Properties

Label 198.2.f.c.181.1
Level $198$
Weight $2$
Character 198.181
Analytic conductor $1.581$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [198,2,Mod(37,198)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(198, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("198.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 198.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,-1,-8,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.58103796002\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 198.181
Dual form 198.2.f.c.163.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{4} +(-0.881966 + 2.71441i) q^{5} +(-3.73607 + 2.71441i) q^{7} +(0.809017 + 0.587785i) q^{8} +2.85410 q^{10} +(-1.23607 + 3.07768i) q^{11} +(-1.00000 - 3.07768i) q^{13} +(3.73607 + 2.71441i) q^{14} +(0.309017 - 0.951057i) q^{16} +(0.763932 - 2.35114i) q^{17} +(2.61803 + 1.90211i) q^{19} +(-0.881966 - 2.71441i) q^{20} +(3.30902 + 0.224514i) q^{22} +3.23607 q^{23} +(-2.54508 - 1.84911i) q^{25} +(-2.61803 + 1.90211i) q^{26} +(1.42705 - 4.39201i) q^{28} +(-0.309017 + 0.224514i) q^{29} +(2.66312 + 8.19624i) q^{31} -1.00000 q^{32} -2.47214 q^{34} +(-4.07295 - 12.5352i) q^{35} +(-1.23607 + 0.898056i) q^{37} +(1.00000 - 3.07768i) q^{38} +(-2.30902 + 1.67760i) q^{40} +(-2.61803 - 1.90211i) q^{41} -3.23607 q^{43} +(-0.809017 - 3.21644i) q^{44} +(-1.00000 - 3.07768i) q^{46} +(2.00000 + 1.45309i) q^{47} +(4.42705 - 13.6251i) q^{49} +(-0.972136 + 2.99193i) q^{50} +(2.61803 + 1.90211i) q^{52} +(1.19098 + 3.66547i) q^{53} +(-7.26393 - 6.06961i) q^{55} -4.61803 q^{56} +(0.309017 + 0.224514i) q^{58} +(-3.11803 + 2.26538i) q^{59} +(-2.09017 + 6.43288i) q^{61} +(6.97214 - 5.06555i) q^{62} +(0.309017 + 0.951057i) q^{64} +9.23607 q^{65} +4.00000 q^{67} +(0.763932 + 2.35114i) q^{68} +(-10.6631 + 7.74721i) q^{70} +(-3.85410 + 11.8617i) q^{71} +(9.16312 - 6.65740i) q^{73} +(1.23607 + 0.898056i) q^{74} -3.23607 q^{76} +(-3.73607 - 14.8536i) q^{77} +(-2.88197 - 8.86978i) q^{79} +(2.30902 + 1.67760i) q^{80} +(-1.00000 + 3.07768i) q^{82} +(0.208204 - 0.640786i) q^{83} +(5.70820 + 4.14725i) q^{85} +(1.00000 + 3.07768i) q^{86} +(-2.80902 + 1.76336i) q^{88} +11.7082 q^{89} +(12.0902 + 8.78402i) q^{91} +(-2.61803 + 1.90211i) q^{92} +(0.763932 - 2.35114i) q^{94} +(-7.47214 + 5.42882i) q^{95} +(3.50000 + 10.7719i) q^{97} -14.3262 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{4} - 8 q^{5} - 6 q^{7} + q^{8} - 2 q^{10} + 4 q^{11} - 4 q^{13} + 6 q^{14} - q^{16} + 12 q^{17} + 6 q^{19} - 8 q^{20} + 11 q^{22} + 4 q^{23} + q^{25} - 6 q^{26} - q^{28} + q^{29}+ \cdots - 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/198\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(155\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 0.951057i −0.218508 0.672499i
\(3\) 0 0
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) −0.881966 + 2.71441i −0.394427 + 1.21392i 0.534980 + 0.844865i \(0.320319\pi\)
−0.929407 + 0.369057i \(0.879681\pi\)
\(6\) 0 0
\(7\) −3.73607 + 2.71441i −1.41210 + 1.02595i −0.419088 + 0.907946i \(0.637650\pi\)
−0.993013 + 0.118006i \(0.962350\pi\)
\(8\) 0.809017 + 0.587785i 0.286031 + 0.207813i
\(9\) 0 0
\(10\) 2.85410 0.902546
\(11\) −1.23607 + 3.07768i −0.372689 + 0.927957i
\(12\) 0 0
\(13\) −1.00000 3.07768i −0.277350 0.853596i −0.988588 0.150644i \(-0.951865\pi\)
0.711238 0.702951i \(-0.248135\pi\)
\(14\) 3.73607 + 2.71441i 0.998506 + 0.725457i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 0.763932 2.35114i 0.185281 0.570235i −0.814672 0.579922i \(-0.803083\pi\)
0.999953 + 0.00968605i \(0.00308321\pi\)
\(18\) 0 0
\(19\) 2.61803 + 1.90211i 0.600618 + 0.436375i 0.846098 0.533027i \(-0.178946\pi\)
−0.245480 + 0.969402i \(0.578946\pi\)
\(20\) −0.881966 2.71441i −0.197214 0.606961i
\(21\) 0 0
\(22\) 3.30902 + 0.224514i 0.705485 + 0.0478665i
\(23\) 3.23607 0.674767 0.337383 0.941367i \(-0.390458\pi\)
0.337383 + 0.941367i \(0.390458\pi\)
\(24\) 0 0
\(25\) −2.54508 1.84911i −0.509017 0.369822i
\(26\) −2.61803 + 1.90211i −0.513439 + 0.373035i
\(27\) 0 0
\(28\) 1.42705 4.39201i 0.269687 0.830012i
\(29\) −0.309017 + 0.224514i −0.0573830 + 0.0416912i −0.616107 0.787662i \(-0.711291\pi\)
0.558724 + 0.829354i \(0.311291\pi\)
\(30\) 0 0
\(31\) 2.66312 + 8.19624i 0.478310 + 1.47209i 0.841441 + 0.540349i \(0.181708\pi\)
−0.363130 + 0.931738i \(0.618292\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −2.47214 −0.423968
\(35\) −4.07295 12.5352i −0.688454 2.11884i
\(36\) 0 0
\(37\) −1.23607 + 0.898056i −0.203208 + 0.147639i −0.684735 0.728792i \(-0.740082\pi\)
0.481527 + 0.876431i \(0.340082\pi\)
\(38\) 1.00000 3.07768i 0.162221 0.499266i
\(39\) 0 0
\(40\) −2.30902 + 1.67760i −0.365088 + 0.265252i
\(41\) −2.61803 1.90211i −0.408868 0.297060i 0.364275 0.931291i \(-0.381317\pi\)
−0.773143 + 0.634231i \(0.781317\pi\)
\(42\) 0 0
\(43\) −3.23607 −0.493496 −0.246748 0.969080i \(-0.579362\pi\)
−0.246748 + 0.969080i \(0.579362\pi\)
\(44\) −0.809017 3.21644i −0.121964 0.484897i
\(45\) 0 0
\(46\) −1.00000 3.07768i −0.147442 0.453780i
\(47\) 2.00000 + 1.45309i 0.291730 + 0.211954i 0.724018 0.689782i \(-0.242293\pi\)
−0.432288 + 0.901736i \(0.642293\pi\)
\(48\) 0 0
\(49\) 4.42705 13.6251i 0.632436 1.94644i
\(50\) −0.972136 + 2.99193i −0.137481 + 0.423122i
\(51\) 0 0
\(52\) 2.61803 + 1.90211i 0.363056 + 0.263776i
\(53\) 1.19098 + 3.66547i 0.163594 + 0.503491i 0.998930 0.0462491i \(-0.0147268\pi\)
−0.835336 + 0.549740i \(0.814727\pi\)
\(54\) 0 0
\(55\) −7.26393 6.06961i −0.979468 0.818426i
\(56\) −4.61803 −0.617111
\(57\) 0 0
\(58\) 0.309017 + 0.224514i 0.0405759 + 0.0294801i
\(59\) −3.11803 + 2.26538i −0.405933 + 0.294928i −0.771953 0.635679i \(-0.780720\pi\)
0.366020 + 0.930607i \(0.380720\pi\)
\(60\) 0 0
\(61\) −2.09017 + 6.43288i −0.267619 + 0.823646i 0.723460 + 0.690367i \(0.242551\pi\)
−0.991078 + 0.133279i \(0.957449\pi\)
\(62\) 6.97214 5.06555i 0.885462 0.643326i
\(63\) 0 0
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) 9.23607 1.14559
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0.763932 + 2.35114i 0.0926404 + 0.285118i
\(69\) 0 0
\(70\) −10.6631 + 7.74721i −1.27449 + 0.925969i
