Properties

Label 197.4.a.b.1.25
Level $197$
Weight $4$
Character 197.1
Self dual yes
Analytic conductor $11.623$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [197,4,Mod(1,197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("197.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(197, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.25
Character \(\chi\) \(=\) 197.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.09115 q^{2} -7.11573 q^{3} +17.9199 q^{4} +8.87787 q^{5} -36.2273 q^{6} -1.96838 q^{7} +50.5035 q^{8} +23.6336 q^{9} +45.1986 q^{10} +42.4210 q^{11} -127.513 q^{12} +41.5738 q^{13} -10.0213 q^{14} -63.1725 q^{15} +113.762 q^{16} +12.7473 q^{17} +120.322 q^{18} +52.0955 q^{19} +159.090 q^{20} +14.0064 q^{21} +215.972 q^{22} +43.8278 q^{23} -359.369 q^{24} -46.1834 q^{25} +211.659 q^{26} +23.9545 q^{27} -35.2730 q^{28} -233.629 q^{29} -321.621 q^{30} +15.4468 q^{31} +175.153 q^{32} -301.856 q^{33} +64.8985 q^{34} -17.4750 q^{35} +423.510 q^{36} -215.942 q^{37} +265.226 q^{38} -295.828 q^{39} +448.364 q^{40} +240.398 q^{41} +71.3089 q^{42} +72.1424 q^{43} +760.177 q^{44} +209.816 q^{45} +223.134 q^{46} +249.723 q^{47} -809.502 q^{48} -339.125 q^{49} -235.127 q^{50} -90.7063 q^{51} +744.996 q^{52} -656.998 q^{53} +121.956 q^{54} +376.608 q^{55} -99.4099 q^{56} -370.698 q^{57} -1189.44 q^{58} +282.407 q^{59} -1132.04 q^{60} -705.791 q^{61} +78.6422 q^{62} -46.5198 q^{63} -18.3653 q^{64} +369.087 q^{65} -1536.80 q^{66} -601.712 q^{67} +228.430 q^{68} -311.867 q^{69} -88.9679 q^{70} -839.471 q^{71} +1193.58 q^{72} +194.552 q^{73} -1099.40 q^{74} +328.629 q^{75} +933.544 q^{76} -83.5004 q^{77} -1506.10 q^{78} +450.776 q^{79} +1009.97 q^{80} -808.561 q^{81} +1223.90 q^{82} -156.891 q^{83} +250.993 q^{84} +113.169 q^{85} +367.288 q^{86} +1662.44 q^{87} +2142.41 q^{88} +315.273 q^{89} +1068.21 q^{90} -81.8329 q^{91} +785.389 q^{92} -109.915 q^{93} +1271.38 q^{94} +462.497 q^{95} -1246.34 q^{96} +1203.72 q^{97} -1726.54 q^{98} +1002.56 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q + 4 q^{2} + 32 q^{3} + 128 q^{4} + 29 q^{5} + 36 q^{6} + 122 q^{7} + 27 q^{8} + 287 q^{9} + 127 q^{10} + 98 q^{11} + 256 q^{12} + 193 q^{13} + 113 q^{14} + 194 q^{15} + 672 q^{16} + 124 q^{17} + 61 q^{18}+ \cdots + 1940 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.09115 1.79999 0.899997 0.435895i \(-0.143568\pi\)
0.899997 + 0.435895i \(0.143568\pi\)
\(3\) −7.11573 −1.36942 −0.684711 0.728814i \(-0.740072\pi\)
−0.684711 + 0.728814i \(0.740072\pi\)
\(4\) 17.9199 2.23998
\(5\) 8.87787 0.794061 0.397030 0.917805i \(-0.370041\pi\)
0.397030 + 0.917805i \(0.370041\pi\)
\(6\) −36.2273 −2.46495
\(7\) −1.96838 −0.106282 −0.0531412 0.998587i \(-0.516923\pi\)
−0.0531412 + 0.998587i \(0.516923\pi\)
\(8\) 50.5035 2.23196
\(9\) 23.6336 0.875318
\(10\) 45.1986 1.42931
\(11\) 42.4210 1.16276 0.581382 0.813631i \(-0.302512\pi\)
0.581382 + 0.813631i \(0.302512\pi\)
\(12\) −127.513 −3.06748
\(13\) 41.5738 0.886961 0.443481 0.896284i \(-0.353744\pi\)
0.443481 + 0.896284i \(0.353744\pi\)
\(14\) −10.0213 −0.191308
\(15\) −63.1725 −1.08740
\(16\) 113.762 1.77754
\(17\) 12.7473 0.181863 0.0909316 0.995857i \(-0.471016\pi\)
0.0909316 + 0.995857i \(0.471016\pi\)
\(18\) 120.322 1.57557
\(19\) 52.0955 0.629028 0.314514 0.949253i \(-0.398158\pi\)
0.314514 + 0.949253i \(0.398158\pi\)
\(20\) 159.090 1.77868
\(21\) 14.0064 0.145545
\(22\) 215.972 2.09297
\(23\) 43.8278 0.397336 0.198668 0.980067i \(-0.436338\pi\)
0.198668 + 0.980067i \(0.436338\pi\)
\(24\) −359.369 −3.05650
\(25\) −46.1834 −0.369467
\(26\) 211.659 1.59653
\(27\) 23.9545 0.170743
\(28\) −35.2730 −0.238071
\(29\) −233.629 −1.49600 −0.747998 0.663701i \(-0.768985\pi\)
−0.747998 + 0.663701i \(0.768985\pi\)
\(30\) −321.621 −1.95732
\(31\) 15.4468 0.0894946 0.0447473 0.998998i \(-0.485752\pi\)
0.0447473 + 0.998998i \(0.485752\pi\)
\(32\) 175.153 0.967595
\(33\) −301.856 −1.59231
\(34\) 64.8985 0.327353
\(35\) −17.4750 −0.0843947
\(36\) 423.510 1.96070
\(37\) −215.942 −0.959478 −0.479739 0.877411i \(-0.659269\pi\)
−0.479739 + 0.877411i \(0.659269\pi\)
\(38\) 265.226 1.13225
\(39\) −295.828 −1.21462
\(40\) 448.364 1.77231
\(41\) 240.398 0.915704 0.457852 0.889028i \(-0.348619\pi\)
0.457852 + 0.889028i \(0.348619\pi\)
\(42\) 71.3089 0.261981
\(43\) 72.1424 0.255851 0.127926 0.991784i \(-0.459168\pi\)
0.127926 + 0.991784i \(0.459168\pi\)
\(44\) 760.177 2.60457
\(45\) 209.816 0.695056
\(46\) 223.134 0.715204
\(47\) 249.723 0.775017 0.387508 0.921866i \(-0.373336\pi\)
0.387508 + 0.921866i \(0.373336\pi\)
\(48\) −809.502 −2.43420
