0.770938\pi\)
\(854\) 198.918 64.6324i 0.232925 0.0756819i
\(855\) 0 0
\(856\) −392.383 285.083i −0.458392 0.333041i
\(857\) 286.106i 0.333846i −0.985970 0.166923i \(-0.946617\pi\)
0.985970 0.166923i \(-0.0533832\pi\)
\(858\) 0 0
\(859\) −777.069 −0.904621 −0.452310 0.891861i \(-0.649400\pi\)
−0.452310 + 0.891861i \(0.649400\pi\)
\(860\) 105.406 145.079i 0.122565 0.168696i
\(861\) 0 0
\(862\) 261.991 + 806.327i 0.303934 + 0.935414i
\(863\) −484.736 + 352.181i −0.561687 + 0.408089i −0.832076 0.554662i \(-0.812848\pi\)
0.270389 + 0.962751i \(0.412848\pi\)
\(864\) 0 0
\(865\) 341.124 110.838i 0.394363 0.128136i
\(866\) −982.717 319.304i −1.13478 0.368712i
\(867\) 0 0
\(868\) 68.7918i 0.0792532i
\(869\) 670.125 875.717i 0.771145 1.00773i
\(870\) 0 0
\(871\) −382.158 + 525.995i −0.438758 + 0.603898i
\(872\) 174.759 537.853i 0.200412 0.616804i
\(873\) 0 0
\(874\) −169.955 + 123.480i −0.194457 + 0.141281i
\(875\) 77.2510 + 106.327i 0.0882869 + 0.121517i
\(876\) 0 0
\(877\) 780.633 + 253.643i 0.890118 + 0.289217i 0.718152 0.695886i \(-0.244988\pi\)
0.171966 + 0.985103i \(0.444988\pi\)
\(878\) −724.232 526.185i −0.824865 0.599300i
\(879\) 0 0
\(880\) −31.6144 + 89.6525i −0.0359255 + 0.101878i
\(881\) 1182.04 1.34170 0.670849 0.741594i \(-0.265930\pi\)
0.670849 + 0.741594i \(0.265930\pi\)
\(882\) 0 0
\(883\) 155.341 478.089i 0.175924 0.541437i −0.823751 0.566952i \(-0.808122\pi\)
0.999674 + 0.0255147i \(0.00812248\pi\)
\(884\) −180.774 556.364i −0.204495 0.629371i
\(885\) 0 0
\(886\) −145.778 200.646i −0.164534 0.226462i
\(887\) 63.0596 20.4893i 0.0710931 0.0230996i −0.273255 0.961942i \(-0.588100\pi\)
0.344348 + 0.938842i \(0.388100\pi\)
\(888\) 0 0
\(889\) 167.844 + 121.946i 0.188801 + 0.137172i
\(890\) 170.975i 0.192107i
\(891\) 0 0
\(892\) 644.921 0.723005
\(893\) 430.155 592.058i 0.481697 0.662998i
\(894\) 0 0
\(895\) −69.2278 213.061i −0.0773495 0.238057i
\(896\) 12.2824 8.92366i 0.0137080 0.00995944i
\(897\) 0 0
\(898\) 72.1167 23.4321i 0.0803081 0.0260937i
\(899\) −301.107 97.8356i −0.334935 0.108827i
\(900\) 0 0
\(901\) 1620.60i 1.79867i
\(902\) 137.031 94.4454i 0.151919 0.104707i
\(903\) 0 0
\(904\) −307.827 + 423.688i −0.340517 + 0.468681i
\(905\) −142.829 + 439.582i −0.157822 + 0.485726i
\(906\) 0 0
\(907\) 899.683 653.658i 0.991933 0.720682i 0.0315896 0.999501i \(-0.489943\pi\)
0.960344 + 0.278819i \(0.0899431\pi\)
\(908\) 439.384 + 604.760i 0.483903 + 0.666035i
\(909\) 0 0
\(910\) −42.1962 13.7104i −0.0463695 0.0150663i
\(911\) 883.114 + 641.620i 0.969389 + 0.704303i 0.955312 0.295598i \(-0.0955190\pi\)
0.0140771 + 0.999901i \(0.495519\pi\)
\(912\) 0 0
\(913\) 636.056 + 922.853i 0.696666 + 1.01079i
\(914\) 220.227 0.240948
\(915\) 0 0
\(916\) 68.5961 211.117i 0.0748865 0.230477i
\(917\) 43.5972 + 134.178i 0.0475433 + 0.146323i
\(918\) 0 0
\(919\) −708.836 975.629i −0.771312 1.06162i −0.996188 0.0872324i \(-0.972198\pi\)
0.224876 0.974387i \(-0.427802\pi\)
\(920\) 82.4765 26.7982i 0.0896483 0.0291285i
\(921\) 0 0
\(922\) 629.579 + 457.416i 0.682840 + 0.496113i
\(923\) 750.367i 0.812966i
\(924\) 0 0
\(925\) 592.679 0.640734
\(926\) −712.615 + 980.830i −0.769562 + 1.05921i
\(927\) 0 0
\(928\) −21.5916 66.4521i −0.0232668 0.0716078i
\(929\) −264.766 + 192.364i −0.285001 + 0.207066i −0.721096 0.692835i \(-0.756361\pi\)
0.436094 + 0.899901i \(0.356361\pi\)
\(930\) 0 0
\(931\) 469.879 152.673i 0.504703 0.163988i
\(932\) 443.719 + 144.173i 0.476094 + 0.154692i
\(933\) 0 0
\(934\) 17.6745i 0.0189235i
\(935\) −605.833 213.636i −0.647950 0.228488i
\(936\) 0 0