\(71\) −3.85410 + 11.8617i −0.457398 + 1.40773i 0.410899 + 0.911681i \(0.365215\pi\)
−0.868297 + 0.496045i \(0.834785\pi\)
\(72\) 0 0
\(73\) 9.16312 6.65740i 1.07246 0.779189i 0.0961088 0.995371i \(-0.469360\pi\)
0.976353 + 0.216182i \(0.0693603\pi\)
\(74\) 1.23607 + 0.898056i 0.143690 + 0.104397i
\(75\) 0 0
\(76\) −3.23607 −0.371202
\(77\) −3.73607 14.8536i −0.425764 1.69273i
\(78\) 0 0
\(79\) −2.88197 8.86978i −0.324247 0.997928i −0.971780 0.235891i \(-0.924199\pi\)
0.647533 0.762037i \(-0.275801\pi\)
\(80\) 2.30902 + 1.67760i 0.258156 + 0.187561i
\(81\) 0 0
\(82\) −1.00000 + 3.07768i −0.110432 + 0.339873i
\(83\) 0.208204 0.640786i 0.0228534 0.0703354i −0.938979 0.343973i \(-0.888227\pi\)
0.961833 + 0.273638i \(0.0882270\pi\)
\(84\) 0 0
\(85\) 5.70820 + 4.14725i 0.619142 + 0.449833i
\(86\) 1.00000 + 3.07768i 0.107833 + 0.331875i
\(87\) 0 0
\(88\) −2.80902 + 1.76336i −0.299442 + 0.187974i
\(89\) 11.7082 1.24107 0.620534 0.784180i \(-0.286916\pi\)
0.620534 + 0.784180i \(0.286916\pi\)
\(90\) 0 0
\(91\) 12.0902 + 8.78402i 1.26739 + 0.920816i
\(92\) −2.61803 + 1.90211i −0.272949 + 0.198309i
\(93\) 0 0
\(94\) 0.763932 2.35114i 0.0787936 0.242502i
\(95\) −7.47214 + 5.42882i −0.766625 + 0.556986i
\(96\) 0 0
\(97\) 3.50000 + 10.7719i 0.355371 + 1.09372i 0.955794 + 0.294037i \(0.0949990\pi\)
−0.600423 + 0.799683i \(0.705001\pi\)
\(98\) −14.3262 −1.44717
\(99\) 0 0
\(100\) 3.14590 0.314590
\(101\) 3.82624 + 11.7759i 0.380725 + 1.17175i 0.939534 + 0.342455i \(0.111258\pi\)
−0.558809 + 0.829296i \(0.688742\pi\)
\(102\) 0 0
\(103\) −9.73607 + 7.07367i −0.959323 + 0.696989i −0.952993 0.302991i \(-0.902015\pi\)
−0.00632980 + 0.999980i \(0.502015\pi\)
\(104\) 1.00000 3.07768i 0.0980581 0.301792i
\(105\) 0 0
\(106\) 3.11803 2.26538i 0.302850 0.220034i
\(107\) 4.35410 + 3.16344i 0.420927 + 0.305821i 0.778011 0.628251i \(-0.216229\pi\)
−0.357084 + 0.934072i \(0.616229\pi\)
\(108\) 0 0
\(109\) 17.4164 1.66819 0.834095 0.551621i \(-0.185991\pi\)
0.834095 + 0.551621i \(0.185991\pi\)
\(110\) −3.52786 + 8.78402i −0.336369 + 0.837524i
\(111\) 0 0
\(112\) 1.42705 + 4.39201i 0.134844 + 0.415006i
\(113\) −10.0902 7.33094i −0.949203 0.689637i 0.00141497 0.999999i \(-0.499550\pi\)
−0.950618 + 0.310362i \(0.899550\pi\)
\(114\) 0 0
\(115\) −2.85410 + 8.78402i −0.266146 + 0.819114i
\(116\) 0.118034 0.363271i 0.0109592 0.0337289i
\(117\) 0 0
\(118\) 3.11803 + 2.26538i 0.287038 + 0.208546i
\(119\) 3.52786 + 10.8576i 0.323399 + 0.995319i
\(120\) 0 0
\(121\) −7.94427 7.60845i −0.722207 0.691677i
\(122\) 6.76393 0.612378
\(123\) 0 0
\(124\) −6.97214 5.06555i −0.626116 0.454900i
\(125\) −4.28115 + 3.11044i −0.382918 + 0.278206i
\(126\) 0 0
\(127\) 3.70820 11.4127i 0.329050 1.01271i −0.640529 0.767934i \(-0.721285\pi\)
0.969579 0.244778i \(-0.0787150\pi\)
\(128\) 0.809017 0.587785i 0.0715077 0.0519534i
\(129\) 0 0
\(130\) −2.85410 8.78402i −0.250321 0.770410i
\(131\) 15.2705 1.33419 0.667095 0.744972i \(-0.267537\pi\)
0.667095 + 0.744972i \(0.267537\pi\)
\(132\) 0 0
\(133\) −14.9443 −1.29583
\(134\) −1.23607 3.80423i −0.106780 0.328635i
\(135\) 0 0
\(136\) 2.00000 1.45309i 0.171499 0.124601i
\(137\) 7.14590 21.9928i 0.610515 1.87897i 0.157360 0.987541i \(-0.449702\pi\)
0.453156 0.891431i \(-0.350298\pi\)
\(138\) 0 0
\(139\) −10.7082 + 7.77997i −0.908258 + 0.659888i −0.940574 0.339590i \(-0.889712\pi\)
0.0323157 + 0.999478i \(0.489712\pi\)
\(140\) 10.6631 + 7.74721i 0.901198 + 0.654759i
\(141\) 0 0
\(142\) 12.4721 1.04664
\(143\) 10.7082 + 0.726543i 0.895465 + 0.0607565i
\(144\) 0 0
\(145\) −0.336881 1.03681i −0.0279764 0.0861027i
\(146\) −9.16312 6.65740i −0.758345 0.550970i
\(147\) 0 0
\(148\) 0.472136 1.45309i 0.0388093 0.119443i
\(149\) −0.427051 + 1.31433i −0.0349854 + 0.107674i −0.967024 0.254685i \(-0.918028\pi\)
0.932039 + 0.362358i \(0.118028\pi\)
\(150\) 0 0
\(151\) −7.54508 5.48183i −0.614010 0.446105i 0.236814 0.971555i \(-0.423897\pi\)
−0.850824 + 0.525450i \(0.823897\pi\)
\(152\) 1.00000 + 3.07768i 0.0811107 + 0.249633i
\(153\) 0 0
\(154\) −12.9721 + 8.14324i −1.04532 + 0.656201i
\(155\) −24.5967 −1.97566
\(156\) 0 0
\(157\) −3.61803 2.62866i −0.288751 0.209790i 0.433975 0.900925i \(-0.357111\pi\)
−0.722725 + 0.691136i \(0.757111\pi\)
\(158\) −7.54508 + 5.48183i −0.600255 + 0.436111i
\(159\) 0 0
\(160\) 0.881966 2.71441i 0.0697255 0.214593i
\(161\) −12.0902 + 8.78402i −0.952839 + 0.692278i
\(162\) 0 0
\(163\) −4.14590 12.7598i −0.324732 0.999422i −0.971562 0.236787i \(-0.923906\pi\)
0.646830 0.762634i \(-0.276094\pi\)
\(164\) 3.23607 0.252694
\(165\) 0 0
\(166\) −0.673762 −0.0522941
\(167\) −2.23607 6.88191i −0.173032 0.532538i 0.826506 0.562928i \(-0.190325\pi\)
−0.999538 + 0.0303898i \(0.990325\pi\)
\(168\) 0 0
\(169\) 2.04508 1.48584i 0.157314 0.114295i
\(170\) 2.18034 6.71040i 0.167224 0.514664i
\(171\) 0 0
\(172\) 2.61803 1.90211i 0.199623 0.145035i
\(173\) −3.35410 2.43690i −0.255008 0.185274i 0.452936 0.891543i \(-0.350377\pi\)
−0.707943 + 0.706269i \(0.750377\pi\)
\(174\) 0 0
\(175\) 14.5279 1.09820
\(176\) 2.54508 + 2.12663i 0.191843 + 0.160301i
\(177\) 0 0
\(178\) −3.61803 11.1352i −0.271183 0.834616i
\(179\) −5.16312 3.75123i −0.385910 0.280380i 0.377868 0.925860i \(-0.376657\pi\)
−0.763777 + 0.645480i \(0.776657\pi\)
\(180\) 0 0
\(181\) −5.09017 + 15.6659i −0.378349 + 1.16444i 0.562842 + 0.826565i \(0.309708\pi\)
−0.941191 + 0.337875i \(0.890292\pi\)
\(182\) 4.61803 14.2128i 0.342311 1.05353i
\(183\) 0 0
\(184\) 2.61803 + 1.90211i 0.193004 + 0.140226i
\(185\) −1.34752 4.14725i −0.0990719 0.304912i
\(186\) 0 0
\(187\) 6.29180 + 5.25731i 0.460102 + 0.384453i
\(188\) −2.47214 −0.180299
\(189\) 0 0
\(190\) 7.47214 + 5.42882i 0.542086 + 0.393848i
\(191\) 18.1803 13.2088i 1.31548 0.955755i 0.315507 0.948923i \(-0.397826\pi\)
0.999977 0.00683111i \(-0.00217443\pi\)
\(192\) 0 0
\(193\) 0.100813 0.310271i 0.00725668 0.0223338i −0.947363 0.320163i \(-0.896262\pi\)
0.954619 + 0.297829i \(0.0962625\pi\)
\(194\) 9.16312 6.65740i 0.657874 0.477973i
\(195\) 0 0
\(196\) 4.42705 + 13.6251i 0.316218 + 0.973219i
\(197\) −6.09017 −0.433907 −0.216953 0.976182i \(-0.569612\pi\)
−0.216953 + 0.976182i \(0.569612\pi\)
\(198\) 0 0
