Properties

Label 1976.2.fu
Level $1976$
Weight $2$
Character orbit 1976.fu
Rep. character $\chi_{1976}(547,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $1440$
Sturm bound $560$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1976 = 2^{3} \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1976.fu (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(560\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1976, [\chi])\).

Total New Old
Modular forms 1704 1440 264
Cusp forms 1656 1440 216
Eisenstein series 48 0 48

Trace form

\( 1440 q + 12 q^{4} - 12 q^{6} - 6 q^{10} + 18 q^{14} - 12 q^{16} + 42 q^{24} + 36 q^{28} - 42 q^{30} - 48 q^{34} + 12 q^{36} - 66 q^{38} + 84 q^{40} + 24 q^{41} - 126 q^{42} - 66 q^{44} + 150 q^{48} + 720 q^{49}+ \cdots + 174 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1976, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1976, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1976, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 2}\)