Properties

Label 198.3.d.a.109.1
Level $198$
Weight $3$
Character 198.109
Analytic conductor $5.395$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [198,3,Mod(109,198)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("198.109"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(198, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 198.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39510923433\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 198.109
Dual form 198.3.d.a.109.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -4.00000 q^{5} +4.24264i q^{7} +2.82843i q^{8} +5.65685i q^{10} -11.0000 q^{11} +16.9706i q^{13} +6.00000 q^{14} +4.00000 q^{16} +4.24264i q^{17} +21.2132i q^{19} +8.00000 q^{20} +15.5563i q^{22} -10.0000 q^{23} -9.00000 q^{25} +24.0000 q^{26} -8.48528i q^{28} -21.2132i q^{29} +20.0000 q^{31} -5.65685i q^{32} +6.00000 q^{34} -16.9706i q^{35} -40.0000 q^{37} +30.0000 q^{38} -11.3137i q^{40} +63.6396i q^{41} -46.6690i q^{43} +22.0000 q^{44} +14.1421i q^{46} -40.0000 q^{47} +31.0000 q^{49} +12.7279i q^{50} -33.9411i q^{52} +20.0000 q^{53} +44.0000 q^{55} -12.0000 q^{56} -30.0000 q^{58} -70.0000 q^{59} -84.8528i q^{61} -28.2843i q^{62} -8.00000 q^{64} -67.8823i q^{65} -40.0000 q^{67} -8.48528i q^{68} -24.0000 q^{70} -40.0000 q^{71} -16.9706i q^{73} +56.5685i q^{74} -42.4264i q^{76} -46.6690i q^{77} -63.6396i q^{79} -16.0000 q^{80} +90.0000 q^{82} +101.823i q^{83} -16.9706i q^{85} -66.0000 q^{86} -31.1127i q^{88} +128.000 q^{89} -72.0000 q^{91} +20.0000 q^{92} +56.5685i q^{94} -84.8528i q^{95} +80.0000 q^{97} -43.8406i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} - 8 q^{5} - 22 q^{11} + 12 q^{14} + 8 q^{16} + 16 q^{20} - 20 q^{23} - 18 q^{25} + 48 q^{26} + 40 q^{31} + 12 q^{34} - 80 q^{37} + 60 q^{38} + 44 q^{44} - 80 q^{47} + 62 q^{49} + 40 q^{53}+ \cdots + 160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/198\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(155\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) −4.00000 −0.800000 −0.400000 0.916515i \(-0.630990\pi\)
−0.400000 + 0.916515i \(0.630990\pi\)
\(6\) 0 0
\(7\) 4.24264i 0.606092i 0.952976 + 0.303046i \(0.0980035\pi\)
−0.952976 + 0.303046i \(0.901996\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 5.65685i 0.565685i
\(11\) −11.0000 −1.00000
\(12\) 0 0
\(13\) 16.9706i 1.30543i 0.757604 + 0.652714i \(0.226370\pi\)
−0.757604 + 0.652714i \(0.773630\pi\)
\(14\) 6.00000 0.428571
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 4.24264i 0.249567i 0.992184 + 0.124784i \(0.0398236\pi\)
−0.992184 + 0.124784i \(0.960176\pi\)
\(18\) 0 0
\(19\) 21.2132i 1.11648i 0.829678 + 0.558242i \(0.188524\pi\)
−0.829678 + 0.558242i \(0.811476\pi\)
\(20\) 8.00000 0.400000
\(21\) 0 0
\(22\) 15.5563i 0.707107i
\(23\) −10.0000 −0.434783 −0.217391 0.976085i \(-0.569755\pi\)
−0.217391 + 0.976085i \(0.569755\pi\)
\(24\) 0 0
\(25\) −9.00000 −0.360000
\(26\) 24.0000 0.923077
\(27\) 0 0
\(28\) − 8.48528i − 0.303046i
\(29\) − 21.2132i − 0.731490i −0.930715 0.365745i \(-0.880814\pi\)
0.930715 0.365745i \(-0.119186\pi\)
\(30\) 0 0
\(31\) 20.0000 0.645161 0.322581 0.946542i \(-0.395450\pi\)
0.322581 + 0.946542i \(0.395450\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) 6.00000 0.176471
\(35\) − 16.9706i − 0.484873i
\(36\) 0 0
\(37\) −40.0000 −1.08108 −0.540541 0.841318i \(-0.681780\pi\)
−0.540541 + 0.841318i \(0.681780\pi\)
\(38\) 30.0000 0.789474
\(39\) 0 0
\(40\) − 11.3137i − 0.282843i
\(41\) 63.6396i 1.55219i 0.630619 + 0.776093i \(0.282801\pi\)
−0.630619 + 0.776093i \(0.717199\pi\)
\(42\) 0 0
\(43\) − 46.6690i − 1.08533i −0.839950 0.542663i \(-0.817416\pi\)
0.839950 0.542663i \(-0.182584\pi\)
\(44\) 22.0000 0.500000
\(45\) 0 0
\(46\) 14.1421i 0.307438i
\(47\) −40.0000 −0.851064 −0.425532 0.904943i \(-0.639913\pi\)
−0.425532 + 0.904943i \(0.639913\pi\)
\(48\) 0 0
\(49\) 31.0000 0.632653
\(50\) 12.7279i 0.254558i
\(51\) 0 0
\(52\) − 33.9411i − 0.652714i
\(53\) 20.0000 0.377358 0.188679 0.982039i \(-0.439579\pi\)
0.188679 + 0.982039i \(0.439579\pi\)
\(54\) 0 0
\(55\) 44.0000 0.800000
\(56\) −12.0000 −0.214286
\(57\) 0 0
\(58\) −30.0000 −0.517241
\(59\) −70.0000 −1.18644 −0.593220 0.805040i \(-0.702144\pi\)
−0.593220 + 0.805040i \(0.702144\pi\)
\(60\) 0 0
\(61\) − 84.8528i − 1.39103i −0.718512 0.695515i \(-0.755176\pi\)
0.718512 0.695515i \(-0.244824\pi\)
\(62\) − 28.2843i − 0.456198i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 67.8823i − 1.04434i
\(66\) 0 0
\(67\) −40.0000 −0.597015 −0.298507 0.954407i \(-0.596489\pi\)
−0.298507 + 0.954407i \(0.596489\pi\)
\(68\) − 8.48528i − 0.124784i
\(69\) 0 0
\(70\) −24.0000 −0.342857