\(199\) 13.1459 0.931888 0.465944 0.884814i \(-0.345715\pi\)
0.465944 + 0.884814i \(0.345715\pi\)
\(200\) −0.972136 2.99193i −0.0687404 0.211561i
\(201\) 0 0
\(202\) 10.0172 7.27794i 0.704809 0.512074i
\(203\) 0.545085 1.67760i 0.0382575 0.117744i
\(204\) 0 0
\(205\) 7.47214 5.42882i 0.521877 0.379166i
\(206\) 9.73607 + 7.07367i 0.678344 + 0.492846i
\(207\) 0 0
\(208\) −3.23607 −0.224381
\(209\) −9.09017 + 5.70634i −0.628780 + 0.394716i
\(210\) 0 0
\(211\) −1.43769 4.42477i −0.0989749 0.304614i 0.889294 0.457335i \(-0.151196\pi\)
−0.988269 + 0.152722i \(0.951196\pi\)
\(212\) −3.11803 2.26538i −0.214147 0.155587i
\(213\) 0 0
\(214\) 1.66312 5.11855i 0.113688 0.349897i
\(215\) 2.85410 8.78402i 0.194648 0.599065i
\(216\) 0 0
\(217\) −32.1976 23.3929i −2.18571 1.58801i
\(218\) −5.38197 16.5640i −0.364513 1.12185i
\(219\) 0 0
\(220\) 9.44427 + 0.640786i 0.636733 + 0.0432018i
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) 1.54508 + 1.12257i 0.103467 + 0.0751728i 0.638316 0.769775i \(-0.279632\pi\)
−0.534849 + 0.844948i \(0.679632\pi\)
\(224\) 3.73607 2.71441i 0.249627 0.181364i
\(225\) 0 0
\(226\) −3.85410 + 11.8617i −0.256371 + 0.789029i
\(227\) −5.78115 + 4.20025i −0.383709 + 0.278781i −0.762873 0.646549i \(-0.776212\pi\)
0.379164 + 0.925330i \(0.376212\pi\)
\(228\) 0 0
\(229\) 7.09017 + 21.8213i 0.468532 + 1.44199i 0.854486 + 0.519474i \(0.173872\pi\)
−0.385954 + 0.922518i \(0.626128\pi\)
\(230\) 9.23607 0.609008
\(231\) 0 0
\(232\) −0.381966 −0.0250773
\(233\) 2.76393 + 8.50651i 0.181071 + 0.557280i 0.999859 0.0168170i \(-0.00535327\pi\)
−0.818787 + 0.574097i \(0.805353\pi\)
\(234\) 0 0
\(235\) −5.70820 + 4.14725i −0.372362 + 0.270537i
\(236\) 1.19098 3.66547i 0.0775264 0.238602i
\(237\) 0 0
\(238\) 9.23607 6.71040i 0.598685 0.434970i
\(239\) −13.3262 9.68208i −0.862003 0.626282i 0.0664264 0.997791i \(-0.478840\pi\)
−0.928429 + 0.371510i \(0.878840\pi\)
\(240\) 0 0
\(241\) −2.43769 −0.157026 −0.0785128 0.996913i \(-0.525017\pi\)
−0.0785128 + 0.996913i \(0.525017\pi\)
\(242\) −4.78115 + 9.90659i −0.307344 + 0.636820i
\(243\) 0 0
\(244\) −2.09017 6.43288i −0.133809 0.411823i
\(245\) 33.0795 + 24.0337i 2.11337 + 1.53546i
\(246\) 0 0
\(247\) 3.23607 9.95959i 0.205906 0.633714i
\(248\) −2.66312 + 8.19624i −0.169108 + 0.520462i
\(249\) 0 0
\(250\) 4.28115 + 3.11044i 0.270764 + 0.196721i
\(251\) 5.97214 + 18.3803i 0.376958 + 1.16016i 0.942148 + 0.335197i \(0.108803\pi\)
−0.565190 + 0.824961i \(0.691197\pi\)
\(252\) 0 0
\(253\) −4.00000 + 9.95959i −0.251478 + 0.626154i
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −1.47214 + 1.06957i −0.0918293 + 0.0667179i −0.632753 0.774354i \(-0.718075\pi\)
0.540923 + 0.841072i \(0.318075\pi\)
\(258\) 0 0
\(259\) 2.18034 6.71040i 0.135480 0.416964i
\(260\) −7.47214 + 5.42882i −0.463402 + 0.336681i
\(261\) 0 0
\(262\) −4.71885 14.5231i −0.291531 0.897241i
\(263\) −7.70820 −0.475308 −0.237654 0.971350i \(-0.576378\pi\)
−0.237654 + 0.971350i \(0.576378\pi\)
\(264\) 0 0
\(265\) −11.0000 −0.675725
\(266\) 4.61803 + 14.2128i 0.283150 + 0.871446i
\(267\) 0 0
\(268\) −3.23607 + 2.35114i −0.197674 + 0.143619i
\(269\) 0.909830 2.80017i 0.0554733 0.170729i −0.919481 0.393134i \(-0.871391\pi\)
0.974954 + 0.222405i \(0.0713907\pi\)
\(270\) 0 0
\(271\) −18.9443 + 13.7638i −1.15078 + 0.836092i −0.988585 0.150666i \(-0.951858\pi\)
−0.162198 + 0.986758i \(0.551858\pi\)
\(272\) −2.00000 1.45309i −0.121268 0.0881062i
\(273\) 0 0
\(274\) −23.1246 −1.39701
\(275\) 8.83688 5.54734i 0.532884 0.334517i
\(276\) 0 0
\(277\) 3.43769 + 10.5801i 0.206551 + 0.635699i 0.999646 + 0.0266009i \(0.00846832\pi\)
−0.793095 + 0.609098i \(0.791532\pi\)
\(278\) 10.7082 + 7.77997i 0.642235 + 0.466611i
\(279\) 0 0
\(280\) 4.07295 12.5352i 0.243405 0.749124i
\(281\) −7.14590 + 21.9928i −0.426289 + 1.31198i 0.475467 + 0.879734i \(0.342279\pi\)
−0.901755 + 0.432247i \(0.857721\pi\)
\(282\) 0 0
\(283\) 19.3262 + 14.0413i 1.14883 + 0.834671i 0.988324 0.152365i \(-0.0486889\pi\)
0.160501 + 0.987036i \(0.448689\pi\)
\(284\) −3.85410 11.8617i −0.228699 0.703863i
\(285\) 0 0
\(286\) −2.61803 10.4086i −0.154808 0.615475i
\(287\) 14.9443 0.882132
\(288\) 0 0
\(289\) 8.80902 + 6.40013i 0.518177 + 0.376478i
\(290\) −0.881966 + 0.640786i −0.0517908 + 0.0376282i
\(291\) 0 0
\(292\) −3.50000 + 10.7719i −0.204822 + 0.630377i
\(293\) 18.5902 13.5065i 1.08605 0.789061i 0.107322 0.994224i \(-0.465773\pi\)
0.978728 + 0.205163i \(0.0657726\pi\)
\(294\) 0 0
\(295\) −3.39919 10.4616i −0.197908 0.609099i
\(296\) −1.52786 −0.0888053
\(297\) 0 0
\(298\) 1.38197 0.0800551
\(299\) −3.23607 9.95959i −0.187147 0.575978i
\(300\) 0 0
\(301\) 12.0902 8.78402i 0.696866 0.506303i
\(302\) −2.88197 + 8.86978i −0.165839 + 0.510398i
\(303\) 0 0
\(304\) 2.61803 1.90211i 0.150155 0.109094i
\(305\) −15.6180 11.3472i −0.894286 0.649737i
\(306\) 0 0
\(307\) −16.6525 −0.950407 −0.475203 0.879876i \(-0.657626\pi\)
−0.475203 + 0.879876i \(0.657626\pi\)
\(308\) 11.7533 + 9.82084i 0.669706 + 0.559594i
\(309\) 0 0
\(310\) 7.60081 + 23.3929i 0.431697 + 1.32863i
\(311\) −19.3262 14.0413i −1.09589 0.796211i −0.115506 0.993307i \(-0.536849\pi\)
−0.980384 + 0.197096i \(0.936849\pi\)
\(312\) 0 0
\(313\) 4.68034 14.4046i 0.264548 0.814196i −0.727249 0.686374i \(-0.759201\pi\)
0.991797 0.127822i \(-0.0407987\pi\)
\(314\) −1.38197 + 4.25325i −0.0779889 + 0.240025i
\(315\) 0 0
\(316\) 7.54508 + 5.48183i 0.424444 + 0.308377i
\(317\) 6.14590 + 18.9151i 0.345188 + 1.06238i 0.961483 + 0.274864i \(0.0886329\pi\)
−0.616295 + 0.787515i \(0.711367\pi\)
\(318\) 0 0
\(319\) −0.309017 1.22857i −0.0173016 0.0687868i
\(320\) −2.85410 −0.159549
\(321\) 0 0
\(322\) 12.0902 + 8.78402i 0.673759 + 0.489514i
\(323\) 6.47214 4.70228i 0.360119 0.261642i
\(324\) 0 0
\(325\) −3.14590 + 9.68208i −0.174503 + 0.537065i
\(326\) −10.8541 + 7.88597i −0.601153 + 0.436763i
\(327\) 0 0
\(328\) −1.00000 3.07768i −0.0552158 0.169937i
\(329\) −11.4164 −0.629407
\(330\) 0 0
\(331\) 8.94427 0.491622 0.245811 0.969318i \(-0.420946\pi\)
0.245811 + 0.969318i \(0.420946\pi\)
\(332\) 0.208204 + 0.640786i 0.0114267 + 0.0351677i
\(333\) 0 0
\(334\) −5.85410 + 4.25325i −0.320322 + 0.232728i
\(335\) −3.52786 + 10.8576i −0.192748 + 0.593217i
