Properties

Label 1976.2.q
Level $1976$
Weight $2$
Character orbit 1976.q
Rep. character $\chi_{1976}(1569,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $140$
Sturm bound $560$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1976 = 2^{3} \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1976.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 247 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(560\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1976, [\chi])\).

Total New Old
Modular forms 576 140 436
Cusp forms 544 140 404
Eisenstein series 32 0 32

Trace form

\( 140 q - 4 q^{3} - 2 q^{7} - 70 q^{9} + 2 q^{11} + 2 q^{13} + 16 q^{15} + 4 q^{17} - 2 q^{21} - 70 q^{25} + 32 q^{27} - 20 q^{29} - 12 q^{33} - 4 q^{35} + 4 q^{37} - 2 q^{39} + 12 q^{41} + 16 q^{43} + 24 q^{45}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1976, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1976, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1976, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(247, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(494, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(988, [\chi])\)\(^{\oplus 2}\)