Properties

Label 1976.2.df
Level $1976$
Weight $2$
Character orbit 1976.df
Rep. character $\chi_{1976}(1855,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $0$
Newform subspaces $0$
Sturm bound $560$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1976 = 2^{3} \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1976.df (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 988 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 0 \)
Sturm bound: \(560\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1976, [\chi])\).

Total New Old
Modular forms 576 0 576
Cusp forms 544 0 544
Eisenstein series 32 0 32

Decomposition of \(S_{2}^{\mathrm{old}}(1976, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1976, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(988, [\chi])\)\(^{\oplus 2}\)