\(49\) −339.125 −0.988704
\(50\) −235.127 −0.665039
\(51\) −90.7063 −0.249047
\(52\) 744.996 1.98678
\(53\) −656.998 −1.70275 −0.851374 0.524559i \(-0.824230\pi\)
−0.851374 + 0.524559i \(0.824230\pi\)
\(54\) 121.956 0.307336
\(55\) 376.608 0.923305
\(56\) −99.4099 −0.237218
\(57\) −370.698 −0.861405
\(58\) −1189.44 −2.69279
\(59\) 282.407 0.623156 0.311578 0.950221i \(-0.399142\pi\)
0.311578 + 0.950221i \(0.399142\pi\)
\(60\) −1132.04 −2.43577
\(61\) −705.791 −1.48143 −0.740715 0.671819i \(-0.765513\pi\)
−0.740715 + 0.671819i \(0.765513\pi\)
\(62\) 78.6422 0.161090
\(63\) −46.5198 −0.0930309
\(64\) −18.3653 −0.0358698
\(65\) 369.087 0.704301
\(66\) −1536.80 −2.86616
\(67\) −601.712 −1.09718 −0.548588 0.836093i \(-0.684835\pi\)
−0.548588 + 0.836093i \(0.684835\pi\)
\(68\) 228.430 0.407370
\(69\) −311.867 −0.544121
\(70\) −88.9679 −0.151910
\(71\) −839.471 −1.40320 −0.701598 0.712573i \(-0.747530\pi\)
−0.701598 + 0.712573i \(0.747530\pi\)
\(72\) 1193.58 1.95367
\(73\) 194.552 0.311927 0.155963 0.987763i \(-0.450152\pi\)
0.155963 + 0.987763i \(0.450152\pi\)
\(74\) −1099.40 −1.72706
\(75\) 328.629 0.505957
\(76\) 933.544 1.40901
\(77\) −83.5004 −0.123581
\(78\) −1506.10 −2.18632
\(79\) 450.776 0.641978 0.320989 0.947083i \(-0.395985\pi\)
0.320989 + 0.947083i \(0.395985\pi\)
\(80\) 1009.97 1.41147
\(81\) −808.561 −1.10914
\(82\) 1223.90 1.64826
\(83\) −156.891 −0.207482 −0.103741 0.994604i \(-0.533081\pi\)
−0.103741 + 0.994604i \(0.533081\pi\)
\(84\) 250.993 0.326019
\(85\) 113.169 0.144410
\(86\) 367.288 0.460531
\(87\) 1662.44 2.04865
\(88\) 2142.41 2.59524
\(89\) 315.273 0.375493 0.187746 0.982218i \(-0.439882\pi\)
0.187746 + 0.982218i \(0.439882\pi\)
\(90\) 1068.21 1.25110
\(91\) −81.8329 −0.0942683
\(92\) 785.389 0.890026
\(93\) −109.915 −0.122556
\(94\) 1271.38 1.39503
\(95\) 462.497 0.499487
\(96\) −1246.34 −1.32505
\(97\) 1203.72 1.25999 0.629997 0.776598i \(-0.283056\pi\)
0.629997 + 0.776598i \(0.283056\pi\)
\(98\) −1726.54 −1.77966
\(99\) 1002.56 1.01779
\(100\) −827.600 −0.827600
\(101\) −765.123 −0.753788 −0.376894 0.926256i \(-0.623008\pi\)
−0.376894 + 0.926256i \(0.623008\pi\)
\(102\) −461.800 −0.448284
\(103\) −1107.57 −1.05954 −0.529770 0.848142i \(-0.677722\pi\)
−0.529770 + 0.848142i \(0.677722\pi\)
\(104\) 2099.62 1.97966
\(105\) 124.347 0.115572
\(106\) −3344.88 −3.06494
\(107\) 1518.06 1.37156 0.685779 0.727810i \(-0.259462\pi\)
0.685779 + 0.727810i \(0.259462\pi\)
\(108\) 429.261 0.382460
\(109\) 1225.87 1.07722 0.538610 0.842555i \(-0.318950\pi\)
0.538610 + 0.842555i \(0.318950\pi\)
\(110\) 1917.37 1.66194
\(111\) 1536.59 1.31393
\(112\) −223.927 −0.188921
\(113\) 1620.59 1.34914 0.674568 0.738213i \(-0.264330\pi\)
0.674568 + 0.738213i \(0.264330\pi\)
\(114\) −1887.28 −1.55052
\(115\) 389.098 0.315509
\(116\) −4186.61 −3.35100
\(117\) 982.538 0.776373
\(118\) 1437.78 1.12168
\(119\) −25.0915 −0.0193288
\(120\) −3190.43 −2.42704
\(121\) 468.538 0.352019
\(122\) −3593.29 −2.66657
\(123\) −1710.61 −1.25399
\(124\) 276.805 0.200466
\(125\) −1519.74 −1.08744
\(126\) −236.839 −0.167455
\(127\) 134.430 0.0939268 0.0469634 0.998897i \(-0.485046\pi\)
0.0469634 + 0.998897i \(0.485046\pi\)
\(128\) −1494.73 −1.03216
\(129\) −513.346 −0.350369
\(130\) 1879.08 1.26774
\(131\) 1528.94 1.01973 0.509863 0.860256i \(-0.329696\pi\)
0.509863 + 0.860256i \(0.329696\pi\)
\(132\) −5409.21 −3.56676
\(133\) −102.544 −0.0668546
\(134\) −3063.41 −1.97491
\(135\) 212.665 0.135580
\(136\) 643.783 0.405911
\(137\) 1604.07 1.00033 0.500165 0.865930i \(-0.333273\pi\)
0.500165 + 0.865930i \(0.333273\pi\)
\(138\) −1587.76 −0.979416
\(139\) −768.214 −0.468770 −0.234385 0.972144i \(-0.575308\pi\)
−0.234385 + 0.972144i \(0.575308\pi\)
\(140\) −313.149 −0.189043
\(141\) −1776.96 −1.06133
\(142\) −4273.88 −2.52574
\(143\) 1763.60 1.03133
\(144\) 2688.61 1.55591
\(145\) −2074.13 −1.18791
\(146\) 990.496 0.561466
\(147\) 2413.12 1.35395
\(148\) −3869.65 −2.14921
\(149\) 1587.53 0.872854 0.436427 0.899740i \(-0.356244\pi\)
0.436427 + 0.899740i \(0.356244\pi\)
\(150\) 1673.10 0.910720
\(151\) 2177.99 1.17379 0.586894 0.809664i \(-0.300351\pi\)
0.586894 + 0.809664i \(0.300351\pi\)
\(152\) 2631.01 1.40397
\(153\) 301.264 0.159188
\(154\) −425.114 −0.222446
\(155\) 137.135 0.0710641
\(156\) −5301.19 −2.72074
\(157\) 313.509 0.159368 0.0796839 0.996820i \(-0.474609\pi\)
0.0796839 + 0.996820i \(0.474609\pi\)
\(158\) 2294.97 1.15556
\(159\) 4675.02 2.33178
\(160\) 1554.99 0.768329
\(161\) −86.2697 −0.0422299
\(162\) −4116.51 −1.99644
\(163\) 987.449 0.474497 0.237248 0.971449i \(-0.423754\pi\)