\(71\) −40.0000 −0.563380 −0.281690 0.959505i \(-0.590895\pi\)
−0.281690 + 0.959505i \(0.590895\pi\)
\(72\) 0 0
\(73\) − 16.9706i − 0.232473i −0.993222 0.116237i \(-0.962917\pi\)
0.993222 0.116237i \(-0.0370831\pi\)
\(74\) 56.5685i 0.764440i
\(75\) 0 0
\(76\) − 42.4264i − 0.558242i
\(77\) − 46.6690i − 0.606092i
\(78\) 0 0
\(79\) − 63.6396i − 0.805565i −0.915296 0.402782i \(-0.868043\pi\)
0.915296 0.402782i \(-0.131957\pi\)
\(80\) −16.0000 −0.200000
\(81\) 0 0
\(82\) 90.0000 1.09756
\(83\) 101.823i 1.22679i 0.789777 + 0.613394i \(0.210196\pi\)
−0.789777 + 0.613394i \(0.789804\pi\)
\(84\) 0 0
\(85\) − 16.9706i − 0.199654i
\(86\) −66.0000 −0.767442
\(87\) 0 0
\(88\) − 31.1127i − 0.353553i
\(89\) 128.000 1.43820 0.719101 0.694905i \(-0.244554\pi\)
0.719101 + 0.694905i \(0.244554\pi\)
\(90\) 0 0
\(91\) −72.0000 −0.791209
\(92\) 20.0000 0.217391
\(93\) 0 0
\(94\) 56.5685i 0.601793i
\(95\) − 84.8528i − 0.893188i
\(96\) 0 0
\(97\) 80.0000 0.824742 0.412371 0.911016i \(-0.364701\pi\)
0.412371 + 0.911016i \(0.364701\pi\)
\(98\) − 43.8406i − 0.447353i
\(99\) 0 0
\(100\) 18.0000 0.180000
\(101\) 21.2132i 0.210032i 0.994471 + 0.105016i \(0.0334893\pi\)
−0.994471 + 0.105016i \(0.966511\pi\)
\(102\) 0 0
\(103\) −100.000 −0.970874 −0.485437 0.874272i \(-0.661339\pi\)
−0.485437 + 0.874272i \(0.661339\pi\)
\(104\) −48.0000 −0.461538
\(105\) 0 0
\(106\) − 28.2843i − 0.266833i
\(107\) 186.676i 1.74464i 0.488938 + 0.872319i \(0.337384\pi\)
−0.488938 + 0.872319i \(0.662616\pi\)
\(108\) 0 0
\(109\) 169.706i 1.55693i 0.627687 + 0.778466i \(0.284002\pi\)
−0.627687 + 0.778466i \(0.715998\pi\)
\(110\) − 62.2254i − 0.565685i
\(111\) 0 0
\(112\) 16.9706i 0.151523i
\(113\) 200.000 1.76991 0.884956 0.465675i \(-0.154188\pi\)
0.884956 + 0.465675i \(0.154188\pi\)
\(114\) 0 0
\(115\) 40.0000 0.347826
\(116\) 42.4264i 0.365745i
\(117\) 0 0
\(118\) 98.9949i 0.838940i
\(119\) −18.0000 −0.151261
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) −120.000 −0.983607
\(123\) 0 0
\(124\) −40.0000 −0.322581
\(125\) 136.000 1.08800
\(126\) 0 0
\(127\) 207.889i 1.63692i 0.574560 + 0.818462i \(0.305173\pi\)
−0.574560 + 0.818462i \(0.694827\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) −96.0000 −0.738462
\(131\) − 254.558i − 1.94319i −0.236641 0.971597i \(-0.576047\pi\)
0.236641 0.971597i \(-0.423953\pi\)
\(132\) 0 0
\(133\) −90.0000 −0.676692
\(134\) 56.5685i 0.422153i
\(135\) 0 0
\(136\) −12.0000 −0.0882353
\(137\) 80.0000 0.583942 0.291971 0.956427i \(-0.405689\pi\)
0.291971 + 0.956427i \(0.405689\pi\)
\(138\) 0 0
\(139\) 148.492i 1.06829i 0.845393 + 0.534145i \(0.179367\pi\)
−0.845393 + 0.534145i \(0.820633\pi\)
\(140\) 33.9411i 0.242437i
\(141\) 0 0
\(142\) 56.5685i 0.398370i
\(143\) − 186.676i − 1.30543i
\(144\) 0 0
\(145\) 84.8528i 0.585192i
\(146\) −24.0000 −0.164384
\(147\) 0 0
\(148\) 80.0000 0.540541
\(149\) 190.919i 1.28133i 0.767819 + 0.640667i \(0.221342\pi\)
−0.767819 + 0.640667i \(0.778658\pi\)
\(150\) 0 0
\(151\) − 106.066i − 0.702424i −0.936296 0.351212i \(-0.885770\pi\)
0.936296 0.351212i \(-0.114230\pi\)
\(152\) −60.0000 −0.394737
\(153\) 0 0
\(154\) −66.0000 −0.428571
\(155\) −80.0000 −0.516129
\(156\) 0 0
\(157\) 50.0000 0.318471 0.159236 0.987241i \(-0.449097\pi\)
0.159236 + 0.987241i \(0.449097\pi\)
\(158\) −90.0000 −0.569620
\(159\) 0 0
\(160\) 22.6274i 0.141421i
\(161\) − 42.4264i − 0.263518i
\(162\) 0 0
\(163\) 200.000 1.22699 0.613497 0.789697i \(-0.289762\pi\)
0.613497 + 0.789697i \(0.289762\pi\)
\(164\) − 127.279i − 0.776093i
\(165\) 0 0
\(166\) 144.000 0.867470
\(167\) 186.676i 1.11782i 0.829228 + 0.558911i \(0.188781\pi\)
−0.829228 + 0.558911i \(0.811219\pi\)
\(168\) 0 0
\(169\) −119.000 −0.704142
\(170\) −24.0000 −0.141176
\(171\) 0 0
\(172\) 93.3381i 0.542663i
\(173\) 216.375i 1.25072i 0.780336 + 0.625360i \(0.215048\pi\)
−0.780336 + 0.625360i \(0.784952\pi\)
\(174\) 0 0
\(175\) − 38.1838i − 0.218193i
\(176\) −44.0000 −0.250000
\(177\) 0 0
\(178\) − 181.019i − 1.01696i
\(179\) −208.000 −1.16201 −0.581006 0.813900i \(-0.697341\pi\)
−0.581006 + 0.813900i \(0.697341\pi\)
\(180\) 0 0
\(181\) −190.000 −1.04972 −0.524862 0.851187i \(-0.675883\pi\)
−0.524862 + 0.851187i \(0.675883\pi\)
\(182\) 101.823i 0.559469i
\(183\) 0 0
\(184\) − 28.2843i − 0.153719i
\(185\) 160.000 0.864865
\(186\) 0 0
\(187\) − 46.6690i − 0.249567i
\(188\) 80.0000 0.425532
\(189\) 0 0
\(190\) −120.000 −0.631579
\(191\) −232.000 −1.21466 −0.607330 0.794450i \(-0.707759\pi\)
−0.607330 + 0.794450i \(0.707759\pi\)
\(192\) 0 0
\(193\) 16.9706i 0.0879304i 0.999033 + 0.0439652i \(0.0139991\pi\)
−0.999033 + 0.0439652i \(0.986001\pi\)
\(194\) − 113.137i − 0.583181i
\(195\) 0 0
