Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,4,Mod(4,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(98))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.4");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.h (of order \(98\), degree \(42\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.6233762711\) |
Analytic rank: | \(0\) |
Dimension: | \(2016\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{98})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{98}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −5.59899 | − | 0.179549i | −0.0719909 | + | 0.0375576i | 23.3328 | + | 1.49802i | 10.6042 | − | 3.14727i | 0.409819 | − | 0.197359i | 0.978044 | + | 30.4990i | −85.7634 | − | 8.27349i | −15.4434 | + | 22.1392i | −59.9379 | + | 15.7176i |
4.2 | −5.54205 | − | 0.177723i | 5.62389 | − | 2.93398i | 22.6991 | + | 1.45733i | −18.2604 | + | 5.41960i | −31.6893 | + | 15.2608i | −0.478938 | − | 14.9350i | −81.3865 | − | 7.85125i | 7.57278 | − | 10.8561i | 102.163 | − | 26.7904i |
4.3 | −5.14681 | − | 0.165048i | −8.31459 | + | 4.33772i | 18.4789 | + | 1.18638i | −18.6014 | + | 5.52079i | 43.5096 | − | 20.9531i | 0.806502 | + | 25.1497i | −53.9063 | − | 5.20028i | 34.8695 | − | 49.9880i | 96.6490 | − | 25.3443i |
4.4 | −5.02297 | − | 0.161077i | −6.04395 | + | 3.15313i | 17.2207 | + | 1.10561i | 6.03871 | − | 1.79226i | 30.8665 | − | 14.8645i | −0.745364 | − | 23.2432i | −46.3023 | − | 4.46673i | 11.1400 | − | 15.9701i | −30.6209 | + | 8.02976i |
4.5 | −4.84119 | − | 0.155248i | 6.75489 | − | 3.52402i | 15.4294 | + | 0.990603i | 11.4670 | − | 3.40334i | −33.2488 | + | 16.0118i | −0.497056 | − | 15.5000i | −35.9727 | − | 3.47024i | 17.7626 | − | 25.4641i | −56.0421 | + | 14.6960i |
4.6 | −4.65231 | − | 0.149190i | 0.203946 | − | 0.106399i | 13.6382 | + | 0.875598i | −0.723623 | + | 0.214768i | −0.964694 | + | 0.464572i | −0.222342 | − | 6.93345i | −26.2527 | − | 2.53257i | −15.4169 | + | 22.1013i | 3.39856 | − | 0.891207i |
4.7 | −4.47074 | − | 0.143368i | −1.40966 | + | 0.735421i | 11.9834 | + | 0.769358i | −10.4142 | + | 3.09087i | 6.40768 | − | 3.08577i | −0.296520 | − | 9.24657i | −17.8453 | − | 1.72151i | −14.0008 | + | 20.0713i | 47.0022 | − | 12.3254i |
4.8 | −4.27036 | − | 0.136942i | 7.00949 | − | 3.65685i | 10.2337 | + | 0.657023i | 3.98425 | − | 1.18251i | −30.4338 | + | 14.6562i | 0.192674 | + | 6.00830i | −9.58897 | − | 0.925036i | 20.3133 | − | 29.1206i | −17.1761 | + | 4.50411i |
4.9 | −3.94494 | − | 0.126506i | −6.13710 | + | 3.20172i | 7.56297 | + | 0.485559i | 13.4744 | − | 3.99914i | 24.6155 | − | 11.8542i | 0.569670 | + | 17.7644i | 1.65580 | + | 0.159733i | 11.9658 | − | 17.1539i | −53.6618 | + | 14.0718i |
4.10 | −3.92131 | − | 0.125749i | 6.45836 | − | 3.36932i | 7.37726 | + | 0.473636i | −9.26748 | + | 2.75054i | −25.7489 | + | 12.4000i | 1.08979 | + | 33.9836i | 2.37259 | + | 0.228881i | 14.9110 | − | 21.3760i | 36.6865 | − | 9.62033i |