\(336\) 0 0
\(337\) −5.61803 + 4.08174i −0.306034 + 0.222347i −0.730193 0.683241i \(-0.760570\pi\)
0.424159 + 0.905588i \(0.360570\pi\)
\(338\) −2.04508 1.48584i −0.111238 0.0808191i
\(339\) 0 0
\(340\) −7.05573 −0.382651
\(341\) −28.5172 1.93487i −1.54429 0.104779i
\(342\) 0 0
\(343\) 10.4549 + 32.1769i 0.564512 + 1.73739i
\(344\) −2.61803 1.90211i −0.141155 0.102555i
\(345\) 0 0
\(346\) −1.28115 + 3.94298i −0.0688752 + 0.211976i
\(347\) −3.66312 + 11.2739i −0.196647 + 0.605216i 0.803307 + 0.595565i \(0.203072\pi\)
−0.999953 + 0.00965049i \(0.996928\pi\)
\(348\) 0 0
\(349\) 10.7082 + 7.77997i 0.573197 + 0.416452i 0.836265 0.548325i \(-0.184734\pi\)
−0.263068 + 0.964777i \(0.584734\pi\)
\(350\) −4.48936 13.8168i −0.239966 0.738540i
\(351\) 0 0
\(352\) 1.23607 3.07768i 0.0658826 0.164041i
\(353\) 21.5967 1.14948 0.574739 0.818336i \(-0.305103\pi\)
0.574739 + 0.818336i \(0.305103\pi\)
\(354\) 0 0
\(355\) −28.7984 20.9232i −1.52846 1.11049i
\(356\) −9.47214 + 6.88191i −0.502022 + 0.364740i
\(357\) 0 0
\(358\) −1.97214 + 6.06961i −0.104231 + 0.320789i
\(359\) 10.3262 7.50245i 0.544998 0.395964i −0.280940 0.959725i \(-0.590646\pi\)
0.825938 + 0.563761i \(0.190646\pi\)
\(360\) 0 0
\(361\) −2.63525 8.11048i −0.138698 0.426867i
\(362\) 16.4721 0.865756
\(363\) 0 0
\(364\) −14.9443 −0.783293
\(365\) 9.98936 + 30.7441i 0.522867 + 1.60922i
\(366\) 0 0
\(367\) 30.3435 22.0458i 1.58392 1.15078i 0.671888 0.740652i \(-0.265483\pi\)
0.912027 0.410130i \(-0.134517\pi\)
\(368\) 1.00000 3.07768i 0.0521286 0.160435i
\(369\) 0 0
\(370\) −3.52786 + 2.56314i −0.183405 + 0.133251i
\(371\) −14.3992 10.4616i −0.747569 0.543140i
\(372\) 0 0
\(373\) −9.52786 −0.493334 −0.246667 0.969100i \(-0.579335\pi\)
−0.246667 + 0.969100i \(0.579335\pi\)
\(374\) 3.05573 7.60845i 0.158008 0.393424i
\(375\) 0 0
\(376\) 0.763932 + 2.35114i 0.0393968 + 0.121251i
\(377\) 1.00000 + 0.726543i 0.0515026 + 0.0374188i
\(378\) 0 0
\(379\) 1.14590 3.52671i 0.0588608 0.181155i −0.917303 0.398190i \(-0.869639\pi\)
0.976164 + 0.217035i \(0.0696385\pi\)
\(380\) 2.85410 8.78402i 0.146412 0.450611i
\(381\) 0 0
\(382\) −18.1803 13.2088i −0.930187 0.675820i
\(383\) −4.09017 12.5882i −0.208998 0.643229i −0.999525 0.0308030i \(-0.990194\pi\)
0.790528 0.612426i \(-0.209806\pi\)
\(384\) 0 0
\(385\) 43.6140 + 2.95917i 2.22277 + 0.150813i
\(386\) −0.326238 −0.0166051
\(387\) 0 0
\(388\) −9.16312 6.65740i −0.465187 0.337978i
\(389\) 31.5066 22.8909i 1.59745 1.16061i 0.705258 0.708951i \(-0.250831\pi\)
0.892189 0.451662i \(-0.149169\pi\)
\(390\) 0 0
\(391\) 2.47214 7.60845i 0.125021 0.384776i
\(392\) 11.5902 8.42075i 0.585392 0.425312i
\(393\) 0 0
\(394\) 1.88197 + 5.79210i 0.0948121 + 0.291802i
\(395\) 26.6180 1.33930
\(396\) 0 0
\(397\) 9.88854 0.496292 0.248146 0.968723i \(-0.420179\pi\)
0.248146 + 0.968723i \(0.420179\pi\)
\(398\) −4.06231 12.5025i −0.203625 0.626693i
\(399\) 0 0
\(400\) −2.54508 + 1.84911i −0.127254 + 0.0924556i
\(401\) −3.18034 + 9.78808i −0.158819 + 0.488793i −0.998528 0.0542430i \(-0.982725\pi\)
0.839709 + 0.543036i \(0.182725\pi\)
\(402\) 0 0
\(403\) 22.5623 16.3925i 1.12391 0.816567i
\(404\) −10.0172 7.27794i −0.498375 0.362091i
\(405\) 0 0
\(406\) −1.76393 −0.0875425
\(407\) −1.23607 4.91428i −0.0612696 0.243592i
\(408\) 0 0
\(409\) −3.73607 11.4984i −0.184737 0.568561i 0.815207 0.579170i \(-0.196623\pi\)
−0.999944 + 0.0106086i \(0.996623\pi\)
\(410\) −7.47214 5.42882i −0.369022 0.268111i
\(411\) 0 0
\(412\) 3.71885 11.4454i 0.183214 0.563876i
\(413\) 5.50000 16.9273i 0.270637 0.832936i
\(414\) 0 0
\(415\) 1.55573 + 1.13030i 0.0763677 + 0.0554844i
\(416\) 1.00000 + 3.07768i 0.0490290 + 0.150896i
\(417\) 0 0
\(418\) 8.23607 + 6.88191i 0.402839 + 0.336605i
\(419\) 17.9787 0.878318 0.439159 0.898409i \(-0.355277\pi\)
0.439159 + 0.898409i \(0.355277\pi\)
\(420\) 0 0
\(421\) −28.4164 20.6457i −1.38493 1.00621i −0.996400 0.0847756i \(-0.972983\pi\)
−0.388531 0.921436i \(-0.627017\pi\)
\(422\) −3.76393 + 2.73466i −0.183225 + 0.133121i
\(423\) 0 0
\(424\) −1.19098 + 3.66547i −0.0578392 + 0.178011i
\(425\) −6.29180 + 4.57126i −0.305197 + 0.221739i
\(426\) 0 0
\(427\) −9.65248 29.7073i −0.467116 1.43764i
\(428\) −5.38197 −0.260147
\(429\) 0 0
\(430\) −9.23607 −0.445403
\(431\) 2.23607 + 6.88191i 0.107708 + 0.331490i 0.990356 0.138543i \(-0.0442420\pi\)
−0.882649 + 0.470033i \(0.844242\pi\)
\(432\) 0 0
\(433\) −9.97214 + 7.24518i −0.479230 + 0.348181i −0.801028 0.598627i \(-0.795713\pi\)
0.321797 + 0.946809i \(0.395713\pi\)
\(434\) −12.2984 + 37.8505i −0.590341 + 1.81688i
\(435\) 0 0
\(436\) −14.0902 + 10.2371i −0.674797 + 0.490269i
\(437\) 8.47214 + 6.15537i 0.405277 + 0.294451i
\(438\) 0 0
\(439\) 16.0344 0.765282 0.382641 0.923897i \(-0.375015\pi\)
0.382641 + 0.923897i \(0.375015\pi\)
\(440\) −2.30902 9.18005i −0.110078 0.437642i
\(441\) 0 0
\(442\) 2.47214 + 7.60845i 0.117588 + 0.361897i
\(443\) −1.35410 0.983813i −0.0643353 0.0467424i 0.555153 0.831748i \(-0.312660\pi\)
−0.619488 + 0.785006i \(0.712660\pi\)
\(444\) 0 0
\(445\) −10.3262 + 31.7809i −0.489511 + 1.50656i
\(446\) 0.590170 1.81636i 0.0279454 0.0860070i
\(447\) 0 0
\(448\) −3.73607 2.71441i −0.176513 0.128244i
\(449\) −11.0902 34.1320i −0.523377 1.61079i −0.767502 0.641046i \(-0.778501\pi\)
0.244125 0.969744i \(-0.421499\pi\)
\(450\) 0 0
\(451\) 9.09017 5.70634i 0.428039 0.268701i
\(452\) 12.4721 0.586640
\(453\) 0 0
\(454\) 5.78115 + 4.20025i 0.271323 + 0.197128i
\(455\) −34.5066 + 25.0705i −1.61769 + 1.17532i
\(456\) 0 0
\(457\) −6.79180 + 20.9030i −0.317707 + 0.977801i 0.656919 + 0.753961i \(0.271859\pi\)
−0.974626 + 0.223840i \(0.928141\pi\)
\(458\) 18.5623 13.4863i 0.867360 0.630174i
\(459\) 0 0
\(460\) −2.85410 8.78402i −0.133073 0.409557i
\(461\) −40.8328 −1.90177 −0.950887 0.309538i \(-0.899825\pi\)
−0.950887 + 0.309538i \(0.899825\pi\)
\(462\) 0 0
\(463\) 19.0902 0.887195 0.443598 0.896226i \(-0.353702\pi\)
0.443598 + 0.896226i \(0.353702\pi\)
\(464\) 0.118034 + 0.363271i 0.00547959 + 0.0168644i
\(465\) 0 0
\(466\) 7.23607 5.25731i 0.335204 0.243540i
\(467\) −6.04508 + 18.6049i −0.279733 + 0.860930i 0.708195 + 0.706017i \(0.249510\pi\)
−0.987928 + 0.154913i \(0.950490\pi\)