\(196\) −62.0000 −0.316327
\(197\) − 292.742i − 1.48600i −0.669291 0.743001i \(-0.733402\pi\)
0.669291 0.743001i \(-0.266598\pi\)
\(198\) 0 0
\(199\) −52.0000 −0.261307 −0.130653 0.991428i \(-0.541707\pi\)
−0.130653 + 0.991428i \(0.541707\pi\)
\(200\) − 25.4558i − 0.127279i
\(201\) 0 0
\(202\) 30.0000 0.148515
\(203\) 90.0000 0.443350
\(204\) 0 0
\(205\) − 254.558i − 1.24175i
\(206\) 141.421i 0.686511i
\(207\) 0 0
\(208\) 67.8823i 0.326357i
\(209\) − 233.345i − 1.11648i
\(210\) 0 0
\(211\) − 190.919i − 0.904829i −0.891808 0.452414i \(-0.850563\pi\)
0.891808 0.452414i \(-0.149437\pi\)
\(212\) −40.0000 −0.188679
\(213\) 0 0
\(214\) 264.000 1.23364
\(215\) 186.676i 0.868261i
\(216\) 0 0
\(217\) 84.8528i 0.391027i
\(218\) 240.000 1.10092
\(219\) 0 0
\(220\) −88.0000 −0.400000
\(221\) −72.0000 −0.325792
\(222\) 0 0
\(223\) 140.000 0.627803 0.313901 0.949456i \(-0.398364\pi\)
0.313901 + 0.949456i \(0.398364\pi\)
\(224\) 24.0000 0.107143
\(225\) 0 0
\(226\) − 282.843i − 1.25152i
\(227\) − 101.823i − 0.448561i −0.974525 0.224281i \(-0.927997\pi\)
0.974525 0.224281i \(-0.0720032\pi\)
\(228\) 0 0
\(229\) 8.00000 0.0349345 0.0174672 0.999847i \(-0.494440\pi\)
0.0174672 + 0.999847i \(0.494440\pi\)
\(230\) − 56.5685i − 0.245950i
\(231\) 0 0
\(232\) 60.0000 0.258621
\(233\) 38.1838i 0.163879i 0.996637 + 0.0819394i \(0.0261114\pi\)
−0.996637 + 0.0819394i \(0.973889\pi\)
\(234\) 0 0
\(235\) 160.000 0.680851
\(236\) 140.000 0.593220
\(237\) 0 0
\(238\) 25.4558i 0.106957i
\(239\) 254.558i 1.06510i 0.846399 + 0.532549i \(0.178766\pi\)
−0.846399 + 0.532549i \(0.821234\pi\)
\(240\) 0 0
\(241\) − 424.264i − 1.76043i −0.474573 0.880216i \(-0.657398\pi\)
0.474573 0.880216i \(-0.342602\pi\)
\(242\) − 171.120i − 0.707107i
\(243\) 0 0
\(244\) 169.706i 0.695515i
\(245\) −124.000 −0.506122
\(246\) 0 0
\(247\) −360.000 −1.45749
\(248\) 56.5685i 0.228099i
\(249\) 0 0
\(250\) − 192.333i − 0.769332i
\(251\) −160.000 −0.637450 −0.318725 0.947847i \(-0.603255\pi\)
−0.318725 + 0.947847i \(0.603255\pi\)
\(252\) 0 0
\(253\) 110.000 0.434783
\(254\) 294.000 1.15748
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 440.000 1.71206 0.856031 0.516924i \(-0.172923\pi\)
0.856031 + 0.516924i \(0.172923\pi\)
\(258\) 0 0
\(259\) − 169.706i − 0.655234i
\(260\) 135.765i 0.522171i
\(261\) 0 0
\(262\) −360.000 −1.37405
\(263\) − 186.676i − 0.709795i −0.934905 0.354898i \(-0.884516\pi\)
0.934905 0.354898i \(-0.115484\pi\)
\(264\) 0 0
\(265\) −80.0000 −0.301887
\(266\) 127.279i 0.478493i
\(267\) 0 0
\(268\) 80.0000 0.298507
\(269\) −340.000 −1.26394 −0.631970 0.774993i \(-0.717754\pi\)
−0.631970 + 0.774993i \(0.717754\pi\)
\(270\) 0 0
\(271\) − 275.772i − 1.01761i −0.860883 0.508804i \(-0.830088\pi\)
0.860883 0.508804i \(-0.169912\pi\)
\(272\) 16.9706i 0.0623918i
\(273\) 0 0
\(274\) − 113.137i − 0.412909i
\(275\) 99.0000 0.360000
\(276\) 0 0
\(277\) 237.588i 0.857718i 0.903371 + 0.428859i \(0.141084\pi\)
−0.903371 + 0.428859i \(0.858916\pi\)
\(278\) 210.000 0.755396
\(279\) 0 0
\(280\) 48.0000 0.171429
\(281\) 275.772i 0.981394i 0.871330 + 0.490697i \(0.163258\pi\)
−0.871330 + 0.490697i \(0.836742\pi\)
\(282\) 0 0
\(283\) 46.6690i 0.164908i 0.996595 + 0.0824541i \(0.0262758\pi\)
−0.996595 + 0.0824541i \(0.973724\pi\)
\(284\) 80.0000 0.281690
\(285\) 0 0
\(286\) −264.000 −0.923077
\(287\) −270.000 −0.940767
\(288\) 0 0
\(289\) 271.000 0.937716
\(290\) 120.000 0.413793
\(291\) 0 0
\(292\) 33.9411i 0.116237i
\(293\) − 258.801i − 0.883280i −0.897192 0.441640i \(-0.854397\pi\)
0.897192 0.441640i \(-0.145603\pi\)
\(294\) 0 0
\(295\) 280.000 0.949153
\(296\) − 113.137i − 0.382220i
\(297\) 0 0
\(298\) 270.000 0.906040
\(299\) − 169.706i − 0.567577i
\(300\) 0 0
\(301\) 198.000 0.657807
\(302\) −150.000 −0.496689
\(303\) 0 0
\(304\) 84.8528i 0.279121i
\(305\) 339.411i 1.11282i
\(306\) 0 0
\(307\) 386.080i 1.25759i 0.777571 + 0.628795i \(0.216452\pi\)
−0.777571 + 0.628795i \(0.783548\pi\)
\(308\) 93.3381i 0.303046i
\(309\) 0 0
\(310\) 113.137i 0.364958i
\(311\) −10.0000 −0.0321543 −0.0160772 0.999871i \(-0.505118\pi\)
−0.0160772 + 0.999871i \(0.505118\pi\)
\(312\) 0 0
\(313\) −400.000 −1.27796 −0.638978 0.769225i \(-0.720642\pi\)
−0.638978 + 0.769225i \(0.720642\pi\)
\(314\) − 70.7107i − 0.225193i
\(315\) 0 0
\(316\) 127.279i 0.402782i
\(317\) −580.000 −1.82965 −0.914826 0.403847i \(-0.867673\pi\)
−0.914826 + 0.403847i \(0.867673\pi\)
\(318\) 0 0
\(319\) 233.345i 0.731490i
\(320\) 32.0000 0.100000
\(321\) 0 0
\(322\) −60.0000 −0.186335
\(323\) −90.0000 −0.278638
\(324\) 0 0
\(325\) − 152.735i − 0.469954i
\(326\) − 282.843i − 0.867616i
\(327\) 0 0
\(328\) −180.000 −0.548780
\(329\) − 169.706i − 0.515823i