\(937\) −18.9967 + 26.1467i −0.0202739 + 0.0279047i −0.819034 0.573745i \(-0.805490\pi\)
0.798760 + 0.601650i \(0.205490\pi\)
\(938\) 35.2345 108.441i 0.0375635 0.115608i
\(939\) 0 0
\(940\) −244.405 + 177.571i −0.260006 + 0.188905i
\(941\) −271.712 373.980i −0.288748 0.397428i 0.639859 0.768493i \(-0.278993\pi\)
−0.928607 + 0.371065i \(0.878993\pi\)
\(942\) 0 0
\(943\) −144.390 46.9151i −0.153117 0.0497508i
\(944\) −169.730 123.316i −0.179799 0.130632i
\(945\) 0 0
\(946\) −512.707 392.339i −0.541974 0.414735i
\(947\) 763.125 0.805834 0.402917 0.915236i \(-0.367996\pi\)
0.402917 + 0.915236i \(0.367996\pi\)
\(948\) 0 0
\(949\) 245.175 754.571i 0.258351 0.795122i
\(950\) 93.0087 + 286.251i 0.0979039 + 0.301317i
\(951\) 0 0
\(952\) 60.3022 + 82.9989i 0.0633427 + 0.0871837i
\(953\) −91.1784 + 29.6256i −0.0956751 + 0.0310867i −0.356463 0.934309i \(-0.616018\pi\)
0.260788 + 0.965396i \(0.416018\pi\)
\(954\) 0 0
\(955\) 93.4969 + 67.9295i 0.0979025 + 0.0711303i
\(956\) 593.249i 0.620553i
\(957\) 0 0
\(958\) −185.383 −0.193510
\(959\) 67.3567 92.7086i 0.0702364 0.0966722i
\(960\) 0 0
\(961\) −93.9368 289.108i −0.0977490 0.300841i
\(962\) −360.896 + 262.206i −0.375152 + 0.272564i
\(963\) 0 0
\(964\) −57.1486 + 18.5687i −0.0592828 + 0.0192621i
\(965\) 183.655 + 59.6731i 0.190316 + 0.0618374i
\(966\) 0 0
\(967\) 1051.57i 1.08745i −0.839263 0.543726i \(-0.817013\pi\)
0.839263 0.543726i \(-0.182987\pi\)
\(968\) 319.831 + 121.803i 0.330404 + 0.125830i
\(969\) 0 0
\(970\) 313.510 431.509i 0.323206 0.444855i
\(971\) −104.760 + 322.418i −0.107889 + 0.332048i −0.990398 0.138248i \(-0.955853\pi\)
0.882509 + 0.470296i \(0.155853\pi\)
\(972\) 0 0
\(973\) 112.453 81.7019i 0.115574 0.0839691i
\(974\) −15.6462 21.5352i −0.0160639 0.0221101i
\(975\) 0 0
\(976\) −419.276 136.231i −0.429586 0.139581i
\(977\) −757.533 550.380i −0.775367 0.563337i 0.128218 0.991746i \(-0.459074\pi\)
−0.903585 + 0.428409i \(0.859074\pi\)
\(978\) 0 0
\(979\) −615.342 15.2999i −0.628542 0.0156281i
\(980\) −203.951 −0.208113
\(981\) 0 0
\(982\) −309.793 + 953.446i −0.315472 + 0.970923i
\(983\) 188.645 + 580.591i 0.191908 + 0.590631i 0.999999 + 0.00157368i \(0.000500918\pi\)
−0.808091 + 0.589058i \(0.799499\pi\)
\(984\) 0 0
\(985\) −185.877 255.838i −0.188708 0.259734i
\(986\) 449.054 145.907i 0.455430 0.147978i
\(987\) 0 0
\(988\) −183.275 133.157i −0.185501 0.134775i
\(989\) 588.943i 0.595494i
\(990\) 0 0
\(991\) 187.306 0.189008 0.0945038 0.995525i \(-0.469874\pi\)
0.0945038 + 0.995525i \(0.469874\pi\)
\(992\) −85.2277 + 117.306i −0.0859151 + 0.118252i
\(993\) 0 0
\(994\) −40.6648 125.153i −0.0409102 0.125909i
\(995\) 391.656 284.555i 0.393624 0.285985i
\(996\) 0 0
\(997\) −231.035 + 75.0680i −0.231731 + 0.0752939i −0.422581 0.906325i \(-0.638876\pi\)
0.190850 + 0.981619i \(0.438876\pi\)
\(998\) −582.371 189.224i −0.583538 0.189603i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 198.3.j.b.73.2 16
3.2 odd 2 66.3.f.a.7.4 16
11.5 even 5 2178.3.d.m.1693.5 16
11.6 odd 10 2178.3.d.m.1693.13 16
11.8 odd 10 inner 198.3.j.b.19.2 16
12.11 even 2 528.3.bf.c.337.1 16
33.5 odd 10 726.3.d.e.241.15 16
33.8 even 10 66.3.f.a.19.4 yes 16
33.17 even 10 726.3.d.e.241.7 16
132.107 odd 10 528.3.bf.c.481.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.f.a.7.4 16 3.2 odd 2
66.3.f.a.19.4 yes 16 33.8 even 10
198.3.j.b.19.2 16 11.8 odd 10 inner
198.3.j.b.73.2 16 1.1 even 1 trivial
528.3.bf.c.337.1 16 12.11 even 2
528.3.bf.c.481.1 16 132.107 odd 10
726.3.d.e.241.7 16 33.17 even 10
726.3.d.e.241.15 16 33.5 odd 10
2178.3.d.m.1693.5 16 11.5 even 5
2178.3.d.m.1693.13 16 11.6 odd 10