\(468\) 0 0
\(469\) −14.9443 + 10.8576i −0.690062 + 0.501360i
\(470\) 5.70820 + 4.14725i 0.263300 + 0.191299i
\(471\) 0 0
\(472\) −3.85410 −0.177399
\(473\) 4.00000 9.95959i 0.183920 0.457943i
\(474\) 0 0
\(475\) −3.14590 9.68208i −0.144344 0.444244i
\(476\) −9.23607 6.71040i −0.423334 0.307571i
\(477\) 0 0
\(478\) −5.09017 + 15.6659i −0.232819 + 0.716543i
\(479\) 2.23607 6.88191i 0.102169 0.314442i −0.886887 0.461987i \(-0.847137\pi\)
0.989055 + 0.147544i \(0.0471368\pi\)
\(480\) 0 0
\(481\) 4.00000 + 2.90617i 0.182384 + 0.132510i
\(482\) 0.753289 + 2.31838i 0.0343114 + 0.105600i
\(483\) 0 0
\(484\) 10.8992 + 1.48584i 0.495418 + 0.0675382i
\(485\) −32.3262 −1.46786
\(486\) 0 0
\(487\) −20.2082 14.6821i −0.915721 0.665310i 0.0267342 0.999643i \(-0.491489\pi\)
−0.942455 + 0.334332i \(0.891489\pi\)
\(488\) −5.47214 + 3.97574i −0.247712 + 0.179973i
\(489\) 0 0
\(490\) 12.6353 38.8873i 0.570803 1.75675i
\(491\) 34.1803 24.8335i 1.54254 1.12072i 0.593818 0.804600i \(-0.297620\pi\)
0.948719 0.316119i \(-0.102380\pi\)
\(492\) 0 0
\(493\) 0.291796 + 0.898056i 0.0131418 + 0.0404464i
\(494\) −10.4721 −0.471164
\(495\) 0 0
\(496\) 8.61803 0.386961
\(497\) −17.7984 54.7778i −0.798366 2.45712i
\(498\) 0 0
\(499\) 6.00000 4.35926i 0.268597 0.195147i −0.445332 0.895366i \(-0.646914\pi\)
0.713928 + 0.700219i \(0.246914\pi\)
\(500\) 1.63525 5.03280i 0.0731308 0.225074i
\(501\) 0 0
\(502\) 15.6353 11.3597i 0.697836 0.507007i
\(503\) 3.52786 + 2.56314i 0.157300 + 0.114285i 0.663651 0.748042i \(-0.269006\pi\)
−0.506351 + 0.862327i \(0.669006\pi\)
\(504\) 0 0
\(505\) −35.3394 −1.57258
\(506\) 10.7082 + 0.726543i 0.476038 + 0.0322988i
\(507\) 0 0
\(508\) 3.70820 + 11.4127i 0.164525 + 0.506356i
\(509\) 2.59017 + 1.88187i 0.114807 + 0.0834124i 0.643707 0.765272i \(-0.277395\pi\)
−0.528900 + 0.848684i \(0.677395\pi\)
\(510\) 0 0
\(511\) −16.1631 + 49.7450i −0.715014 + 2.20059i
\(512\) −0.309017 + 0.951057i −0.0136568 + 0.0420312i
\(513\) 0 0
\(514\) 1.47214 + 1.06957i 0.0649331 + 0.0471767i
\(515\) −10.6140 32.6664i −0.467707 1.43946i
\(516\) 0 0
\(517\) −6.94427 + 4.35926i −0.305409 + 0.191720i
\(518\) −7.05573 −0.310011
\(519\) 0 0
\(520\) 7.47214 + 5.42882i 0.327675 + 0.238070i
\(521\) 25.4164 18.4661i 1.11351 0.809015i 0.130300 0.991475i \(-0.458406\pi\)
0.983213 + 0.182460i \(0.0584060\pi\)
\(522\) 0 0
\(523\) 6.05573 18.6376i 0.264799 0.814966i −0.726941 0.686700i \(-0.759059\pi\)
0.991740 0.128266i \(-0.0409412\pi\)
\(524\) −12.3541 + 8.97578i −0.539691 + 0.392109i
\(525\) 0 0
\(526\) 2.38197 + 7.33094i 0.103859 + 0.319644i
\(527\) 21.3050 0.928058
\(528\) 0 0
\(529\) −12.5279 −0.544690
\(530\) 3.39919 + 10.4616i 0.147651 + 0.454424i
\(531\) 0 0
\(532\) 12.0902 8.78402i 0.524175 0.380836i
\(533\) −3.23607 + 9.95959i −0.140170 + 0.431398i
\(534\) 0 0
\(535\) −12.4271 + 9.02878i −0.537268 + 0.390348i
\(536\) 3.23607 + 2.35114i 0.139777 + 0.101554i
\(537\) 0 0
\(538\) −2.94427 −0.126937
\(539\) 36.4615 + 30.4666i 1.57051 + 1.31229i
\(540\) 0 0
\(541\) 2.32624 + 7.15942i 0.100013 + 0.307808i 0.988528 0.151040i \(-0.0482623\pi\)
−0.888515 + 0.458848i \(0.848262\pi\)
\(542\) 18.9443 + 13.7638i 0.813726 + 0.591207i
\(543\) 0 0
\(544\) −0.763932 + 2.35114i −0.0327533 + 0.100804i
\(545\) −15.3607 + 47.2753i −0.657979 + 2.02505i
\(546\) 0 0
\(547\) −14.7082 10.6861i −0.628877 0.456906i 0.227134 0.973864i \(-0.427065\pi\)
−0.856011 + 0.516957i \(0.827065\pi\)
\(548\) 7.14590 + 21.9928i 0.305258 + 0.939486i
\(549\) 0 0
\(550\) −8.00658 6.69015i −0.341402 0.285269i
\(551\) −1.23607 −0.0526583
\(552\) 0 0
\(553\) 34.8435 + 25.3153i 1.48169 + 1.07651i
\(554\) 9.00000 6.53888i 0.382373 0.277811i
\(555\) 0 0
\(556\) 4.09017 12.5882i 0.173462 0.533861i
\(557\) −34.0066 + 24.7072i −1.44090 + 1.04688i −0.453053 + 0.891484i \(0.649665\pi\)
−0.987852 + 0.155395i \(0.950335\pi\)
\(558\) 0 0
\(559\) 3.23607 + 9.95959i 0.136871 + 0.421246i
\(560\) −13.1803 −0.556971
\(561\) 0 0
\(562\) 23.1246 0.975453
\(563\) 14.4721 + 44.5407i 0.609928 + 1.87716i 0.458494 + 0.888697i \(0.348389\pi\)
0.151433 + 0.988467i \(0.451611\pi\)
\(564\) 0 0
\(565\) 28.7984 20.9232i 1.21156 0.880247i
\(566\) 7.38197 22.7194i 0.310287 0.954966i
\(567\) 0 0
\(568\) −10.0902 + 7.33094i −0.423374 + 0.307599i
\(569\) 29.7984 + 21.6498i 1.24921 + 0.907606i 0.998176 0.0603713i \(-0.0192285\pi\)
0.251037 + 0.967978i \(0.419228\pi\)
\(570\) 0 0
\(571\) 9.59675 0.401611 0.200806 0.979631i \(-0.435644\pi\)
0.200806 + 0.979631i \(0.435644\pi\)
\(572\) −9.09017 + 5.70634i −0.380079 + 0.238594i
\(573\) 0 0
\(574\) −4.61803 14.2128i −0.192753 0.593233i
\(575\) −8.23607 5.98385i −0.343468 0.249544i
\(576\) 0 0
\(577\) 2.19098 6.74315i 0.0912118 0.280721i −0.895036 0.445994i \(-0.852850\pi\)
0.986248 + 0.165273i \(0.0528504\pi\)
\(578\) 3.36475 10.3556i 0.139955 0.430737i
\(579\) 0 0
\(580\) 0.881966 + 0.640786i 0.0366216 + 0.0266072i
\(581\) 0.961493 + 2.95917i 0.0398894 + 0.122767i
\(582\) 0 0
\(583\) −12.7533 0.865300i −0.528187 0.0358371i
\(584\) 11.3262 0.468683
\(585\) 0 0
\(586\) −18.5902 13.5065i −0.767953 0.557950i
\(587\) −19.4894 + 14.1598i −0.804412 + 0.584439i −0.912205 0.409734i \(-0.865622\pi\)
0.107793 + 0.994173i \(0.465622\pi\)
\(588\) 0 0
\(589\) −8.61803 + 26.5236i −0.355100 + 1.09289i
\(590\) −8.89919 + 6.46564i −0.366374 + 0.266186i
\(591\) 0 0
\(592\) 0.472136 + 1.45309i 0.0194047 + 0.0597214i
\(593\) −24.4721 −1.00495 −0.502475 0.864592i \(-0.667577\pi\)
−0.502475 + 0.864592i \(0.667577\pi\)
\(594\) 0 0
\(595\) −32.5836 −1.33580
\(596\) −0.427051 1.31433i −0.0174927 0.0538370i
\(597\) 0 0
\(598\) −8.47214 + 6.15537i −0.346451 + 0.251712i
\(599\) −2.58359 + 7.95148i −0.105563 + 0.324889i −0.989862 0.142032i \(-0.954637\pi\)
0.884299 + 0.466920i \(0.154637\pi\)
\(600\) 0 0
\(601\) 19.2082 13.9556i 0.783519 0.569260i −0.122514 0.992467i \(-0.539096\pi\)
0.906033 + 0.423207i \(0.139096\pi\)
\(602\) −12.0902 8.78402i −0.492759 0.358010i
\(603\) 0 0
\(604\) 9.32624 0.379479
\(605\) 27.6591 14.8536i 1.12450 0.603886i
\(606\) 0 0
\(607\) 7.34752 + 22.6134i 0.298227 + 0.917848i 0.982118 + 0.188264i \(0.0602861\pi\)
−0.683892 + 0.729584i \(0.739714\pi\)