\(330\) 0 0
\(331\) −520.000 −1.57100 −0.785498 0.618864i \(-0.787593\pi\)
−0.785498 + 0.618864i \(0.787593\pi\)
\(332\) − 203.647i − 0.613394i
\(333\) 0 0
\(334\) 264.000 0.790419
\(335\) 160.000 0.477612
\(336\) 0 0
\(337\) 526.087i 1.56109i 0.625099 + 0.780545i \(0.285058\pi\)
−0.625099 + 0.780545i \(0.714942\pi\)
\(338\) 168.291i 0.497904i
\(339\) 0 0
\(340\) 33.9411i 0.0998268i
\(341\) −220.000 −0.645161
\(342\) 0 0
\(343\) 339.411i 0.989537i
\(344\) 132.000 0.383721
\(345\) 0 0
\(346\) 306.000 0.884393
\(347\) − 101.823i − 0.293439i −0.989178 0.146720i \(-0.953129\pi\)
0.989178 0.146720i \(-0.0468715\pi\)
\(348\) 0 0
\(349\) 339.411i 0.972525i 0.873813 + 0.486263i \(0.161640\pi\)
−0.873813 + 0.486263i \(0.838360\pi\)
\(350\) −54.0000 −0.154286
\(351\) 0 0
\(352\) 62.2254i 0.176777i
\(353\) −40.0000 −0.113314 −0.0566572 0.998394i \(-0.518044\pi\)
−0.0566572 + 0.998394i \(0.518044\pi\)
\(354\) 0 0
\(355\) 160.000 0.450704
\(356\) −256.000 −0.719101
\(357\) 0 0
\(358\) 294.156i 0.821666i
\(359\) 84.8528i 0.236359i 0.992992 + 0.118179i \(0.0377058\pi\)
−0.992992 + 0.118179i \(0.962294\pi\)
\(360\) 0 0
\(361\) −89.0000 −0.246537
\(362\) 268.701i 0.742267i
\(363\) 0 0
\(364\) 144.000 0.395604
\(365\) 67.8823i 0.185979i
\(366\) 0 0
\(367\) 380.000 1.03542 0.517711 0.855555i \(-0.326784\pi\)
0.517711 + 0.855555i \(0.326784\pi\)
\(368\) −40.0000 −0.108696
\(369\) 0 0
\(370\) − 226.274i − 0.611552i
\(371\) 84.8528i 0.228714i
\(372\) 0 0
\(373\) − 101.823i − 0.272985i −0.990641 0.136492i \(-0.956417\pi\)
0.990641 0.136492i \(-0.0435829\pi\)
\(374\) −66.0000 −0.176471
\(375\) 0 0
\(376\) − 113.137i − 0.300897i
\(377\) 360.000 0.954907
\(378\) 0 0
\(379\) −592.000 −1.56201 −0.781003 0.624528i \(-0.785291\pi\)
−0.781003 + 0.624528i \(0.785291\pi\)
\(380\) 169.706i 0.446594i
\(381\) 0 0
\(382\) 328.098i 0.858894i
\(383\) 410.000 1.07050 0.535248 0.844695i \(-0.320218\pi\)
0.535248 + 0.844695i \(0.320218\pi\)
\(384\) 0 0
\(385\) 186.676i 0.484873i
\(386\) 24.0000 0.0621762
\(387\) 0 0
\(388\) −160.000 −0.412371
\(389\) −460.000 −1.18252 −0.591260 0.806481i \(-0.701369\pi\)
−0.591260 + 0.806481i \(0.701369\pi\)
\(390\) 0 0
\(391\) − 42.4264i − 0.108507i
\(392\) 87.6812i 0.223677i
\(393\) 0 0
\(394\) −414.000 −1.05076
\(395\) 254.558i 0.644452i
\(396\) 0 0
\(397\) 200.000 0.503778 0.251889 0.967756i \(-0.418948\pi\)
0.251889 + 0.967756i \(0.418948\pi\)
\(398\) 73.5391i 0.184772i
\(399\) 0 0
\(400\) −36.0000 −0.0900000
\(401\) 152.000 0.379052 0.189526 0.981876i \(-0.439305\pi\)
0.189526 + 0.981876i \(0.439305\pi\)
\(402\) 0 0
\(403\) 339.411i 0.842212i
\(404\) − 42.4264i − 0.105016i
\(405\) 0 0
\(406\) − 127.279i − 0.313496i
\(407\) 440.000 1.08108
\(408\) 0 0
\(409\) − 339.411i − 0.829856i −0.909854 0.414928i \(-0.863807\pi\)
0.909854 0.414928i \(-0.136193\pi\)
\(410\) −360.000 −0.878049
\(411\) 0 0
\(412\) 200.000 0.485437
\(413\) − 296.985i − 0.719092i
\(414\) 0 0
\(415\) − 407.294i − 0.981430i
\(416\) 96.0000 0.230769
\(417\) 0 0
\(418\) −330.000 −0.789474
\(419\) 512.000 1.22196 0.610979 0.791647i \(-0.290776\pi\)
0.610979 + 0.791647i \(0.290776\pi\)
\(420\) 0 0
\(421\) 770.000 1.82898 0.914489 0.404610i \(-0.132593\pi\)
0.914489 + 0.404610i \(0.132593\pi\)
\(422\) −270.000 −0.639810
\(423\) 0 0
\(424\) 56.5685i 0.133416i
\(425\) − 38.1838i − 0.0898442i
\(426\) 0 0
\(427\) 360.000 0.843091
\(428\) − 373.352i − 0.872319i
\(429\) 0 0
\(430\) 264.000 0.613953
\(431\) − 339.411i − 0.787497i −0.919218 0.393749i \(-0.871178\pi\)
0.919218 0.393749i \(-0.128822\pi\)
\(432\) 0 0
\(433\) −160.000 −0.369515 −0.184758 0.982784i \(-0.559150\pi\)
−0.184758 + 0.982784i \(0.559150\pi\)
\(434\) 120.000 0.276498
\(435\) 0 0
\(436\) − 339.411i − 0.778466i
\(437\) − 212.132i − 0.485428i
\(438\) 0 0
\(439\) 275.772i 0.628181i 0.949393 + 0.314091i \(0.101700\pi\)
−0.949393 + 0.314091i \(0.898300\pi\)
\(440\) 124.451i 0.282843i
\(441\) 0 0
\(442\) 101.823i 0.230370i
\(443\) 170.000 0.383747 0.191874 0.981420i \(-0.438544\pi\)
0.191874 + 0.981420i \(0.438544\pi\)
\(444\) 0 0
\(445\) −512.000 −1.15056
\(446\) − 197.990i − 0.443924i
\(447\) 0 0
\(448\) − 33.9411i − 0.0757614i
\(449\) 248.000 0.552339 0.276169 0.961109i \(-0.410935\pi\)
0.276169 + 0.961109i \(0.410935\pi\)
\(450\) 0 0
\(451\) − 700.036i − 1.55219i
\(452\) −400.000 −0.884956
\(453\) 0 0
\(454\) −144.000 −0.317181
\(455\) 288.000 0.632967
\(456\) 0 0
\(457\) 237.588i 0.519886i 0.965624 + 0.259943i \(0.0837038\pi\)
−0.965624 + 0.259943i \(0.916296\pi\)
\(458\) − 11.3137i − 0.0247024i
\(459\) 0 0
\(460\) −80.0000 −0.173913
\(461\) 530.330i 1.15039i 0.818016 + 0.575195i \(0.195074\pi\)
−0.818016 + 0.575195i \(0.804926\pi\)