0.237248 + 0.971449i \(0.423754\pi\)
\(164\) 4307.90 2.05116
\(165\) −2679.84 −1.26439
\(166\) −798.757 −0.373467
\(167\) −3272.79 −1.51650 −0.758252 0.651962i \(-0.773946\pi\)
−0.758252 + 0.651962i \(0.773946\pi\)
\(168\) 707.374 0.324852
\(169\) −468.620 −0.213300
\(170\) 576.160 0.259938
\(171\) 1231.20 0.550599
\(172\) 1292.78 0.573103
\(173\) 19.2438 0.00845711 0.00422856 0.999991i \(-0.498654\pi\)
0.00422856 + 0.999991i \(0.498654\pi\)
\(174\) 8463.76 3.68756
\(175\) 90.9064 0.0392679
\(176\) 4825.91 2.06685
\(177\) −2009.53 −0.853364
\(178\) 1605.10 0.675885
\(179\) 4285.49 1.78946 0.894728 0.446612i \(-0.147370\pi\)
0.894728 + 0.446612i \(0.147370\pi\)
\(180\) 3759.87 1.55691
\(181\) −4484.90 −1.84177 −0.920885 0.389835i \(-0.872532\pi\)
−0.920885 + 0.389835i \(0.872532\pi\)
\(182\) −416.624 −0.169683
\(183\) 5022.22 2.02870
\(184\) 2213.46 0.886839
\(185\) −1917.11 −0.761884
\(186\) −559.596 −0.220600
\(187\) 540.753 0.211464
\(188\) 4474.99 1.73602
\(189\) −47.1515 −0.0181469
\(190\) 2354.65 0.899073
\(191\) −4180.58 −1.58375 −0.791876 0.610683i \(-0.790895\pi\)
−0.791876 + 0.610683i \(0.790895\pi\)
\(192\) 130.683 0.0491209
\(193\) −4134.36 −1.54196 −0.770978 0.636861i \(-0.780232\pi\)
−0.770978 + 0.636861i \(0.780232\pi\)
\(194\) 6128.33 2.26798
\(195\) −2626.32 −0.964486
\(196\) −6077.08 −2.21468
\(197\) −197.000 −0.0712470
\(198\) 5104.18 1.83201
\(199\) −3110.70 −1.10810 −0.554050 0.832483i \(-0.686918\pi\)
−0.554050 + 0.832483i \(0.686918\pi\)
\(200\) −2332.42 −0.824636
\(201\) 4281.62 1.50250
\(202\) −3895.36 −1.35681
\(203\) 459.871 0.158998
\(204\) −1625.44 −0.557862
\(205\) 2134.22 0.727125
\(206\) −5638.83 −1.90717
\(207\) 1035.81 0.347796
\(208\) 4729.53 1.57661
\(209\) 2209.94 0.731411
\(210\) 633.071 0.208029
\(211\) −4073.35 −1.32901 −0.664505 0.747284i \(-0.731358\pi\)
−0.664505 + 0.747284i \(0.731358\pi\)
\(212\) −11773.3 −3.81412
\(213\) 5973.45 1.92157
\(214\) 7728.69 2.46880
\(215\) 640.471 0.203162
\(216\) 1209.79 0.381091
\(217\) −30.4052 −0.00951170
\(218\) 6241.09 1.93899
\(219\) −1384.38 −0.427159
\(220\) 6748.76 2.06819
\(221\) 529.953 0.161306
\(222\) 7823.00 2.36507
\(223\) 966.544 0.290245 0.145122 0.989414i \(-0.453642\pi\)
0.145122 + 0.989414i \(0.453642\pi\)
\(224\) −344.768 −0.102838
\(225\) −1091.48 −0.323401
\(226\) 8250.68 2.42844
\(227\) 1535.00 0.448817 0.224408 0.974495i \(-0.427955\pi\)
0.224408 + 0.974495i \(0.427955\pi\)
\(228\) −6642.85 −1.92953
\(229\) −1732.52 −0.499949 −0.249974 0.968252i \(-0.580422\pi\)
−0.249974 + 0.968252i \(0.580422\pi\)
\(230\) 1980.96 0.567915
\(231\) 594.166 0.169235
\(232\) −11799.1 −3.33901
\(233\) 1099.95 0.309271 0.154636 0.987972i \(-0.450580\pi\)
0.154636 + 0.987972i \(0.450580\pi\)
\(234\) 5002.25 1.39747
\(235\) 2217.00 0.615410
\(236\) 5060.69 1.39586
\(237\) −3207.60 −0.879139
\(238\) −127.745 −0.0347918
\(239\) −5081.87 −1.37539 −0.687696 0.725998i \(-0.741378\pi\)
−0.687696 + 0.725998i \(0.741378\pi\)
\(240\) −7186.65 −1.93290
\(241\) 2518.15 0.673063 0.336531 0.941672i \(-0.390746\pi\)
0.336531 + 0.941672i \(0.390746\pi\)
\(242\) 2385.40 0.633633
\(243\) 5106.72 1.34813
\(244\) −12647.7 −3.31838
\(245\) −3010.71 −0.785091
\(246\) −8708.97 −2.25717
\(247\) 2165.81 0.557923
\(248\) 780.119 0.199748
\(249\) 1116.39 0.284131
\(250\) −7737.25 −1.95739
\(251\) −7405.92 −1.86238 −0.931190 0.364533i \(-0.881229\pi\)
−0.931190 + 0.364533i \(0.881229\pi\)
\(252\) −833.628 −0.208387
\(253\) 1859.22 0.462008
\(254\) 684.402 0.169068
\(255\) −805.279 −0.197759
\(256\) −7462.97 −1.82201
\(257\) −2828.26 −0.686468 −0.343234 0.939250i \(-0.611522\pi\)
−0.343234 + 0.939250i \(0.611522\pi\)
\(258\) −2613.52 −0.630662
\(259\) 425.056 0.101976
\(260\) 6613.98 1.57762
\(261\) −5521.50 −1.30947
\(262\) 7784.07 1.83550
\(263\) −837.347 −0.196323 −0.0981616 0.995170i \(-0.531296\pi\)
−0.0981616 + 0.995170i \(0.531296\pi\)
\(264\) −15244.8 −3.55398
\(265\) −5832.74 −1.35209
\(266\) −522.065 −0.120338
\(267\) −2243.39 −0.514208
\(268\) −10782.6 −2.45765
\(269\) 4497.30 1.01935 0.509675 0.860367i \(-0.329765\pi\)
0.509675 + 0.860367i \(0.329765\pi\)
\(270\) 1082.71 0.244043
\(271\) 5054.80 1.13305 0.566527 0.824044i \(-0.308287\pi\)
0.566527 + 0.824044i \(0.308287\pi\)
\(272\) 1450.16 0.323268
\(273\) 582.301 0.129093
\(274\) 8166.58 1.80059
\(275\) −1959.14 −0.429603
\(276\) −5588.61 −1.21882
\(277\) 802.454 0.174061 0.0870303 0.996206i \(-0.472262\pi\)
0.0870303 + 0.996206i \(0.472262\pi\)
\(278\) −3911.09 −0.843784
\(279\) 365.064 0.0783362
\(280\) −882.549 −0.188366
\(281\) 317.255 0.0673518 0.0336759 0.999433i \(-0.489279\pi\)
