Properties

Label 197.6.b.a
Level $197$
Weight $6$
Character orbit 197.b
Analytic conductor $31.596$
Analytic rank $0$
Dimension $82$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,6,Mod(196,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.196");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 197.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.5956125032\)
Analytic rank: \(0\)
Dimension: \(82\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 82 q - 1272 q^{4} + 56 q^{6} - 294 q^{7} - 6644 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 82 q - 1272 q^{4} + 56 q^{6} - 294 q^{7} - 6644 q^{9} + 1162 q^{10} - 122 q^{15} + 13088 q^{16} + 738 q^{19} + 6534 q^{22} - 456 q^{23} - 446 q^{24} - 45670 q^{25} - 2380 q^{26} + 21660 q^{28} + 2052 q^{29} + 8068 q^{33} - 29612 q^{34} + 98540 q^{36} + 4182 q^{37} - 56242 q^{39} - 14880 q^{40} + 6074 q^{41} - 52390 q^{42} + 47302 q^{43} - 32854 q^{47} + 234940 q^{49} + 38010 q^{51} + 9186 q^{53} - 88518 q^{54} - 72930 q^{55} + 150142 q^{59} + 67874 q^{60} - 118558 q^{61} + 176982 q^{62} + 112446 q^{63} - 35834 q^{64} - 5434 q^{65} - 38102 q^{70} - 42536 q^{76} + 634854 q^{81} - 437360 q^{83} + 291628 q^{85} - 88678 q^{88} - 408654 q^{90} + 175588 q^{92} - 449962 q^{93} - 41002 q^{96} - 395422 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
196.1 10.9717i 14.5203i −88.3786 75.9063i −159.313 −163.679 618.570i 32.1600 832.823
196.2 10.9643i 5.73333i −88.2161 30.6768i 62.8621 43.1819 616.371i 210.129 −336.350
196.3 10.4443i 19.5771i −77.0836 72.4053i −204.469 −15.2877 470.867i −140.261 −756.224
196.4 10.0418i 19.2826i −68.8383 85.5733i 193.633 −233.051 369.924i −128.819 −859.313
196.5 9.98891i 15.6411i −67.7783 77.2319i 156.238 51.7558 357.386i −1.64518 771.462
196.6 9.94566i 30.3052i −66.9162 67.3438i 301.406 −180.186 347.265i −675.408 669.779
196.7 9.72393i 14.0558i −62.5548 63.6224i −136.678 191.537 297.113i 45.4340 618.660
196.8 9.63053i 29.9945i −60.7471 11.8634i −288.863 59.7609 276.850i −656.673 114.251
196.9 9.60005i 25.1437i −60.1610 40.5034i 241.381 177.667 270.347i −389.205 −388.835
196.10 9.41411i 9.54650i −56.6255 35.0161i 89.8718 −4.02765 231.827i 151.864 329.646
196.11 8.95219i 10.0324i −48.1416 42.7481i −89.8121 234.675 144.503i 142.351 −382.689
196.12 8.48038i 5.86620i −39.9169 78.2326i −49.7476 −57.3308 67.1380i 208.588 −663.442
196.13 8.43577i 1.06070i −39.1622 26.8901i 8.94786 −197.867 60.4188i 241.875 226.839
196.14 8.13555i 22.1292i −34.1872 36.5988i −180.033 −250.448 17.7944i −246.702 −297.751
196.15 8.06764i 16.3436i −33.0868 45.6680i −131.854 −4.74292 8.76825i −24.1119 368.433
196.16 7.86035i 4.70091i −29.7851 27.4832i −36.9508 −34.7471 17.4099i 220.901 −216.028
196.17 7.19261i 21.9687i −19.7336 66.0390i 158.012 −10.0615 88.2275i −239.622 −474.992
196.18 7.05419i 12.9852i −17.7616 97.5882i 91.6001 206.072 100.440i 74.3843 688.406
196.19 6.71821i 7.89795i −13.1343 95.5906i 53.0601 108.603 126.743i 180.622 −642.198
196.20 6.64182i 17.9034i −12.1138 27.3285i 118.911 −117.951 132.081i −77.5301 181.511
See all 82 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 196.82
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
197.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 197.6.b.a 82
197.b even 2 1 inner 197.6.b.a 82
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
197.6.b.a 82 1.a even 1 1 trivial
197.6.b.a 82 197.b even 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(197, [\chi])\).