\(462\) 0 0
\(463\) −100.000 −0.215983 −0.107991 0.994152i \(-0.534442\pi\)
−0.107991 + 0.994152i \(0.534442\pi\)
\(464\) − 84.8528i − 0.182872i
\(465\) 0 0
\(466\) 54.0000 0.115880
\(467\) 710.000 1.52034 0.760171 0.649723i \(-0.225115\pi\)
0.760171 + 0.649723i \(0.225115\pi\)
\(468\) 0 0
\(469\) − 169.706i − 0.361846i
\(470\) − 226.274i − 0.481434i
\(471\) 0 0
\(472\) − 197.990i − 0.419470i
\(473\) 513.360i 1.08533i
\(474\) 0 0
\(475\) − 190.919i − 0.401934i
\(476\) 36.0000 0.0756303
\(477\) 0 0
\(478\) 360.000 0.753138
\(479\) 169.706i 0.354291i 0.984185 + 0.177146i \(0.0566864\pi\)
−0.984185 + 0.177146i \(0.943314\pi\)
\(480\) 0 0
\(481\) − 678.823i − 1.41127i
\(482\) −600.000 −1.24481
\(483\) 0 0
\(484\) −242.000 −0.500000
\(485\) −320.000 −0.659794
\(486\) 0 0
\(487\) −580.000 −1.19097 −0.595483 0.803368i \(-0.703039\pi\)
−0.595483 + 0.803368i \(0.703039\pi\)
\(488\) 240.000 0.491803
\(489\) 0 0
\(490\) 175.362i 0.357883i
\(491\) − 84.8528i − 0.172816i −0.996260 0.0864082i \(-0.972461\pi\)
0.996260 0.0864082i \(-0.0275389\pi\)
\(492\) 0 0
\(493\) 90.0000 0.182556
\(494\) 509.117i 1.03060i
\(495\) 0 0
\(496\) 80.0000 0.161290
\(497\) − 169.706i − 0.341460i
\(498\) 0 0
\(499\) 152.000 0.304609 0.152305 0.988334i \(-0.451331\pi\)
0.152305 + 0.988334i \(0.451331\pi\)
\(500\) −272.000 −0.544000
\(501\) 0 0
\(502\) 226.274i 0.450745i
\(503\) − 441.235i − 0.877206i −0.898681 0.438603i \(-0.855473\pi\)
0.898681 0.438603i \(-0.144527\pi\)
\(504\) 0 0
\(505\) − 84.8528i − 0.168025i
\(506\) − 155.563i − 0.307438i
\(507\) 0 0
\(508\) − 415.779i − 0.818462i
\(509\) −460.000 −0.903733 −0.451866 0.892086i \(-0.649242\pi\)
−0.451866 + 0.892086i \(0.649242\pi\)
\(510\) 0 0
\(511\) 72.0000 0.140900
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) − 622.254i − 1.21061i
\(515\) 400.000 0.776699
\(516\) 0 0
\(517\) 440.000 0.851064
\(518\) −240.000 −0.463320
\(519\) 0 0
\(520\) 192.000 0.369231
\(521\) 392.000 0.752399 0.376200 0.926539i \(-0.377231\pi\)
0.376200 + 0.926539i \(0.377231\pi\)
\(522\) 0 0
\(523\) − 292.742i − 0.559737i −0.960038 0.279868i \(-0.909709\pi\)
0.960038 0.279868i \(-0.0902908\pi\)
\(524\) 509.117i 0.971597i
\(525\) 0 0
\(526\) −264.000 −0.501901
\(527\) 84.8528i 0.161011i
\(528\) 0 0
\(529\) −429.000 −0.810964
\(530\) 113.137i 0.213466i
\(531\) 0 0
\(532\) 180.000 0.338346
\(533\) −1080.00 −2.02627
\(534\) 0 0
\(535\) − 746.705i − 1.39571i
\(536\) − 113.137i − 0.211077i
\(537\) 0 0
\(538\) 480.833i 0.893741i
\(539\) −341.000 −0.632653
\(540\) 0 0
\(541\) − 848.528i − 1.56844i −0.620480 0.784222i \(-0.713062\pi\)
0.620480 0.784222i \(-0.286938\pi\)
\(542\) −390.000 −0.719557
\(543\) 0 0
\(544\) 24.0000 0.0441176
\(545\) − 678.823i − 1.24555i
\(546\) 0 0
\(547\) 767.918i 1.40387i 0.712240 + 0.701936i \(0.247681\pi\)
−0.712240 + 0.701936i \(0.752319\pi\)
\(548\) −160.000 −0.291971
\(549\) 0 0
\(550\) − 140.007i − 0.254558i
\(551\) 450.000 0.816697
\(552\) 0 0
\(553\) 270.000 0.488246
\(554\) 336.000 0.606498
\(555\) 0 0
\(556\) − 296.985i − 0.534145i
\(557\) 759.433i 1.36343i 0.731616 + 0.681717i \(0.238766\pi\)
−0.731616 + 0.681717i \(0.761234\pi\)
\(558\) 0 0
\(559\) 792.000 1.41682
\(560\) − 67.8823i − 0.121218i
\(561\) 0 0
\(562\) 390.000 0.693950
\(563\) 780.646i 1.38658i 0.720658 + 0.693291i \(0.243840\pi\)
−0.720658 + 0.693291i \(0.756160\pi\)
\(564\) 0 0
\(565\) −800.000 −1.41593
\(566\) 66.0000 0.116608
\(567\) 0 0
\(568\) − 113.137i − 0.199185i
\(569\) − 1124.30i − 1.97592i −0.154702 0.987961i \(-0.549442\pi\)
0.154702 0.987961i \(-0.450558\pi\)
\(570\) 0 0
\(571\) − 190.919i − 0.334359i −0.985926 0.167179i \(-0.946534\pi\)
0.985926 0.167179i \(-0.0534659\pi\)
\(572\) 373.352i 0.652714i
\(573\) 0 0
\(574\) 381.838i 0.665222i
\(575\) 90.0000 0.156522
\(576\) 0 0
\(577\) −370.000 −0.641248 −0.320624 0.947207i \(-0.603893\pi\)
−0.320624 + 0.947207i \(0.603893\pi\)
\(578\) − 383.252i − 0.663066i
\(579\) 0 0
\(580\) − 169.706i − 0.292596i
\(581\) −432.000 −0.743546
\(582\) 0 0
\(583\) −220.000 −0.377358
\(584\) 48.0000 0.0821918
\(585\) 0 0
\(586\) −366.000 −0.624573
\(587\) 230.000 0.391823 0.195911 0.980622i \(-0.437233\pi\)
0.195911 + 0.980622i \(0.437233\pi\)
\(588\) 0 0
\(589\) 424.264i 0.720313i
\(590\) − 395.980i − 0.671152i
\(591\) 0 0
\(592\) −160.000 −0.270270
\(593\) 504.874i 0.851390i 0.904867 + 0.425695i \(0.139970\pi\)
−0.904867 + 0.425695i \(0.860030\pi\)
\(594\) 0 0
\(595\) 72.0000 0.121008
\(596\) − 381.838i − 0.640667i
\(597\) 0 0
\(598\) −240.000 −0.401338
\(599\) −298.000 −0.497496 −0.248748 0.968568i \(-0.580019\pi\)
−0.248748 + 0.968568i \(0.580019\pi\)
\(600\) 0 0