0.0336759 + 0.999433i \(0.489279\pi\)
\(282\) −9046.77 −1.91038
\(283\) 8877.78 1.86477 0.932384 0.361469i \(-0.117725\pi\)
0.932384 + 0.361469i \(0.117725\pi\)
\(284\) −15043.2 −3.14313
\(285\) −3291.01 −0.684008
\(286\) 8978.76 1.85638
\(287\) −473.194 −0.0973232
\(288\) 4139.50 0.846953
\(289\) −4750.51 −0.966926
\(290\) −10559.7 −2.13824
\(291\) −8565.36 −1.72546
\(292\) 3486.35 0.698710
\(293\) −4476.58 −0.892576 −0.446288 0.894889i \(-0.647254\pi\)
−0.446288 + 0.894889i \(0.647254\pi\)
\(294\) 12285.6 2.43711
\(295\) 2507.17 0.494824
\(296\) −10905.8 −2.14152
\(297\) 1016.17 0.198533
\(298\) 8082.35 1.57113
\(299\) 1822.09 0.352422
\(300\) 5888.98 1.13333
\(301\) −142.003 −0.0271925
\(302\) 11088.5 2.11281
\(303\) 5444.41 1.03225
\(304\) 5926.51 1.11812
\(305\) −6265.92 −1.17635
\(306\) 1533.78 0.286538
\(307\) 8536.52 1.58699 0.793493 0.608579i \(-0.208260\pi\)
0.793493 + 0.608579i \(0.208260\pi\)
\(308\) −1496.32 −0.276820
\(309\) 7881.20 1.45096
\(310\) 698.175 0.127915
\(311\) 4646.49 0.847198 0.423599 0.905850i \(-0.360767\pi\)
0.423599 + 0.905850i \(0.360767\pi\)
\(312\) −14940.3 −2.71099
\(313\) −142.834 −0.0257938 −0.0128969 0.999917i \(-0.504105\pi\)
−0.0128969 + 0.999917i \(0.504105\pi\)
\(314\) 1596.12 0.286861
\(315\) −412.997 −0.0738722
\(316\) 8077.84 1.43802
\(317\) 5928.47 1.05040 0.525199 0.850980i \(-0.323991\pi\)
0.525199 + 0.850980i \(0.323991\pi\)
\(318\) 23801.2 4.19719
\(319\) −9910.78 −1.73949
\(320\) −163.045 −0.0284828
\(321\) −10802.1 −1.87824
\(322\) −439.213 −0.0760135
\(323\) 664.077 0.114397
\(324\) −14489.3 −2.48445
\(325\) −1920.02 −0.327703
\(326\) 5027.25 0.854092
\(327\) −8722.95 −1.47517
\(328\) 12140.9 2.04382
\(329\) −491.548 −0.0823706
\(330\) −13643.5 −2.27590
\(331\) −4672.81 −0.775954 −0.387977 0.921669i \(-0.626826\pi\)
−0.387977 + 0.921669i \(0.626826\pi\)
\(332\) −2811.47 −0.464757
\(333\) −5103.49 −0.839848
\(334\) −16662.3 −2.72970
\(335\) −5341.92 −0.871225
\(336\) 1593.40 0.258712
\(337\) 11080.2 1.79103 0.895516 0.445029i \(-0.146807\pi\)
0.895516 + 0.445029i \(0.146807\pi\)
\(338\) −2385.82 −0.383939
\(339\) −11531.7 −1.84754
\(340\) 2027.97 0.323477
\(341\) 655.269 0.104061
\(342\) 6268.25 0.991076
\(343\) 1342.68 0.211364
\(344\) 3643.44 0.571050
\(345\) −2768.72 −0.432066
\(346\) 97.9732 0.0152228
\(347\) 4385.47 0.678457 0.339229 0.940704i \(-0.389834\pi\)
0.339229 + 0.940704i \(0.389834\pi\)
\(348\) 29790.7 4.58894
\(349\) 9625.37 1.47632 0.738158 0.674628i \(-0.235696\pi\)
0.738158 + 0.674628i \(0.235696\pi\)
\(350\) 462.818 0.0706819
\(351\) 995.880 0.151442
\(352\) 7430.18 1.12508
\(353\) −1358.83 −0.204882 −0.102441 0.994739i \(-0.532665\pi\)
−0.102441 + 0.994739i \(0.532665\pi\)
\(354\) −10230.8 −1.53605
\(355\) −7452.71 −1.11422
\(356\) 5649.64 0.841097
\(357\) 178.544 0.0264694
\(358\) 21818.1 3.22101
\(359\) −9675.16 −1.42238 −0.711192 0.702998i \(-0.751844\pi\)
−0.711192 + 0.702998i \(0.751844\pi\)
\(360\) 10596.4 1.55134
\(361\) −4145.06 −0.604324
\(362\) −22833.3 −3.31518
\(363\) −3333.99 −0.482063
\(364\) −1466.43 −0.211159
\(365\) 1727.21 0.247689
\(366\) 25568.9 3.65166
\(367\) 5885.72 0.837145 0.418573 0.908183i \(-0.362531\pi\)
0.418573 + 0.908183i \(0.362531\pi\)
\(368\) 4985.96 0.706280
\(369\) 5681.47 0.801532
\(370\) −9760.29 −1.37139
\(371\) 1293.22 0.180972
\(372\) −1969.67 −0.274523
\(373\) 1559.60 0.216496 0.108248 0.994124i \(-0.465476\pi\)
0.108248 + 0.994124i \(0.465476\pi\)
\(374\) 2753.05 0.380634
\(375\) 10814.1 1.48917
\(376\) 12611.9 1.72981
\(377\) −9712.86 −1.32689
\(378\) −240.056 −0.0326644
\(379\) 5934.09 0.804258 0.402129 0.915583i \(-0.368270\pi\)
0.402129 + 0.915583i \(0.368270\pi\)
\(380\) 8287.88 1.11884
\(381\) −956.565 −0.128625
\(382\) −21284.0 −2.85074
\(383\) −1391.38 −0.185630 −0.0928149 0.995683i \(-0.529586\pi\)
−0.0928149 + 0.995683i \(0.529586\pi\)
\(384\) 10636.1 1.41346
\(385\) −741.306 −0.0981311
\(386\) −21048.7 −2.77551
\(387\) 1704.98 0.223951
\(388\) 21570.5 2.82236
\(389\) −3761.01 −0.490207 −0.245104 0.969497i \(-0.578822\pi\)
−0.245104 + 0.969497i \(0.578822\pi\)
\(390\) −13371.0 −1.73607
\(391\) 558.687 0.0722609
\(392\) −17127.0 −2.20675
\(393\) −10879.5 −1.39644
\(394\) −1002.96 −0.128244
\(395\) 4001.93 0.509770
\(396\) 17965.7 2.27983
\(397\) 9683.21 1.22415 0.612074 0.790801i \(-0.290336\pi\)
0.612074 + 0.790801i \(0.290336\pi\)
\(398\) −15837.1 −1.99457
\(399\) 729.673 0.0915522
\(400\) −5253.93 −0.656741
\(401\) −12438.4 −1.54899 −0.774493 0.632582i \(-0.781995\pi\)
−0.774493 + 0.632582i \(0.781995\pi\)
\(402\) 21798.4 2.70449