\(608\) −2.61803 1.90211i −0.106175 0.0771409i
\(609\) 0 0
\(610\) −5.96556 + 18.3601i −0.241538 + 0.743379i
\(611\) 2.47214 7.60845i 0.100012 0.307805i
\(612\) 0 0
\(613\) 11.5623 + 8.40051i 0.466997 + 0.339293i 0.796270 0.604942i \(-0.206804\pi\)
−0.329273 + 0.944235i \(0.606804\pi\)
\(614\) 5.14590 + 15.8374i 0.207672 + 0.639147i
\(615\) 0 0
\(616\) 5.70820 14.2128i 0.229990 0.572652i
\(617\) 30.2918 1.21950 0.609751 0.792593i \(-0.291269\pi\)
0.609751 + 0.792593i \(0.291269\pi\)
\(618\) 0 0
\(619\) 20.4721 + 14.8739i 0.822845 + 0.597832i 0.917526 0.397676i \(-0.130183\pi\)
−0.0946813 + 0.995508i \(0.530183\pi\)
\(620\) 19.8992 14.4576i 0.799171 0.580631i
\(621\) 0 0
\(622\) −7.38197 + 22.7194i −0.295990 + 0.910963i
\(623\) −43.7426 + 31.7809i −1.75251 + 1.27327i
\(624\) 0 0
\(625\) −9.52786 29.3238i −0.381115 1.17295i
\(626\) −15.1459 −0.605352
\(627\) 0 0
\(628\) 4.47214 0.178458
\(629\) 1.16718 + 3.59222i 0.0465387 + 0.143231i
\(630\) 0 0
\(631\) 13.8713 10.0781i 0.552209 0.401203i −0.276390 0.961045i \(-0.589138\pi\)
0.828599 + 0.559842i \(0.189138\pi\)
\(632\) 2.88197 8.86978i 0.114638 0.352821i
\(633\) 0 0
\(634\) 16.0902 11.6902i 0.639022 0.464277i
\(635\) 27.7082 + 20.1312i 1.09957 + 0.798882i
\(636\) 0 0
\(637\) −46.3607 −1.83688
\(638\) −1.07295 + 0.673542i −0.0424785 + 0.0266658i
\(639\) 0 0
\(640\) 0.881966 + 2.71441i 0.0348628 + 0.107297i
\(641\) 38.1246 + 27.6992i 1.50583 + 1.09405i 0.967985 + 0.251008i \(0.0807620\pi\)
0.537847 + 0.843043i \(0.319238\pi\)
\(642\) 0 0
\(643\) 3.38197 10.4086i 0.133372 0.410476i −0.861961 0.506974i \(-0.830764\pi\)
0.995333 + 0.0964978i \(0.0307641\pi\)
\(644\) 4.61803 14.2128i 0.181976 0.560065i
\(645\) 0 0
\(646\) −6.47214 4.70228i −0.254643 0.185009i
\(647\) 0.888544 + 2.73466i 0.0349323 + 0.107510i 0.967002 0.254768i \(-0.0819990\pi\)
−0.932070 + 0.362278i \(0.881999\pi\)
\(648\) 0 0
\(649\) −3.11803 12.3965i −0.122394 0.486605i
\(650\) 10.1803 0.399306
\(651\) 0 0
\(652\) 10.8541 + 7.88597i 0.425079 + 0.308838i
\(653\) −17.1074 + 12.4292i −0.669464 + 0.486394i −0.869846 0.493324i \(-0.835782\pi\)
0.200382 + 0.979718i \(0.435782\pi\)
\(654\) 0 0
\(655\) −13.4681 + 41.4505i −0.526241 + 1.61960i
\(656\) −2.61803 + 1.90211i −0.102217 + 0.0742650i
\(657\) 0 0
\(658\) 3.52786 + 10.8576i 0.137530 + 0.423275i
\(659\) −43.1459 −1.68073 −0.840363 0.542024i \(-0.817658\pi\)
−0.840363 + 0.542024i \(0.817658\pi\)
\(660\) 0 0
\(661\) 5.81966 0.226359 0.113179 0.993575i \(-0.463897\pi\)
0.113179 + 0.993575i \(0.463897\pi\)
\(662\) −2.76393 8.50651i −0.107423 0.330615i
\(663\) 0 0
\(664\) 0.545085 0.396027i 0.0211534 0.0153688i
\(665\) 13.1803 40.5649i 0.511112 1.57304i
\(666\) 0 0
\(667\) −1.00000 + 0.726543i −0.0387202 + 0.0281318i
\(668\) 5.85410 + 4.25325i 0.226502 + 0.164563i
\(669\) 0 0
\(670\) 11.4164 0.441054
\(671\) −17.2148 14.3844i −0.664569 0.555302i
\(672\) 0 0
\(673\) −2.15248 6.62464i −0.0829718 0.255361i 0.900961 0.433900i \(-0.142863\pi\)
−0.983933 + 0.178539i \(0.942863\pi\)
\(674\) 5.61803 + 4.08174i 0.216399 + 0.157223i
\(675\) 0 0
\(676\) −0.781153 + 2.40414i −0.0300443 + 0.0924670i
\(677\) 12.5172 38.5240i 0.481076 1.48060i −0.356509 0.934292i \(-0.616033\pi\)
0.837585 0.546307i \(-0.183967\pi\)
\(678\) 0 0
\(679\) −42.3156 30.7441i −1.62392 1.17985i
\(680\) 2.18034 + 6.71040i 0.0836122 + 0.257332i
\(681\) 0 0
\(682\) 6.97214 + 27.7194i 0.266977 + 1.06143i
\(683\) −45.7426 −1.75029 −0.875147 0.483857i \(-0.839235\pi\)
−0.875147 + 0.483857i \(0.839235\pi\)
\(684\) 0 0
\(685\) 53.3951 + 38.7938i 2.04012 + 1.48224i
\(686\) 27.3713 19.8864i 1.04504 0.759267i
\(687\) 0 0
\(688\) −1.00000 + 3.07768i −0.0381246 + 0.117336i
\(689\) 10.0902 7.33094i 0.384405 0.279286i
\(690\) 0 0
\(691\) −0.0901699 0.277515i −0.00343023 0.0105572i 0.949327 0.314291i \(-0.101767\pi\)
−0.952757 + 0.303734i \(0.901767\pi\)
\(692\) 4.14590 0.157603
\(693\) 0 0
\(694\) 11.8541 0.449976
\(695\) −11.6738 35.9281i −0.442811 1.36283i
\(696\) 0 0
\(697\) −6.47214 + 4.70228i −0.245150 + 0.178112i
\(698\) 4.09017 12.5882i 0.154815 0.476472i
\(699\) 0 0
\(700\) −11.7533 + 8.53926i −0.444233 + 0.322754i
\(701\) 0.854102 + 0.620541i 0.0322590 + 0.0234375i 0.603798 0.797137i \(-0.293653\pi\)
−0.571539 + 0.820575i \(0.693653\pi\)
\(702\) 0 0
\(703\) −4.94427 −0.186477
\(704\) −3.30902 0.224514i −0.124713 0.00846169i
\(705\) 0 0
\(706\) −6.67376 20.5397i −0.251170 0.773023i
\(707\) −46.2599 33.6098i −1.73978 1.26403i
\(708\) 0 0
\(709\) 10.8197 33.2995i 0.406341 1.25059i −0.513430 0.858132i \(-0.671625\pi\)
0.919770 0.392457i \(-0.128375\pi\)
\(710\) −11.0000 + 33.8545i −0.412823 + 1.27054i
\(711\) 0 0
\(712\) 9.47214 + 6.88191i 0.354983 + 0.257910i
\(713\) 8.61803 + 26.5236i 0.322748 + 0.993316i
\(714\) 0 0
\(715\) −11.4164 + 28.4257i −0.426949 + 1.06306i
\(716\) 6.38197 0.238505
\(717\) 0 0
\(718\) −10.3262 7.50245i −0.385372 0.279989i
\(719\) 8.85410 6.43288i 0.330202 0.239906i −0.410314 0.911944i \(-0.634581\pi\)
0.740516 + 0.672038i \(0.234581\pi\)
\(720\) 0 0
\(721\) 17.1738 52.8554i 0.639584 1.96844i
\(722\) −6.89919 + 5.01255i −0.256761 + 0.186548i
\(723\) 0 0
\(724\) −5.09017 15.6659i −0.189175 0.582220i
\(725\) 1.20163 0.0446273
\(726\) 0 0
\(727\) 3.41641 0.126708 0.0633538 0.997991i \(-0.479820\pi\)
0.0633538 + 0.997991i \(0.479820\pi\)
\(728\) 4.61803 + 14.2128i 0.171156 + 0.526763i
\(729\) 0 0
\(730\) 26.1525 19.0009i 0.967947 0.703254i
\(731\) −2.47214 + 7.60845i −0.0914353 + 0.281409i
\(732\) 0 0
\(733\) 35.3607 25.6910i 1.30608 0.948920i 0.306081 0.952005i \(-0.400982\pi\)
0.999995 + 0.00308526i \(0.000982070\pi\)
\(734\) −30.3435 22.0458i −1.12000 0.813726i
\(735\) 0 0
\(736\) −3.23607 −0.119283
\(737\) −4.94427 + 12.3107i −0.182125 + 0.453472i
\(738\) 0 0
\(739\) 4.65248 + 14.3188i 0.171144 + 0.526727i 0.999436 0.0335689i \(-0.0106873\pi\)
−0.828292 + 0.560296i \(0.810687\pi\)
\(740\) 3.52786 + 2.56314i 0.129687 + 0.0942230i
\(741\) 0 0
\(742\) −5.50000 + 16.9273i −0.201911 + 0.621419i
\(743\) 11.6738 35.9281i 0.428269 1.31808i −0.471561 0.881834i \(-0.656309\pi\)
0.899829 0.436242i \(-0.143691\pi\)
\(744\) 0 0
\(745\) −3.19098 2.31838i −0.116909 0.0849390i