\(601\) 424.264i 0.705930i 0.935636 + 0.352965i \(0.114827\pi\)
−0.935636 + 0.352965i \(0.885173\pi\)
\(602\) − 280.014i − 0.465140i
\(603\) 0 0
\(604\) 212.132i 0.351212i
\(605\) −484.000 −0.800000
\(606\) 0 0
\(607\) 335.169i 0.552172i 0.961133 + 0.276086i \(0.0890375\pi\)
−0.961133 + 0.276086i \(0.910962\pi\)
\(608\) 120.000 0.197368
\(609\) 0 0
\(610\) 480.000 0.786885
\(611\) − 678.823i − 1.11100i
\(612\) 0 0
\(613\) 356.382i 0.581373i 0.956818 + 0.290687i \(0.0938837\pi\)
−0.956818 + 0.290687i \(0.906116\pi\)
\(614\) 546.000 0.889251
\(615\) 0 0
\(616\) 132.000 0.214286
\(617\) 440.000 0.713128 0.356564 0.934271i \(-0.383948\pi\)
0.356564 + 0.934271i \(0.383948\pi\)
\(618\) 0 0
\(619\) 80.0000 0.129241 0.0646204 0.997910i \(-0.479416\pi\)
0.0646204 + 0.997910i \(0.479416\pi\)
\(620\) 160.000 0.258065
\(621\) 0 0
\(622\) 14.1421i 0.0227366i
\(623\) 543.058i 0.871682i
\(624\) 0 0
\(625\) −319.000 −0.510400
\(626\) 565.685i 0.903651i
\(627\) 0 0
\(628\) −100.000 −0.159236
\(629\) − 169.706i − 0.269802i
\(630\) 0 0
\(631\) 188.000 0.297940 0.148970 0.988842i \(-0.452404\pi\)
0.148970 + 0.988842i \(0.452404\pi\)
\(632\) 180.000 0.284810
\(633\) 0 0
\(634\) 820.244i 1.29376i
\(635\) − 831.558i − 1.30954i
\(636\) 0 0
\(637\) 526.087i 0.825883i
\(638\) 330.000 0.517241
\(639\) 0 0
\(640\) − 45.2548i − 0.0707107i
\(641\) 32.0000 0.0499220 0.0249610 0.999688i \(-0.492054\pi\)
0.0249610 + 0.999688i \(0.492054\pi\)
\(642\) 0 0
\(643\) 440.000 0.684292 0.342146 0.939647i \(-0.388846\pi\)
0.342146 + 0.939647i \(0.388846\pi\)
\(644\) 84.8528i 0.131759i
\(645\) 0 0
\(646\) 127.279i 0.197027i
\(647\) 650.000 1.00464 0.502318 0.864683i \(-0.332481\pi\)
0.502318 + 0.864683i \(0.332481\pi\)
\(648\) 0 0
\(649\) 770.000 1.18644
\(650\) −216.000 −0.332308
\(651\) 0 0
\(652\) −400.000 −0.613497
\(653\) −1060.00 −1.62328 −0.811639 0.584160i \(-0.801424\pi\)
−0.811639 + 0.584160i \(0.801424\pi\)
\(654\) 0 0
\(655\) 1018.23i 1.55456i
\(656\) 254.558i 0.388046i
\(657\) 0 0
\(658\) −240.000 −0.364742
\(659\) 933.381i 1.41636i 0.706032 + 0.708180i \(0.250483\pi\)
−0.706032 + 0.708180i \(0.749517\pi\)
\(660\) 0 0
\(661\) −322.000 −0.487141 −0.243570 0.969883i \(-0.578319\pi\)
−0.243570 + 0.969883i \(0.578319\pi\)
\(662\) 735.391i 1.11086i
\(663\) 0 0
\(664\) −288.000 −0.433735
\(665\) 360.000 0.541353
\(666\) 0 0
\(667\) 212.132i 0.318039i
\(668\) − 373.352i − 0.558911i
\(669\) 0 0
\(670\) − 226.274i − 0.337723i
\(671\) 933.381i 1.39103i
\(672\) 0 0
\(673\) 916.410i 1.36168i 0.732432 + 0.680840i \(0.238385\pi\)
−0.732432 + 0.680840i \(0.761615\pi\)
\(674\) 744.000 1.10386
\(675\) 0 0
\(676\) 238.000 0.352071
\(677\) 123.037i 0.181738i 0.995863 + 0.0908690i \(0.0289644\pi\)
−0.995863 + 0.0908690i \(0.971036\pi\)
\(678\) 0 0
\(679\) 339.411i 0.499869i
\(680\) 48.0000 0.0705882
\(681\) 0 0
\(682\) 311.127i 0.456198i
\(683\) −160.000 −0.234261 −0.117130 0.993117i \(-0.537370\pi\)
−0.117130 + 0.993117i \(0.537370\pi\)
\(684\) 0 0
\(685\) −320.000 −0.467153
\(686\) 480.000 0.699708
\(687\) 0 0
\(688\) − 186.676i − 0.271332i
\(689\) 339.411i 0.492614i
\(690\) 0 0
\(691\) 632.000 0.914616 0.457308 0.889308i \(-0.348814\pi\)
0.457308 + 0.889308i \(0.348814\pi\)
\(692\) − 432.749i − 0.625360i
\(693\) 0 0
\(694\) −144.000 −0.207493
\(695\) − 593.970i − 0.854633i
\(696\) 0 0
\(697\) −270.000 −0.387374
\(698\) 480.000 0.687679
\(699\) 0 0
\(700\) 76.3675i 0.109096i
\(701\) − 657.609i − 0.938102i −0.883171 0.469051i \(-0.844596\pi\)
0.883171 0.469051i \(-0.155404\pi\)
\(702\) 0 0
\(703\) − 848.528i − 1.20701i
\(704\) 88.0000 0.125000
\(705\) 0 0
\(706\) 56.5685i 0.0801254i
\(707\) −90.0000 −0.127298
\(708\) 0 0
\(709\) 920.000 1.29760 0.648801 0.760958i \(-0.275271\pi\)
0.648801 + 0.760958i \(0.275271\pi\)
\(710\) − 226.274i − 0.318696i
\(711\) 0 0
\(712\) 362.039i 0.508481i
\(713\) −200.000 −0.280505
\(714\) 0 0
\(715\) 746.705i 1.04434i
\(716\) 416.000 0.581006
\(717\) 0 0
\(718\) 120.000 0.167131
\(719\) −712.000 −0.990264 −0.495132 0.868818i \(-0.664880\pi\)
−0.495132 + 0.868818i \(0.664880\pi\)
\(720\) 0 0
\(721\) − 424.264i − 0.588438i
\(722\) 125.865i 0.174328i
\(723\) 0 0
\(724\) 380.000 0.524862
\(725\) 190.919i 0.263336i
\(726\) 0 0
\(727\) −820.000 −1.12792 −0.563961 0.825801i \(-0.690723\pi\)
−0.563961 + 0.825801i \(0.690723\pi\)
\(728\) − 203.647i − 0.279735i
\(729\) 0 0
\(730\) 96.0000 0.131507
\(731\) 198.000 0.270862
\(732\) 0 0
\(733\) − 101.823i − 0.138913i −0.997585 0.0694566i \(-0.977873\pi\)
0.997585 0.0694566i \(-0.0221265\pi\)
\(734\) − 537.401i − 0.732154i
\(735\) 0 0
\(736\) 56.5685i 0.0768594i
\(737\) 440.000 0.597015
\(738\) 0 0
\(739\) 530.330i 0.717632i 0.933408 + 0.358816i \(0.116819\pi\)