\(403\) 642.183 0.0793782
\(404\) −13710.9 −1.68847
\(405\) −7178.30 −0.880722
\(406\) 2341.27 0.286196
\(407\) −9160.48 −1.11565
\(408\) −4580.99 −0.555864
\(409\) −2117.72 −0.256026 −0.128013 0.991772i \(-0.540860\pi\)
−0.128013 + 0.991772i \(0.540860\pi\)
\(410\) 10865.7 1.30882
\(411\) −11414.1 −1.36987
\(412\) −19847.6 −2.37335
\(413\) −555.883 −0.0662305
\(414\) 5273.46 0.626030
\(415\) −1392.86 −0.164754
\(416\) 7281.79 0.858219
\(417\) 5466.40 0.641944
\(418\) 11251.2 1.31654
\(419\) 10082.6 1.17558 0.587789 0.809014i \(-0.299998\pi\)
0.587789 + 0.809014i \(0.299998\pi\)
\(420\) 2228.29 0.258879
\(421\) 11745.3 1.35970 0.679848 0.733353i \(-0.262046\pi\)
0.679848 + 0.733353i \(0.262046\pi\)
\(422\) −20738.1 −2.39221
\(423\) 5901.84 0.678386
\(424\) −33180.7 −3.80047
\(425\) −588.714 −0.0671925
\(426\) 30411.7 3.45881
\(427\) 1389.26 0.157450
\(428\) 27203.5 3.07226
\(429\) −12549.3 −1.41232
\(430\) 3260.74 0.365690
\(431\) −9257.97 −1.03467 −0.517333 0.855784i \(-0.673075\pi\)
−0.517333 + 0.855784i \(0.673075\pi\)
\(432\) 2725.12 0.303501
\(433\) 5169.53 0.573745 0.286872 0.957969i \(-0.407384\pi\)
0.286872 + 0.957969i \(0.407384\pi\)
\(434\) −154.797 −0.0171210
\(435\) 14759.0 1.62675
\(436\) 21967.4 2.41295
\(437\) 2283.23 0.249936
\(438\) −7048.10 −0.768884
\(439\) 15346.1 1.66841 0.834204 0.551457i \(-0.185928\pi\)
0.834204 + 0.551457i \(0.185928\pi\)
\(440\) 19020.0 2.06078
\(441\) −8014.75 −0.865430
\(442\) 2698.07 0.290349
\(443\) −3378.59 −0.362351 −0.181176 0.983451i \(-0.557990\pi\)
−0.181176 + 0.983451i \(0.557990\pi\)
\(444\) 27535.4 2.94318
\(445\) 2798.95 0.298164
\(446\) 4920.83 0.522439
\(447\) −11296.4 −1.19531
\(448\) 36.1499 0.00381233
\(449\) −16118.8 −1.69420 −0.847098 0.531437i \(-0.821652\pi\)
−0.847098 + 0.531437i \(0.821652\pi\)
\(450\) −5556.89 −0.582121
\(451\) 10197.9 1.06475
\(452\) 29040.8 3.02204
\(453\) −15498.0 −1.60741
\(454\) 7814.91 0.807868
\(455\) −726.502 −0.0748548
\(456\) −18721.5 −1.92262
\(457\) 6957.36 0.712148 0.356074 0.934458i \(-0.384115\pi\)
0.356074 + 0.934458i \(0.384115\pi\)
\(458\) −8820.54 −0.899906
\(459\) 305.355 0.0310518
\(460\) 6972.58 0.706735
\(461\) 7966.28 0.804830 0.402415 0.915457i \(-0.368171\pi\)
0.402415 + 0.915457i \(0.368171\pi\)
\(462\) 3024.99 0.304622
\(463\) −12547.2 −1.25943 −0.629715 0.776826i \(-0.716828\pi\)
−0.629715 + 0.776826i \(0.716828\pi\)
\(464\) −26578.2 −2.65919
\(465\) −975.815 −0.0973168
\(466\) 5600.02 0.556687
\(467\) −5847.24 −0.579396 −0.289698 0.957118i \(-0.593555\pi\)
−0.289698 + 0.957118i \(0.593555\pi\)
\(468\) 17606.9 1.73906
\(469\) 1184.40 0.116611
\(470\) 11287.1 1.10774
\(471\) −2230.85 −0.218242
\(472\) 14262.5 1.39086
\(473\) 3060.35 0.297495
\(474\) −16330.4 −1.58245
\(475\) −2405.95 −0.232405
\(476\) −449.636 −0.0432963
\(477\) −15527.2 −1.49045
\(478\) −25872.6 −2.47570
\(479\) 9687.36 0.924064 0.462032 0.886863i \(-0.347121\pi\)
0.462032 + 0.886863i \(0.347121\pi\)
\(480\) −11064.9 −1.05217
\(481\) −8977.54 −0.851020
\(482\) 12820.3 1.21151
\(483\) 613.872 0.0578305
\(484\) 8396.13 0.788517
\(485\) 10686.5 1.00051
\(486\) 25999.1 2.42663
\(487\) 13285.1 1.23615 0.618077 0.786118i \(-0.287912\pi\)
0.618077 + 0.786118i \(0.287912\pi\)
\(488\) −35644.9 −3.30649
\(489\) −7026.42 −0.649786
\(490\) −15328.0 −1.41316
\(491\) 314.428 0.0289001 0.0144500 0.999896i \(-0.495400\pi\)
0.0144500 + 0.999896i \(0.495400\pi\)
\(492\) −30653.8 −2.80891
\(493\) −2978.14 −0.272067
\(494\) 11026.5 1.00426
\(495\) 8900.59 0.808185
\(496\) 1757.27 0.159080
\(497\) 1652.40 0.149135
\(498\) 5683.74 0.511435
\(499\) 4919.63 0.441349 0.220674 0.975348i \(-0.429174\pi\)
0.220674 + 0.975348i \(0.429174\pi\)
\(500\) −27233.6 −2.43585
\(501\) 23288.3 2.07673
\(502\) −37704.7 −3.35228
\(503\) −10059.0 −0.891668 −0.445834 0.895116i \(-0.647093\pi\)
−0.445834 + 0.895116i \(0.647093\pi\)
\(504\) −2349.41 −0.207641
\(505\) −6792.66 −0.598554
\(506\) 9465.57 0.831613
\(507\) 3334.57 0.292098
\(508\) 2408.96 0.210394
\(509\) 17209.6 1.49863 0.749314 0.662215i \(-0.230383\pi\)
0.749314 + 0.662215i \(0.230383\pi\)
\(510\) −4099.80 −0.355965
\(511\) −382.952 −0.0331523
\(512\) −26037.3 −2.24746
\(513\) 1247.92 0.107402
\(514\) −14399.1 −1.23564
\(515\) −9832.90 −0.841339
\(516\) −9199.08 −0.784820
\(517\) 10593.5 0.901161
\(518\) 2164.03 0.183556
\(519\) −136.934 −0.0115814
\(520\) 18640.2 1.57197
\(521\) −10037.5 −0.844049 −0.422025 0.906584i \(-0.638680\pi\)
−0.422025 + 0.906584i \(0.638680\pi\)
\(522\) −28110.8 −2.35704
\(523\) −13924.3 −1.16418 −0.582091 0.813123i \(-0.697765\pi\)