\(746\) 2.94427 + 9.06154i 0.107797 + 0.331766i
\(747\) 0 0
\(748\) −8.18034 0.555029i −0.299103 0.0202939i
\(749\) −24.8541 −0.908149
\(750\) 0 0
\(751\) 8.18034 + 5.94336i 0.298505 + 0.216876i 0.726948 0.686692i \(-0.240938\pi\)
−0.428444 + 0.903569i \(0.640938\pi\)
\(752\) 2.00000 1.45309i 0.0729325 0.0529886i
\(753\) 0 0
\(754\) 0.381966 1.17557i 0.0139104 0.0428118i
\(755\) 21.5344 15.6457i 0.783719 0.569405i
\(756\) 0 0
\(757\) −9.43769 29.0462i −0.343019 1.05570i −0.962636 0.270799i \(-0.912712\pi\)
0.619617 0.784904i \(-0.287288\pi\)
\(758\) −3.70820 −0.134688
\(759\) 0 0
\(760\) −9.23607 −0.335027
\(761\) −3.18034 9.78808i −0.115287 0.354818i 0.876720 0.481002i \(-0.159727\pi\)
−0.992007 + 0.126184i \(0.959727\pi\)
\(762\) 0 0
\(763\) −65.0689 + 47.2753i −2.35565 + 1.71148i
\(764\) −6.94427 + 21.3723i −0.251235 + 0.773222i
\(765\) 0 0
\(766\) −10.7082 + 7.77997i −0.386903 + 0.281102i
\(767\) 10.0902 + 7.33094i 0.364335 + 0.264705i
\(768\) 0 0
\(769\) −4.27051 −0.153999 −0.0769993 0.997031i \(-0.524534\pi\)
−0.0769993 + 0.997031i \(0.524534\pi\)
\(770\) −10.6631 42.3938i −0.384272 1.52777i
\(771\) 0 0
\(772\) 0.100813 + 0.310271i 0.00362834 + 0.0111669i
\(773\) 7.69098 + 5.58783i 0.276625 + 0.200980i 0.717444 0.696616i \(-0.245312\pi\)
−0.440819 + 0.897596i \(0.645312\pi\)
\(774\) 0 0
\(775\) 8.37790 25.7845i 0.300943 0.926208i
\(776\) −3.50000 + 10.7719i −0.125643 + 0.386688i
\(777\) 0 0
\(778\) −31.5066 22.8909i −1.12957 0.820677i
\(779\) −3.23607 9.95959i −0.115944 0.356839i
\(780\) 0 0
\(781\) −31.7426 26.5236i −1.13584 0.949088i
\(782\) −8.00000 −0.286079
\(783\) 0 0
\(784\) −11.5902 8.42075i −0.413935 0.300741i
\(785\) 10.3262 7.50245i 0.368559 0.267774i
\(786\) 0 0
\(787\) −11.5836 + 35.6506i −0.412910 + 1.27081i 0.501196 + 0.865334i \(0.332894\pi\)
−0.914107 + 0.405474i \(0.867106\pi\)
\(788\) 4.92705 3.57971i 0.175519 0.127522i
\(789\) 0 0
\(790\) −8.22542 25.3153i −0.292647 0.900676i
\(791\) 57.5967 2.04790
\(792\) 0 0
\(793\) 21.8885 0.777285
\(794\) −3.05573 9.40456i −0.108444 0.333755i
\(795\) 0 0
\(796\) −10.6353 + 7.72696i −0.376957 + 0.273875i
\(797\) 6.98936 21.5110i 0.247576 0.761960i −0.747626 0.664120i \(-0.768807\pi\)
0.995202 0.0978402i \(-0.0311934\pi\)
\(798\) 0 0
\(799\) 4.94427 3.59222i 0.174916 0.127084i
\(800\) 2.54508 + 1.84911i 0.0899823 + 0.0653760i
\(801\) 0 0
\(802\) 10.2918 0.363416
\(803\) 9.16312 + 36.4302i 0.323359 + 1.28559i
\(804\) 0 0
\(805\) −13.1803 40.5649i −0.464546 1.42973i
\(806\) −22.5623 16.3925i −0.794723 0.577400i
\(807\) 0 0
\(808\) −3.82624 + 11.7759i −0.134607 + 0.414276i
\(809\) −9.34752 + 28.7687i −0.328641 + 1.01145i 0.641129 + 0.767434i \(0.278467\pi\)
−0.969770 + 0.244021i \(0.921533\pi\)
\(810\) 0 0
\(811\) 32.9787 + 23.9604i 1.15804 + 0.841365i 0.989529 0.144335i \(-0.0461043\pi\)
0.168510 + 0.985700i \(0.446104\pi\)
\(812\) 0.545085 + 1.67760i 0.0191287 + 0.0588722i
\(813\) 0 0
\(814\) −4.29180 + 2.69417i −0.150427 + 0.0944305i
\(815\) 38.2918 1.34130
\(816\) 0 0
\(817\) −8.47214 6.15537i −0.296403 0.215349i
\(818\) −9.78115 + 7.10642i −0.341990 + 0.248470i
\(819\) 0 0
\(820\) −2.85410 + 8.78402i −0.0996696 + 0.306751i
\(821\) 17.0623 12.3965i 0.595479 0.432641i −0.248793 0.968557i \(-0.580034\pi\)
0.844271 + 0.535916i \(0.180034\pi\)
\(822\) 0 0
\(823\) −0.993422 3.05744i −0.0346285 0.106576i 0.932248 0.361819i \(-0.117844\pi\)
−0.966877 + 0.255244i \(0.917844\pi\)
\(824\) −12.0344 −0.419240
\(825\) 0 0
\(826\) −17.7984 −0.619285
\(827\) −3.30244 10.1639i −0.114837 0.353432i 0.877076 0.480352i \(-0.159491\pi\)
−0.991913 + 0.126920i \(0.959491\pi\)
\(828\) 0 0
\(829\) −5.90983 + 4.29374i −0.205257 + 0.149128i −0.685665 0.727917i \(-0.740489\pi\)
0.480408 + 0.877045i \(0.340489\pi\)
\(830\) 0.594235 1.82887i 0.0206262 0.0634809i
\(831\) 0 0
\(832\) 2.61803 1.90211i 0.0907640 0.0659439i
\(833\) −28.6525 20.8172i −0.992749 0.721275i
\(834\) 0 0
\(835\) 20.6525 0.714708
\(836\) 4.00000 9.95959i 0.138343 0.344460i
\(837\) 0 0
\(838\) −5.55573 17.0988i −0.191919 0.590667i
\(839\) −2.52786 1.83660i −0.0872716 0.0634065i 0.543294 0.839543i \(-0.317177\pi\)
−0.630565 + 0.776136i \(0.717177\pi\)
\(840\) 0 0
\(841\) −8.91641 + 27.4419i −0.307462 + 0.946272i
\(842\) −10.8541 + 33.4055i −0.374057 + 1.15123i
\(843\) 0 0
\(844\) 3.76393 + 2.73466i 0.129560 + 0.0941308i
\(845\) 2.22949 + 6.86167i 0.0766968 + 0.236048i
\(846\) 0 0
\(847\) 50.3328 + 6.86167i 1.72946 + 0.235770i
\(848\) 3.85410 0.132350
\(849\) 0 0
\(850\) 6.29180 + 4.57126i 0.215807 + 0.156793i
\(851\) −4.00000 + 2.90617i −0.137118 + 0.0996222i
\(852\) 0 0
\(853\) 4.65248 14.3188i 0.159298 0.490268i −0.839273 0.543710i \(-0.817019\pi\)
0.998571 + 0.0534419i \(0.0170192\pi\)
\(854\) −25.2705 + 18.3601i −0.864739 + 0.628270i
\(855\) 0 0
\(856\) 1.66312 + 5.11855i 0.0568442 + 0.174949i
\(857\) −8.76393 −0.299370 −0.149685 0.988734i \(-0.547826\pi\)
−0.149685 + 0.988734i \(0.547826\pi\)
\(858\) 0 0
\(859\) 4.40325 0.150237 0.0751185 0.997175i \(-0.476066\pi\)
0.0751185 + 0.997175i \(0.476066\pi\)
\(860\) 2.85410 + 8.78402i 0.0973241 + 0.299533i
\(861\) 0 0
\(862\) 5.85410 4.25325i 0.199392 0.144866i
\(863\) −0.854102 + 2.62866i −0.0290740 + 0.0894805i −0.964541 0.263935i \(-0.914980\pi\)
0.935467 + 0.353415i \(0.114980\pi\)
\(864\) 0 0
\(865\) 9.57295 6.95515i 0.325490 0.236482i
\(866\) 9.97214 + 7.24518i 0.338867 + 0.246201i
\(867\) 0 0
\(868\) 39.7984 1.35084
\(869\) 30.8607 + 2.09387i 1.04688 + 0.0710297i
\(870\) 0 0
\(871\) −4.00000 12.3107i −0.135535 0.417133i
\(872\) 14.0902 + 10.2371i 0.477153 + 0.346672i
\(873\) 0 0
\(874\) 3.23607 9.95959i 0.109462 0.336888i
\(875\) 7.55166 23.2416i 0.255293 0.785710i
\(876\) 0 0
\(877\) 24.5623 + 17.8456i 0.829410 + 0.602602i 0.919392 0.393342i \(-0.128681\pi\)
−0.0899822 + 0.995943i \(0.528681\pi\)
\(878\) −4.95492 15.2497i −0.167220 0.514651i
\(879\) 0 0
\(880\) −8.01722 + 5.03280i −0.270260 + 0.169656i
\(881\) 12.2918 0.414121 0.207061 0.978328i \(-0.433610\pi\)
0.207061 + 0.978328i \(0.433610\pi\)
\(882\) 0 0
\(883\) −22.5066 16.3520i −0.757407 0.550288i 0.140707 0.990051i \(-0.455062\pi\)
−0.898114 + 0.439763i \(0.855062\pi\)