−0.933408 + 0.358816i \(0.883181\pi\)
\(740\) −320.000 −0.432432
\(741\) 0 0
\(742\) 120.000 0.161725
\(743\) − 1289.76i − 1.73589i −0.496664 0.867943i \(-0.665442\pi\)
0.496664 0.867943i \(-0.334558\pi\)
\(744\) 0 0
\(745\) − 763.675i − 1.02507i
\(746\) −144.000 −0.193029
\(747\) 0 0
\(748\) 93.3381i 0.124784i
\(749\) −792.000 −1.05741
\(750\) 0 0
\(751\) −1348.00 −1.79494 −0.897470 0.441075i \(-0.854597\pi\)
−0.897470 + 0.441075i \(0.854597\pi\)
\(752\) −160.000 −0.212766
\(753\) 0 0
\(754\) − 509.117i − 0.675221i
\(755\) 424.264i 0.561939i
\(756\) 0 0
\(757\) −610.000 −0.805812 −0.402906 0.915241i \(-0.632000\pi\)
−0.402906 + 0.915241i \(0.632000\pi\)
\(758\) 837.214i 1.10450i
\(759\) 0 0
\(760\) 240.000 0.315789
\(761\) 445.477i 0.585384i 0.956207 + 0.292692i \(0.0945511\pi\)
−0.956207 + 0.292692i \(0.905449\pi\)
\(762\) 0 0
\(763\) −720.000 −0.943644
\(764\) 464.000 0.607330
\(765\) 0 0
\(766\) − 579.828i − 0.756955i
\(767\) − 1187.94i − 1.54881i
\(768\) 0 0
\(769\) 424.264i 0.551709i 0.961199 + 0.275854i \(0.0889608\pi\)
−0.961199 + 0.275854i \(0.911039\pi\)
\(770\) 264.000 0.342857
\(771\) 0 0
\(772\) − 33.9411i − 0.0439652i
\(773\) −700.000 −0.905563 −0.452781 0.891622i \(-0.649568\pi\)
−0.452781 + 0.891622i \(0.649568\pi\)
\(774\) 0 0
\(775\) −180.000 −0.232258
\(776\) 226.274i 0.291590i
\(777\) 0 0
\(778\) 650.538i 0.836167i
\(779\) −1350.00 −1.73299
\(780\) 0 0
\(781\) 440.000 0.563380
\(782\) −60.0000 −0.0767263
\(783\) 0 0
\(784\) 124.000 0.158163
\(785\) −200.000 −0.254777
\(786\) 0 0
\(787\) − 1234.61i − 1.56875i −0.620285 0.784376i \(-0.712983\pi\)
0.620285 0.784376i \(-0.287017\pi\)
\(788\) 585.484i 0.743001i
\(789\) 0 0
\(790\) 360.000 0.455696
\(791\) 848.528i 1.07273i
\(792\) 0 0
\(793\) 1440.00 1.81589
\(794\) − 282.843i − 0.356225i
\(795\) 0 0
\(796\) 104.000 0.130653
\(797\) 380.000 0.476788 0.238394 0.971169i \(-0.423379\pi\)
0.238394 + 0.971169i \(0.423379\pi\)
\(798\) 0 0
\(799\) − 169.706i − 0.212398i
\(800\) 50.9117i 0.0636396i
\(801\) 0 0
\(802\) − 214.960i − 0.268031i
\(803\) 186.676i 0.232473i
\(804\) 0 0
\(805\) 169.706i 0.210814i
\(806\) 480.000 0.595533
\(807\) 0 0
\(808\) −60.0000 −0.0742574
\(809\) − 63.6396i − 0.0786645i −0.999226 0.0393323i \(-0.987477\pi\)
0.999226 0.0393323i \(-0.0125231\pi\)
\(810\) 0 0
\(811\) − 360.624i − 0.444666i −0.974971 0.222333i \(-0.928633\pi\)
0.974971 0.222333i \(-0.0713673\pi\)
\(812\) −180.000 −0.221675
\(813\) 0 0
\(814\) − 622.254i − 0.764440i
\(815\) −800.000 −0.981595
\(816\) 0 0
\(817\) 990.000 1.21175
\(818\) −480.000 −0.586797
\(819\) 0 0
\(820\) 509.117i 0.620874i
\(821\) − 21.2132i − 0.0258383i −0.999917 0.0129191i \(-0.995888\pi\)
0.999917 0.0129191i \(-0.00411240\pi\)
\(822\) 0 0
\(823\) 980.000 1.19077 0.595383 0.803442i \(-0.297000\pi\)
0.595383 + 0.803442i \(0.297000\pi\)
\(824\) − 282.843i − 0.343256i
\(825\) 0 0
\(826\) −420.000 −0.508475
\(827\) − 16.9706i − 0.0205206i −0.999947 0.0102603i \(-0.996734\pi\)
0.999947 0.0102603i \(-0.00326602\pi\)
\(828\) 0 0
\(829\) −1000.00 −1.20627 −0.603136 0.797638i \(-0.706083\pi\)
−0.603136 + 0.797638i \(0.706083\pi\)
\(830\) −576.000 −0.693976
\(831\) 0 0
\(832\) − 135.765i − 0.163178i
\(833\) 131.522i 0.157889i
\(834\) 0 0
\(835\) − 746.705i − 0.894257i
\(836\) 466.690i 0.558242i
\(837\) 0 0
\(838\) − 724.077i − 0.864054i
\(839\) 1130.00 1.34684 0.673421 0.739259i \(-0.264824\pi\)
0.673421 + 0.739259i \(0.264824\pi\)
\(840\) 0 0
\(841\) 391.000 0.464923
\(842\) − 1088.94i − 1.29328i
\(843\) 0 0
\(844\) 381.838i 0.452414i
\(845\) 476.000 0.563314
\(846\) 0 0
\(847\) 513.360i 0.606092i
\(848\) 80.0000 0.0943396
\(849\) 0 0
\(850\) −54.0000 −0.0635294
\(851\) 400.000 0.470035
\(852\) 0 0
\(853\) − 610.940i − 0.716225i −0.933678 0.358113i \(-0.883420\pi\)
0.933678 0.358113i \(-0.116580\pi\)
\(854\) − 509.117i − 0.596156i
\(855\) 0 0
\(856\) −528.000 −0.616822
\(857\) 1013.99i 1.18319i 0.806236 + 0.591593i \(0.201501\pi\)
−0.806236 + 0.591593i \(0.798499\pi\)
\(858\) 0 0
\(859\) −760.000 −0.884750 −0.442375 0.896830i \(-0.645864\pi\)
−0.442375 + 0.896830i \(0.645864\pi\)
\(860\) − 373.352i − 0.434131i
\(861\) 0 0
\(862\) −480.000 −0.556845
\(863\) −1510.00 −1.74971 −0.874855 0.484385i \(-0.839044\pi\)
−0.874855 + 0.484385i \(0.839044\pi\)
\(864\) 0 0
\(865\) − 865.499i − 1.00058i
\(866\) 226.274i 0.261287i
\(867\) 0 0
\(868\) − 169.706i − 0.195513i
\(869\) 700.036i 0.805565i
\(870\) 0 0
\(871\) − 678.823i − 0.779360i
\(872\) −480.000 −0.550459
\(873\) 0 0
\(874\) −300.000 −0.343249
\(875\) 576.999i 0.659428i
\(876\) 0 0
\(877\) − 322.441i − 0.367663i −0.982958 0.183832i \(-0.941150\pi\)