4.11 | −3.52515 | − | 0.113045i | −2.28495 | + | 1.19206i | 4.43036 | + | 0.284438i | −12.5509 | + | 3.72505i | 8.18955 | − | 3.94388i | 0.507844 | + | 15.8364i | 12.4998 | + | 1.20584i | −11.6472 | + | 16.6971i | 44.6650 | − | 11.7125i |
4.12 | −3.34417 | − | 0.107241i | 2.09981 | − | 1.09547i | 3.18843 | + | 0.204704i | 14.6220 | − | 4.33973i | −7.13962 | + | 3.43826i | 0.325213 | + | 10.1413i | 16.0027 | + | 1.54376i | −12.2380 | + | 17.5441i | −49.3638 | + | 12.9447i |
4.13 | −2.78217 | − | 0.0892188i | −1.87897 | + | 0.980259i | −0.251057 | − | 0.0161184i | 19.6548 | − | 5.83345i | 5.31508 | − | 2.55961i | −0.869697 | − | 27.1203i | 22.8629 | + | 2.20556i | −12.8775 | + | 18.4609i | −55.2035 | + | 14.4761i |
4.14 | −2.63628 | − | 0.0845404i | 6.79613 | − | 3.54553i | −1.04073 | − | 0.0668170i | −18.6621 | + | 5.53881i | −18.2162 | + | 8.77248i | −0.458603 | − | 14.3009i | 23.7416 | + | 2.29032i | 18.1694 | − | 26.0471i | 49.6667 | − | 13.0242i |
4.15 | −2.61985 | − | 0.0840136i | 3.80323 | − | 1.98414i | −1.12699 | − | 0.0723550i | −2.11039 | + | 0.626353i | −10.1306 | + | 4.87864i | −1.12669 | − | 35.1345i | 23.8192 | + | 2.29781i | −4.91940 | + | 7.05233i | 5.58154 | − | 1.46365i |
4.16 | −2.52646 | − | 0.0810187i | −7.43397 | + | 3.87830i | −1.60712 | − | 0.103180i | −9.38322 | + | 2.78489i | 19.0959 | − | 9.19608i | −0.593600 | − | 18.5106i | 24.1806 | + | 2.33267i | 24.7755 | − | 35.5176i | 23.9320 | − | 6.27570i |
4.17 | −2.29111 | − | 0.0734715i | −7.17037 | + | 3.74078i | −2.73977 | − | 0.175899i | 1.02306 | − | 0.303639i | 16.7030 | − | 8.04372i | −0.0377790 | − | 1.17809i | 24.5178 | + | 2.36520i | 21.9736 | − | 31.5008i | −2.36625 | + | 0.620505i |
4.18 | −2.01740 | − | 0.0646941i | −3.84065 | + | 2.00366i | −3.91784 | − | 0.251534i | 0.429442 | − | 0.127456i | 7.87776 | − | 3.79373i | 1.01593 | + | 31.6804i | 23.9605 | + | 2.31144i | −4.71123 | + | 6.75391i | −0.874603 | + | 0.229348i |
4.19 | −1.87681 | − | 0.0601858i | 2.36417 | − | 1.23339i | −4.46475 | − | 0.286647i | −9.67924 | + | 2.87275i | −4.51135 | + | 2.17255i | 0.0490453 | + | 1.52941i | 23.3151 | + | 2.24918i | −11.3791 | + | 16.3128i | 18.3390 | − | 4.80906i |
4.20 | −1.33337 | − | 0.0427585i | 2.89683 | − | 1.51127i | −6.20752 | − | 0.398536i | 5.75746 | − | 1.70878i | −3.92716 | + | 1.89122i | 0.493668 | + | 15.3944i | 18.8830 | + | 1.82162i | −9.33949 | + | 13.3889i | −7.74988 | + | 2.03226i |
See next 80 embeddings (of 2016 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.h | even | 98 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.4.h.a | ✓ | 2016 |
197.h | even | 98 | 1 | inner | 197.4.h.a | ✓ | 2016 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.4.h.a | ✓ | 2016 | 1.a | even | 1 | 1 | trivial |
197.4.h.a | ✓ | 2016 | 197.h | even | 98 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(197, [\chi])\).