\(884\) 6.47214 4.70228i 0.217681 0.158155i
\(885\) 0 0
\(886\) −0.517221 + 1.59184i −0.0173764 + 0.0534790i
\(887\) −23.0902 + 16.7760i −0.775292 + 0.563283i −0.903562 0.428457i \(-0.859057\pi\)
0.128270 + 0.991739i \(0.459057\pi\)
\(888\) 0 0
\(889\) 17.1246 + 52.7041i 0.574341 + 1.76764i
\(890\) 33.4164 1.12012
\(891\) 0 0
\(892\) −1.90983 −0.0639458
\(893\) 2.47214 + 7.60845i 0.0827269 + 0.254607i
\(894\) 0 0
\(895\) 14.7361 10.7064i 0.492572 0.357875i
\(896\) −1.42705 + 4.39201i −0.0476744 + 0.146727i
\(897\) 0 0
\(898\) −29.0344 + 21.0948i −0.968892 + 0.703941i
\(899\) −2.66312 1.93487i −0.0888200 0.0645315i
\(900\) 0 0
\(901\) 9.52786 0.317419
\(902\) −8.23607 6.88191i −0.274231 0.229143i
\(903\) 0 0
\(904\) −3.85410 11.8617i −0.128186 0.394514i
\(905\) −38.0344 27.6336i −1.26431 0.918573i
\(906\) 0 0
\(907\) −2.52786 + 7.77997i −0.0839363 + 0.258330i −0.984213 0.176989i \(-0.943364\pi\)
0.900276 + 0.435319i \(0.143364\pi\)
\(908\) 2.20820 6.79615i 0.0732818 0.225538i
\(909\) 0 0
\(910\) 34.5066 + 25.0705i 1.14388 + 0.831079i
\(911\) −13.5066 41.5690i −0.447493 1.37724i −0.879727 0.475480i \(-0.842274\pi\)
0.432234 0.901762i \(-0.357726\pi\)
\(912\) 0 0
\(913\) 1.71478 + 1.43284i 0.0567510 + 0.0474201i
\(914\) 21.9787 0.726991
\(915\) 0 0
\(916\) −18.5623 13.4863i −0.613316 0.445600i
\(917\) −57.0517 + 41.4505i −1.88401 + 1.36881i
\(918\) 0 0
\(919\) 15.5344 47.8101i 0.512434 1.57711i −0.275469 0.961310i \(-0.588833\pi\)
0.787903 0.615800i \(-0.211167\pi\)
\(920\) −7.47214 + 5.42882i −0.246349 + 0.178983i
\(921\) 0 0
\(922\) 12.6180 + 38.8343i 0.415553 + 1.27894i
\(923\) 40.3607 1.32849
\(924\) 0 0
\(925\) 4.80650 0.158037
\(926\) −5.89919 18.1558i −0.193859 0.596638i
\(927\) 0 0
\(928\) 0.309017 0.224514i 0.0101440 0.00737003i
\(929\) 7.14590 21.9928i 0.234449 0.721561i −0.762745 0.646700i \(-0.776149\pi\)
0.997194 0.0748610i \(-0.0238513\pi\)
\(930\) 0 0
\(931\) 37.5066 27.2501i 1.22923 0.893087i
\(932\) −7.23607 5.25731i −0.237025 0.172209i
\(933\) 0 0
\(934\) 19.5623 0.640098
\(935\) −19.8197 + 12.4418i −0.648172 + 0.406889i
\(936\) 0 0
\(937\) 8.48278 + 26.1073i 0.277120 + 0.852889i 0.988651 + 0.150233i \(0.0480024\pi\)
−0.711530 + 0.702655i \(0.751998\pi\)
\(938\) 14.9443 + 10.8576i 0.487948 + 0.354515i
\(939\) 0 0
\(940\) 2.18034 6.71040i 0.0711148 0.218869i
\(941\) 2.72949 8.40051i 0.0889788 0.273849i −0.896659 0.442722i \(-0.854013\pi\)
0.985638 + 0.168873i \(0.0540129\pi\)
\(942\) 0 0
\(943\) −8.47214 6.15537i −0.275891 0.200446i
\(944\) 1.19098 + 3.66547i 0.0387632 + 0.119301i
\(945\) 0 0
\(946\) −10.7082 0.726543i −0.348154 0.0236219i
\(947\) −2.32624 −0.0755926 −0.0377963 0.999285i \(-0.512034\pi\)
−0.0377963 + 0.999285i \(0.512034\pi\)
\(948\) 0 0
\(949\) −29.6525 21.5438i −0.962560 0.699341i
\(950\) −8.23607 + 5.98385i −0.267213 + 0.194142i
\(951\) 0 0
\(952\) −3.52786 + 10.8576i −0.114339 + 0.351898i
\(953\) 39.4164 28.6377i 1.27682 0.927666i 0.277371 0.960763i \(-0.410537\pi\)
0.999452 + 0.0330970i \(0.0105370\pi\)
\(954\) 0 0
\(955\) 19.8197 + 60.9986i 0.641349 + 1.97387i
\(956\) 16.4721 0.532747
\(957\) 0 0
\(958\) −7.23607 −0.233787
\(959\) 33.0000 + 101.564i 1.06563 + 3.27966i
\(960\) 0 0
\(961\) −35.0066 + 25.4338i −1.12924 + 0.820444i
\(962\) 1.52786 4.70228i 0.0492603 0.151608i
\(963\) 0 0
\(964\) 1.97214 1.43284i 0.0635182 0.0461487i
\(965\) 0.753289 + 0.547296i 0.0242492 + 0.0176181i
\(966\) 0 0
\(967\) 13.6869 0.440142 0.220071 0.975484i \(-0.429371\pi\)
0.220071 + 0.975484i \(0.429371\pi\)
\(968\) −1.95492 10.8249i −0.0628333 0.347925i
\(969\) 0 0
\(970\) 9.98936 + 30.7441i 0.320739 + 0.987133i
\(971\) −7.52786 5.46931i −0.241581 0.175519i 0.460407 0.887708i \(-0.347704\pi\)
−0.701987 + 0.712190i \(0.747704\pi\)
\(972\) 0 0
\(973\) 18.8885 58.1330i 0.605539 1.86366i
\(974\) −7.71885 + 23.7562i −0.247328 + 0.761197i
\(975\) 0 0
\(976\) 5.47214 + 3.97574i 0.175159 + 0.127260i
\(977\) 11.3607 + 34.9646i 0.363460 + 1.11862i 0.950940 + 0.309377i \(0.100120\pi\)
−0.587479 + 0.809239i \(0.699880\pi\)
\(978\) 0 0
\(979\) −14.4721 + 36.0341i −0.462531 + 1.15166i
\(980\) −40.8885 −1.30614
\(981\) 0 0
\(982\) −34.1803 24.8335i −1.09074 0.792468i
\(983\) −7.38197 + 5.36331i −0.235448 + 0.171063i −0.699253 0.714874i \(-0.746484\pi\)
0.463805 + 0.885937i \(0.346484\pi\)
\(984\) 0 0
\(985\) 5.37132 16.5312i 0.171145 0.526729i
\(986\) 0.763932 0.555029i 0.0243286 0.0176757i
\(987\) 0 0
\(988\) 3.23607 + 9.95959i 0.102953 + 0.316857i
\(989\) −10.4721 −0.332995
\(990\) 0 0
\(991\) −45.6869 −1.45129 −0.725646 0.688068i \(-0.758459\pi\)
−0.725646 + 0.688068i \(0.758459\pi\)
\(992\) −2.66312 8.19624i −0.0845541 0.260231i
\(993\) 0 0
\(994\) −46.5967 + 33.8545i −1.47796 + 1.07380i
\(995\) −11.5942 + 35.6834i −0.367562 + 1.13124i
\(996\) 0 0
\(997\) −46.8885 + 34.0665i −1.48498 + 1.07890i −0.509064 + 0.860729i \(0.670008\pi\)
−0.975911 + 0.218169i \(0.929992\pi\)
\(998\) −6.00000 4.35926i −0.189927 0.137990i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 198.2.f.c.181.1 4
3.2 odd 2 66.2.e.a.49.1 yes 4
11.3 even 5 2178.2.a.t.1.1 2
11.8 odd 10 2178.2.a.bb.1.1 2
11.9 even 5 inner 198.2.f.c.163.1 4
12.11 even 2 528.2.y.d.49.1 4
33.2 even 10 726.2.e.r.493.1 4
33.5 odd 10 726.2.e.f.565.1 4
33.8 even 10 726.2.a.j.1.2 2
33.14 odd 10 726.2.a.l.1.2 2
33.17 even 10 726.2.e.n.565.1 4
33.20 odd 10 66.2.e.a.31.1 4
33.26 odd 10 726.2.e.f.487.1 4
33.29 even 10 726.2.e.n.487.1 4
33.32 even 2 726.2.e.r.511.1 4
132.47 even 10 5808.2.a.cb.1.2 2
132.107 odd 10 5808.2.a.cg.1.2 2
132.119 even 10 528.2.y.d.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.e.a.31.1 4 33.20 odd 10
66.2.e.a.49.1 yes 4 3.2 odd 2
198.2.f.c.163.1 4 11.9 even 5 inner
198.2.f.c.181.1 4 1.1 even 1 trivial
528.2.y.d.49.1 4 12.11 even 2
528.2.y.d.97.1 4 132.119 even 10
726.2.a.j.1.2 2 33.8 even 10
726.2.a.l.1.2 2 33.14 odd 10
726.2.e.f.487.1 4 33.26 odd 10
726.2.e.f.565.1 4 33.5 odd 10
726.2.e.n.487.1 4 33.29 even 10
726.2.e.n.565.1 4 33.17 even 10
726.2.e.r.493.1 4 33.2 even 10
726.2.e.r.511.1 4 33.32 even 2
2178.2.a.t.1.1 2 11.3 even 5
2178.2.a.bb.1.1 2 11.8 odd 10
5808.2.a.cb.1.2 2 132.47 even 10
5808.2.a.cg.1.2 2 132.107 odd 10