−0.582091 + 0.813123i \(0.697765\pi\)
\(524\) 27398.4 2.28417
\(525\) −646.865 −0.0537743
\(526\) −4263.06 −0.353381
\(527\) 196.905 0.0162758
\(528\) −34339.8 −2.83040
\(529\) −10246.1 −0.842124
\(530\) −29695.4 −2.43375
\(531\) 6674.28 0.545460
\(532\) −1837.57 −0.149753
\(533\) 9994.26 0.812194
\(534\) −11421.5 −0.925572
\(535\) 13477.2 1.08910
\(536\) −30388.6 −2.44885
\(537\) −30494.4 −2.45052
\(538\) 22896.5 1.83483
\(539\) −14386.0 −1.14963
\(540\) 3810.93 0.303697
\(541\) 16622.4 1.32099 0.660493 0.750832i \(-0.270347\pi\)
0.660493 + 0.750832i \(0.270347\pi\)
\(542\) 25734.8 2.03949
\(543\) 31913.3 2.52216
\(544\) 2232.73 0.175970
\(545\) 10883.1 0.855378
\(546\) 2964.58 0.232367
\(547\) 8676.59 0.678216 0.339108 0.940747i \(-0.389875\pi\)
0.339108 + 0.940747i \(0.389875\pi\)
\(548\) 28744.7 2.24072
\(549\) −16680.4 −1.29672
\(550\) −9974.31 −0.773283
\(551\) −12171.0 −0.941024
\(552\) −15750.4 −1.21446
\(553\) −887.297 −0.0682309
\(554\) 4085.42 0.313308
\(555\) 13641.6 1.04334
\(556\) −13766.3 −1.05004
\(557\) −16648.8 −1.26648 −0.633242 0.773954i \(-0.718276\pi\)
−0.633242 + 0.773954i \(0.718276\pi\)
\(558\) 1858.60 0.141005
\(559\) 2999.23 0.226930
\(560\) −1988.00 −0.150015
\(561\) −3847.85 −0.289583
\(562\) 1615.20 0.121233
\(563\) 1950.39 0.146002 0.0730012 0.997332i \(-0.476742\pi\)
0.0730012 + 0.997332i \(0.476742\pi\)
\(564\) −31842.8 −2.37735
\(565\) 14387.4 1.07130
\(566\) 45198.2 3.35657
\(567\) 1591.55 0.117882
\(568\) −42396.2 −3.13188
\(569\) 19007.7 1.40043 0.700214 0.713933i \(-0.253088\pi\)
0.700214 + 0.713933i \(0.253088\pi\)
\(570\) −16755.0 −1.23121
\(571\) 5073.12 0.371810 0.185905 0.982568i \(-0.440478\pi\)
0.185905 + 0.982568i \(0.440478\pi\)
\(572\) 31603.5 2.31015
\(573\) 29747.9 2.16882
\(574\) −2409.10 −0.175181
\(575\) −2024.12 −0.146803
\(576\) −434.039 −0.0313975
\(577\) 17129.7 1.23591 0.617954 0.786215i \(-0.287962\pi\)
0.617954 + 0.786215i \(0.287962\pi\)
\(578\) −24185.6 −1.74046
\(579\) 29419.0 2.11159
\(580\) −37168.1 −2.66090
\(581\) 308.821 0.0220517
\(582\) −43607.6 −3.10583
\(583\) −27870.5 −1.97989
\(584\) 9825.58 0.696208
\(585\) 8722.84 0.616487
\(586\) −22791.0 −1.60663
\(587\) −23396.1 −1.64508 −0.822538 0.568710i \(-0.807443\pi\)
−0.822538 + 0.568710i \(0.807443\pi\)
\(588\) 43242.8 3.03283
\(589\) 804.710 0.0562946
\(590\) 12764.4 0.890681
\(591\) 1401.80 0.0975673
\(592\) −24566.1 −1.70551
\(593\) −3895.43 −0.269757 −0.134879 0.990862i \(-0.543064\pi\)
−0.134879 + 0.990862i \(0.543064\pi\)
\(594\) 5173.50 0.357359
\(595\) −222.759 −0.0153483
\(596\) 28448.3 1.95518
\(597\) 22134.9 1.51746
\(598\) 9276.54 0.634358
\(599\) 26717.5 1.82245 0.911224 0.411911i \(-0.135138\pi\)
0.911224 + 0.411911i \(0.135138\pi\)
\(600\) 16596.9 1.12928
\(601\) −17492.0 −1.18721 −0.593605 0.804757i \(-0.702296\pi\)
−0.593605 + 0.804757i \(0.702296\pi\)
\(602\) −722.962 −0.0489464
\(603\) −14220.6 −0.960378
\(604\) 39029.2 2.62926
\(605\) 4159.62 0.279525
\(606\) 27718.3 1.85805
\(607\) 26049.0 1.74184 0.870919 0.491427i \(-0.163524\pi\)
0.870919 + 0.491427i \(0.163524\pi\)
\(608\) 9124.71 0.608644
\(609\) −3272.32 −0.217736
\(610\) −31900.8 −2.11742
\(611\) 10381.9 0.687410
\(612\) 5398.61 0.356578
\(613\) 5630.12 0.370960 0.185480 0.982648i \(-0.440616\pi\)
0.185480 + 0.982648i \(0.440616\pi\)
\(614\) 43460.7 2.85657
\(615\) −15186.5 −0.995741
\(616\) −4217.06 −0.275829
\(617\) 7143.71 0.466118 0.233059 0.972463i \(-0.425126\pi\)
0.233059 + 0.972463i \(0.425126\pi\)
\(618\) 40124.4 2.61172
\(619\) −19910.8 −1.29286 −0.646432 0.762972i \(-0.723740\pi\)
−0.646432 + 0.762972i \(0.723740\pi\)
\(620\) 2457.44 0.159182
\(621\) 1049.87 0.0678422
\(622\) 23656.0 1.52495
\(623\) −620.576 −0.0399082
\(624\) −33654.0 −2.15904
\(625\) −7719.17 −0.494027
\(626\) −727.190 −0.0464287
\(627\) −15725.3 −1.00161
\(628\) 5618.04 0.356981
\(629\) −2752.68 −0.174494
\(630\) −2102.63 −0.132970
\(631\) −1718.49 −0.108419 −0.0542093 0.998530i \(-0.517264\pi\)
−0.0542093 + 0.998530i \(0.517264\pi\)
\(632\) 22765.8 1.43287
\(633\) 28984.9 1.81998
\(634\) 30182.8 1.89071
\(635\) 1193.45 0.0745836
\(636\) 83775.7 5.22315
\(637\) −14098.7 −0.876942
\(638\) −50457.3 −3.13107
\(639\) −19839.7 −1.22824
\(640\) −13270.0 −0.819598
\(641\) 0.0373128 2.29917e−6 0 1.14958e−6 1.00000i \(-0.500000\pi\)
1.14958e−6 1.00000i \(0.500000\pi\)
\(642\) −54995.3 −3.38083
\(643\) 2056.28 0.126115 0.0630573 0.998010i \(-0.479915\pi\)
0.0630573 + 0.998010i \(0.479915\pi\)
\(644\) −1545.94 −0.0945941
\(645\) −4557.42 −0.278214
\(646\) 3380.92 0.205914
\(647\) 22266.9 1.35302 0.676508 0.736436i \(-0.263493\pi\)
