Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,6,Mod(196,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.196");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(31.5956125032\) |
Analytic rank: | \(0\) |
Dimension: | \(82\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
196.1 | − | 10.9717i | − | 14.5203i | −88.3786 | 75.9063i | −159.313 | −163.679 | 618.570i | 32.1600 | 832.823 | ||||||||||||||||
196.2 | − | 10.9643i | 5.73333i | −88.2161 | − | 30.6768i | 62.8621 | 43.1819 | 616.371i | 210.129 | −336.350 | ||||||||||||||||
196.3 | − | 10.4443i | − | 19.5771i | −77.0836 | − | 72.4053i | −204.469 | −15.2877 | 470.867i | −140.261 | −756.224 | |||||||||||||||
196.4 | − | 10.0418i | 19.2826i | −68.8383 | − | 85.5733i | 193.633 | −233.051 | 369.924i | −128.819 | −859.313 | ||||||||||||||||
196.5 | − | 9.98891i | 15.6411i | −67.7783 | 77.2319i | 156.238 | 51.7558 | 357.386i | −1.64518 | 771.462 | |||||||||||||||||
196.6 | − | 9.94566i | 30.3052i | −66.9162 | 67.3438i | 301.406 | −180.186 | 347.265i | −675.408 | 669.779 | |||||||||||||||||
196.7 | − | 9.72393i | − | 14.0558i | −62.5548 | 63.6224i | −136.678 | 191.537 | 297.113i | 45.4340 | 618.660 | ||||||||||||||||
196.8 | − | 9.63053i | − | 29.9945i | −60.7471 | 11.8634i | −288.863 | 59.7609 | 276.850i | −656.673 | 114.251 | ||||||||||||||||
196.9 | − | 9.60005i | 25.1437i | −60.1610 | − | 40.5034i | 241.381 | 177.667 | 270.347i | −389.205 | −388.835 | ||||||||||||||||
196.10 | − | 9.41411i | 9.54650i | −56.6255 | 35.0161i | 89.8718 | −4.02765 | 231.827i | 151.864 | 329.646 | |||||||||||||||||
196.11 | − | 8.95219i | − | 10.0324i | −48.1416 | − | 42.7481i | −89.8121 | 234.675 | 144.503i | 142.351 | −382.689 | |||||||||||||||
196.12 | − | 8.48038i | − | 5.86620i | −39.9169 | − | 78.2326i | −49.7476 | −57.3308 | 67.1380i | 208.588 | −663.442 | |||||||||||||||
196.13 | − | 8.43577i | 1.06070i | −39.1622 | 26.8901i | 8.94786 | −197.867 | 60.4188i | 241.875 | 226.839 | |||||||||||||||||
196.14 | − | 8.13555i | − | 22.1292i | −34.1872 | − | 36.5988i | −180.033 | −250.448 | 17.7944i | −246.702 | −297.751 | |||||||||||||||
196.15 | − | 8.06764i | − | 16.3436i | −33.0868 | 45.6680i | −131.854 | −4.74292 | 8.76825i | −24.1119 | 368.433 | ||||||||||||||||
196.16 | − | 7.86035i | − | 4.70091i | −29.7851 | − | 27.4832i | −36.9508 | −34.7471 | − | 17.4099i | 220.901 | −216.028 | ||||||||||||||
196.17 | − | 7.19261i | 21.9687i | −19.7336 | − | 66.0390i | 158.012 | −10.0615 | − | 88.2275i | −239.622 | −474.992 | |||||||||||||||
196.18 | − | 7.05419i | 12.9852i | −17.7616 | 97.5882i | 91.6001 | 206.072 | − | 100.440i | 74.3843 | 688.406 | ||||||||||||||||
196.19 | − | 6.71821i | 7.89795i | −13.1343 | − | 95.5906i | 53.0601 | 108.603 | − | 126.743i | 180.622 | −642.198 | |||||||||||||||
196.20 | − | 6.64182i | 17.9034i | −12.1138 | 27.3285i | 118.911 | −117.951 | − | 132.081i | −77.5301 | 181.511 | ||||||||||||||||
See all 82 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.6.b.a | ✓ | 82 |
197.b | even | 2 | 1 | inner | 197.6.b.a | ✓ | 82 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.6.b.a | ✓ | 82 | 1.a | even | 1 | 1 | trivial |
197.6.b.a | ✓ | 82 | 197.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(197, [\chi])\).