0.982958 0.183832i \(-0.0588501\pi\)
\(878\) 390.000 0.444191
\(879\) 0 0
\(880\) 176.000 0.200000
\(881\) 1160.00 1.31669 0.658343 0.752718i \(-0.271258\pi\)
0.658343 + 0.752718i \(0.271258\pi\)
\(882\) 0 0
\(883\) −880.000 −0.996602 −0.498301 0.867004i \(-0.666043\pi\)
−0.498301 + 0.867004i \(0.666043\pi\)
\(884\) 144.000 0.162896
\(885\) 0 0
\(886\) − 240.416i − 0.271350i
\(887\) − 271.529i − 0.306121i −0.988217 0.153060i \(-0.951087\pi\)
0.988217 0.153060i \(-0.0489129\pi\)
\(888\) 0 0
\(889\) −882.000 −0.992126
\(890\) 724.077i 0.813570i
\(891\) 0 0
\(892\) −280.000 −0.313901
\(893\) − 848.528i − 0.950199i
\(894\) 0 0
\(895\) 832.000 0.929609
\(896\) −48.0000 −0.0535714
\(897\) 0 0
\(898\) − 350.725i − 0.390562i
\(899\) − 424.264i − 0.471929i
\(900\) 0 0
\(901\) 84.8528i 0.0941763i
\(902\) −990.000 −1.09756
\(903\) 0 0
\(904\) 565.685i 0.625758i
\(905\) 760.000 0.839779
\(906\) 0 0
\(907\) 1040.00 1.14664 0.573319 0.819332i \(-0.305656\pi\)
0.573319 + 0.819332i \(0.305656\pi\)
\(908\) 203.647i 0.224281i
\(909\) 0 0
\(910\) − 407.294i − 0.447575i
\(911\) −328.000 −0.360044 −0.180022 0.983663i \(-0.557617\pi\)
−0.180022 + 0.983663i \(0.557617\pi\)
\(912\) 0 0
\(913\) − 1120.06i − 1.22679i
\(914\) 336.000 0.367615
\(915\) 0 0
\(916\) −16.0000 −0.0174672
\(917\) 1080.00 1.17775
\(918\) 0 0
\(919\) − 572.756i − 0.623239i −0.950207 0.311619i \(-0.899129\pi\)
0.950207 0.311619i \(-0.100871\pi\)
\(920\) 113.137i 0.122975i
\(921\) 0 0
\(922\) 750.000 0.813449
\(923\) − 678.823i − 0.735452i
\(924\) 0 0
\(925\) 360.000 0.389189
\(926\) 141.421i 0.152723i
\(927\) 0 0
\(928\) −120.000 −0.129310
\(929\) 680.000 0.731970 0.365985 0.930621i \(-0.380732\pi\)
0.365985 + 0.930621i \(0.380732\pi\)
\(930\) 0 0
\(931\) 657.609i 0.706347i
\(932\) − 76.3675i − 0.0819394i
\(933\) 0 0
\(934\) − 1004.09i − 1.07504i
\(935\) 186.676i 0.199654i
\(936\) 0 0
\(937\) − 67.8823i − 0.0724464i −0.999344 0.0362232i \(-0.988467\pi\)
0.999344 0.0362232i \(-0.0115327\pi\)
\(938\) −240.000 −0.255864
\(939\) 0 0
\(940\) −320.000 −0.340426
\(941\) − 1718.27i − 1.82600i −0.407955 0.913002i \(-0.633758\pi\)
0.407955 0.913002i \(-0.366242\pi\)
\(942\) 0 0
\(943\) − 636.396i − 0.674863i
\(944\) −280.000 −0.296610
\(945\) 0 0
\(946\) 726.000 0.767442
\(947\) 1280.00 1.35164 0.675818 0.737068i \(-0.263790\pi\)
0.675818 + 0.737068i \(0.263790\pi\)
\(948\) 0 0
\(949\) 288.000 0.303477
\(950\) −270.000 −0.284211
\(951\) 0 0
\(952\) − 50.9117i − 0.0534787i
\(953\) − 207.889i − 0.218142i −0.994034 0.109071i \(-0.965212\pi\)
0.994034 0.109071i \(-0.0347876\pi\)
\(954\) 0 0
\(955\) 928.000 0.971728
\(956\) − 509.117i − 0.532549i
\(957\) 0 0
\(958\) 240.000 0.250522
\(959\) 339.411i 0.353922i
\(960\) 0 0
\(961\) −561.000 −0.583767
\(962\) −960.000 −0.997921
\(963\) 0 0
\(964\) 848.528i 0.880216i
\(965\) − 67.8823i − 0.0703443i
\(966\) 0 0
\(967\) 377.595i 0.390481i 0.980755 + 0.195240i \(0.0625487\pi\)
−0.980755 + 0.195240i \(0.937451\pi\)
\(968\) 342.240i 0.353553i
\(969\) 0 0
\(970\) 452.548i 0.466545i
\(971\) −1258.00 −1.29557 −0.647786 0.761823i \(-0.724305\pi\)
−0.647786 + 0.761823i \(0.724305\pi\)
\(972\) 0 0
\(973\) −630.000 −0.647482
\(974\) 820.244i 0.842139i
\(975\) 0 0
\(976\) − 339.411i − 0.347757i
\(977\) 1520.00 1.55578 0.777892 0.628399i \(-0.216289\pi\)
0.777892 + 0.628399i \(0.216289\pi\)
\(978\) 0 0
\(979\) −1408.00 −1.43820
\(980\) 248.000 0.253061
\(981\) 0 0
\(982\) −120.000 −0.122200
\(983\) 1430.00 1.45473 0.727365 0.686251i \(-0.240745\pi\)
0.727365 + 0.686251i \(0.240745\pi\)
\(984\) 0 0
\(985\) 1170.97i 1.18880i
\(986\) − 127.279i − 0.129086i
\(987\) 0 0
\(988\) 720.000 0.728745
\(989\) 466.690i 0.471881i
\(990\) 0 0
\(991\) 740.000 0.746720 0.373360 0.927686i \(-0.378206\pi\)
0.373360 + 0.927686i \(0.378206\pi\)
\(992\) − 113.137i − 0.114049i
\(993\) 0 0
\(994\) −240.000 −0.241449
\(995\) 208.000 0.209045
\(996\) 0 0
\(997\) − 576.999i − 0.578735i −0.957218 0.289368i \(-0.906555\pi\)
0.957218 0.289368i \(-0.0934450\pi\)
\(998\) − 214.960i − 0.215391i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 198.3.d.a.109.1 2
3.2 odd 2 198.3.d.c.109.2 yes 2
4.3 odd 2 1584.3.j.b.1297.1 2
11.10 odd 2 inner 198.3.d.a.109.2 yes 2
12.11 even 2 1584.3.j.e.1297.1 2
33.32 even 2 198.3.d.c.109.1 yes 2
44.43 even 2 1584.3.j.b.1297.2 2
132.131 odd 2 1584.3.j.e.1297.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
198.3.d.a.109.1 2 1.1 even 1 trivial
198.3.d.a.109.2 yes 2 11.10 odd 2 inner
198.3.d.c.109.1 yes 2 33.32 even 2
198.3.d.c.109.2 yes 2 3.2 odd 2
1584.3.j.b.1297.1 2 4.3 odd 2
1584.3.j.b.1297.2 2 44.43 even 2
1584.3.j.e.1297.1 2 12.11 even 2
1584.3.j.e.1297.2 2 132.131 odd 2