0.676508 + 0.736436i \(0.263493\pi\)
\(648\) −40835.1 −2.47555
\(649\) 11980.0 0.724584
\(650\) −9775.12 −0.589864
\(651\) 216.355 0.0130255
\(652\) 17694.9 1.06286
\(653\) −3198.27 −0.191666 −0.0958329 0.995397i \(-0.530551\pi\)
−0.0958329 + 0.995397i \(0.530551\pi\)
\(654\) −44409.9 −2.65530
\(655\) 13573.7 0.809724
\(656\) 27348.2 1.62770
\(657\) 4597.97 0.273035
\(658\) −2502.55 −0.148267
\(659\) 23280.2 1.37612 0.688062 0.725652i \(-0.258462\pi\)
0.688062 + 0.725652i \(0.258462\pi\)
\(660\) −48022.3 −2.83222
\(661\) −19938.3 −1.17324 −0.586620 0.809862i \(-0.699542\pi\)
−0.586620 + 0.809862i \(0.699542\pi\)
\(662\) −23790.0 −1.39671
\(663\) −3771.00 −0.220895
\(664\) −7923.55 −0.463093
\(665\) −910.369 −0.0530866
\(666\) −25982.7 −1.51172
\(667\) −10239.5 −0.594414
\(668\) −58647.9 −3.39694
\(669\) −6877.66 −0.397468
\(670\) −27196.5 −1.56820
\(671\) −29940.3 −1.72255
\(672\) 2453.28 0.140829
\(673\) −4.15055 −0.000237730 0 −0.000118865 1.00000i \(-0.500038\pi\)
−0.000118865 1.00000i \(0.500038\pi\)
\(674\) 56411.1 3.22385
\(675\) −1106.30 −0.0630838
\(676\) −8397.60 −0.477788
\(677\) −30768.8 −1.74674 −0.873369 0.487060i \(-0.838069\pi\)
−0.873369 + 0.487060i \(0.838069\pi\)
\(678\) −58709.6 −3.32556
\(679\) −2369.38 −0.133915
\(680\) 5715.42 0.322318
\(681\) −10922.6 −0.614620
\(682\) 3336.08 0.187309
\(683\) 27056.3 1.51578 0.757891 0.652381i \(-0.226230\pi\)
0.757891 + 0.652381i \(0.226230\pi\)
\(684\) 22063.0 1.23333
\(685\) 14240.7 0.794323
\(686\) 6835.79 0.380454
\(687\) 12328.2 0.684641
\(688\) 8207.09 0.454785
\(689\) −27313.9 −1.51027
\(690\) −14096.0 −0.777716
\(691\) −903.177 −0.0497228 −0.0248614 0.999691i \(-0.507914\pi\)
−0.0248614 + 0.999691i \(0.507914\pi\)
\(692\) 344.846 0.0189438
\(693\) −1973.41 −0.108173
\(694\) 22327.1 1.22122
\(695\) −6820.10 −0.372232
\(696\) 83959.2 4.57251
\(697\) 3064.43 0.166533
\(698\) 49004.2 2.65736
\(699\) −7826.95 −0.423523
\(700\) 1629.03 0.0879593
\(701\) −22712.2 −1.22372 −0.611861 0.790965i \(-0.709579\pi\)
−0.611861 + 0.790965i \(0.709579\pi\)
\(702\) 5070.18 0.272595
\(703\) −11249.6 −0.603539
\(704\) −779.075 −0.0417081
\(705\) −15775.6 −0.842757
\(706\) −6918.02 −0.368786
\(707\) 1506.05 0.0801144
\(708\) −36010.5 −1.91152
\(709\) 3067.71 0.162497 0.0812484 0.996694i \(-0.474109\pi\)
0.0812484 + 0.996694i \(0.474109\pi\)
\(710\) −37942.9 −2.00559
\(711\) 10653.5 0.561935
\(712\) 15922.4 0.838085
\(713\) 677.001 0.0355595
\(714\) 908.996 0.0476447
\(715\) 15657.0 0.818936
\(716\) 76795.3 4.00835
\(717\) 36161.2 1.88349
\(718\) −49257.7 −2.56028
\(719\) −20342.8 −1.05516 −0.527579 0.849506i \(-0.676900\pi\)
−0.527579 + 0.849506i \(0.676900\pi\)
\(720\) 23869.1 1.23549
\(721\) 2180.12 0.112610
\(722\) −21103.1 −1.08778
\(723\) −17918.5 −0.921707
\(724\) −80368.8 −4.12553
\(725\) 10789.8 0.552722
\(726\) −16973.8 −0.867711
\(727\) 10426.1 0.531887 0.265944 0.963989i \(-0.414316\pi\)
0.265944 + 0.963989i \(0.414316\pi\)
\(728\) −4132.85 −0.210403
\(729\) −14506.9 −0.737028
\(730\) 8793.50 0.445838
\(731\) 919.621 0.0465300
\(732\) 89997.4 4.54426
\(733\) −11589.4 −0.583988 −0.291994 0.956420i \(-0.594319\pi\)
−0.291994 + 0.956420i \(0.594319\pi\)
\(734\) 29965.1 1.50686
\(735\) 21423.4 1.07512
\(736\) 7676.60 0.384461
\(737\) −25525.2 −1.27576
\(738\) 28925.2 1.44275
\(739\) 3636.68 0.181025 0.0905124 0.995895i \(-0.471150\pi\)
0.0905124 + 0.995895i \(0.471150\pi\)
\(740\) −34354.3 −1.70661
\(741\) −15411.3 −0.764033
\(742\) 6583.98 0.325749
\(743\) 12414.1 0.612961 0.306480 0.951877i \(-0.400849\pi\)
0.306480 + 0.951877i \(0.400849\pi\)
\(744\) −5551.11 −0.273540
\(745\) 14093.9 0.693100
\(746\) 7940.16 0.389691
\(747\) −3707.90 −0.181613
\(748\) 9690.21 0.473675
\(749\) −2988.12 −0.145772
\(750\) 55056.2 2.68049
\(751\) 28651.5 1.39215 0.696077 0.717967i \(-0.254927\pi\)
0.696077 + 0.717967i \(0.254927\pi\)
\(752\) 28409.0 1.37762
\(753\) 52698.5 2.55039
\(754\) −49449.7 −2.38840
\(755\) 19335.9 0.932059
\(756\) −844.948 −0.0406488
\(757\) −13011.9 −0.624734 −0.312367 0.949961i \(-0.601122\pi\)
−0.312367 + 0.949961i \(0.601122\pi\)
\(758\) 30211.4 1.44766
\(759\) −13229.7 −0.632685
\(760\) 23357.7 1.11483
\(761\) −8099.47 −0.385815 −0.192908 0.981217i \(-0.561792\pi\)
−0.192908 + 0.981217i \(0.561792\pi\)
\(762\) −4870.02 −0.231525
\(763\) −2412.97 −0.114489
\(764\) −74915.4 −3.54757
\(765\) 2674.59 0.126405
\(766\) −7083.73 −0.334133
\(767\) 11740.7 0.552715
\(768\) 53104.5 2.49511
\(769\) 26343.4 1.23533 0.617665 0.786442i \(-0.288079\pi\)
0.617665 + 0.786442i \(0.288079\pi\)
\(770\) −3774.10 −0.176635
\(771\) 20125.2 0.940064
\(772\) −74087.1 −3.45395
\(773\) 23352.2 1.08657 0.543286 0.839548i \(-0.317180\pi\)
0.543286 + 0.839548i \(0.317180\pi\)
\(774\) 8680.33 0.403111
\(775\) −713.387 −0.0330653
\(776\) 60792.2 2.81226
\(777\) −3024.58 −0.139648
\(778\) −19147.9 −0.882371
\(779\) 12523.7 0.576004
\(780\) −47063.3 −2.16043
\(781\) −35611.2 −1.63158
\(782\) 2844.36 0.130069
\(783\) −5596.48 −0.255430
\(784\) −38579.7 −1.75746
\(785\) 2783.29 0.126548
\(786\) −55389.3 −2.51358
\(787\) 20271.1 0.918151 0.459076 0.888397i \(-0.348181\pi\)
0.459076 + 0.888397i \(0.348181\pi\)
\(788\) −3530.21 −0.159592
\(789\) 5958.33 0.268849
\(790\) 20374.4 0.917583
\(791\) −3189.94 −0.143389
\(792\) 50632.7 2.27166
\(793\) −29342.4 −1.31397
\(794\) 49298.7 2.20346
\(795\) 41504.2 1.85158
\(796\) −55743.3 −2.48212
\(797\) 11220.7 0.498690 0.249345 0.968415i \(-0.419785\pi\)
0.249345 + 0.968415i \(0.419785\pi\)
\(798\) 3714.88 0.164793
\(799\) 3183.29 0.140947
\(800\) −8089.18 −0.357495
\(801\) 7451.02 0.328675
\(802\) −63325.8 −2.78817
\(803\) 8253.10 0.362697
\(804\) 76726.0 3.36557
\(805\) −765.892 −0.0335331
\(806\) 3269.45 0.142880
\(807\) −32001.6 −1.39592
\(808\) −38641.4 −1.68243
\(809\) −12295.3 −0.534339 −0.267169 0.963650i \(-0.586088\pi\)
−0.267169 + 0.963650i \(0.586088\pi\)
\(810\) −36545.8 −1.58530
\(811\) 13327.2 0.577043 0.288522 0.957473i \(-0.406836\pi\)
0.288522 + 0.957473i \(0.406836\pi\)
\(812\) 8240.82 0.356153
\(813\) −35968.6 −1.55163
\(814\) −46637.4 −2.00816
\(815\) 8766.44 0.376779
\(816\) −10319.0 −0.442691
\(817\) 3758.30 0.160938
\(818\) −10781.7 −0.460846
\(819\) −1934.00 −0.0825148
\(820\) 38245.0 1.62875
\(821\) 10149.0 0.431430 0.215715 0.976456i \(-0.430792\pi\)
0.215715 + 0.976456i \(0.430792\pi\)
\(822\) −58111.2 −2.46577
\(823\) −1678.06 −0.0710735 −0.0355367 0.999368i \(-0.511314\pi\)
−0.0355367 + 0.999368i \(0.511314\pi\)
\(824\) −55936.4 −2.36485
\(825\) 13940.7 0.588308
\(826\) −2830.09 −0.119215
\(827\) 3829.52 0.161022 0.0805111 0.996754i \(-0.474345\pi\)
0.0805111 + 0.996754i \(0.474345\pi\)
\(828\) 18561.5 0.779056
\(829\) −1190.54 −0.0498785 −0.0249393 0.999689i \(-0.507939\pi\)
−0.0249393 + 0.999689i \(0.507939\pi\)
\(830\) −7091.26 −0.296556
\(831\) −5710.04 −0.238362
\(832\) −763.517 −0.0318151
\(833\) −4322.93 −0.179809
\(834\) 27830.3 1.15550
\(835\) −29055.4 −1.20420
\(836\) 39601.8 1.63835
\(837\) 370.021 0.0152805
\(838\) 51332.1 2.11604
\(839\) 5759.00 0.236976 0.118488 0.992955i \(-0.462195\pi\)
0.118488 + 0.992955i \(0.462195\pi\)
\(840\) 6279.98 0.257952
\(841\) 30193.7 1.23801
\(842\) 59797.3 2.44745
\(843\) −2257.50 −0.0922331
\(844\) −72993.9 −2.97696
\(845\) −4160.35 −0.169373
\(846\) 30047.2 1.22109
\(847\) −922.259 −0.0374135
\(848\) −74741.6 −3.02670
\(849\) −63171.9 −2.55366
\(850\) −2997.23 −0.120946
\(851\) −9464.29 −0.381236
\(852\) 107043. 4.30427
\(853\) 20665.5 0.829510 0.414755 0.909933i \(-0.363867\pi\)
0.414755 + 0.909933i \(0.363867\pi\)
\(854\) 7072.95 0.283409
\(855\) 10930.5 0.437209
\(856\) 76667.5 3.06126
\(857\) −46087.6 −1.83702 −0.918508 0.395402i \(-0.870605\pi\)
−0.918508 + 0.395402i \(0.870605\pi\)
\(858\) −63890.4 −2.54217
\(859\) 13995.2 0.555892 0.277946 0.960597i \(-0.410346\pi\)
0.277946 + 0.960597i \(0.410346\pi\)
\(860\) 11477.1 0.455078
\(861\) 3367.12 0.133277
\(862\) −47133.8 −1.86239
\(863\) −39087.3 −1.54177 −0.770886 0.636974i \(-0.780186\pi\)
−0.770886 + 0.636974i \(0.780186\pi\)
\(864\) 4195.72 0.165210
\(865\) 170.844 0.00671546
\(866\) 26318.9 1.03274
\(867\) 33803.3 1.32413
\(868\) −544.856 −0.0213060
\(869\) 19122.3 0.746469
\(870\) 75140.1 2.92815
\(871\) −25015.4 −0.973153
\(872\) 61910.6 2.40431
\(873\) 28448.3 1.10290
\(874\) 11624.3 0.449883
\(875\) 2991.43 0.115576
\(876\) −24807.9 −0.956829
\(877\) 15332.4 0.590351 0.295176 0.955443i \(-0.404622\pi\)
0.295176 + 0.955443i \(0.404622\pi\)
\(878\) 78129.5 3.00312
\(879\) 31854.1 1.22231
\(880\) 42843.8 1.64121
\(881\) −3728.34 −0.142578 −0.0712889 0.997456i \(-0.522711\pi\)
−0.0712889 + 0.997456i \(0.522711\pi\)
\(882\) −40804.3 −1.55777
\(883\) 4470.74 0.170388 0.0851939 0.996364i \(-0.472849\pi\)
0.0851939 + 0.996364i \(0.472849\pi\)
\(884\) 9496.69 0.361321
\(885\) −17840.3 −0.677623
\(886\) −17200.9 −0.652231
\(887\) −8546.27 −0.323513 −0.161756 0.986831i \(-0.551716\pi\)
−0.161756 + 0.986831i \(0.551716\pi\)
\(888\) 77603.0 2.93264
\(889\) −264.608 −0.00998276
\(890\) 14249.9 0.536694
\(891\) −34299.9 −1.28966
\(892\) 17320.3 0.650143
\(893\) 13009.4 0.487507
\(894\) −57511.8 −2.15155
\(895\) 38046.0 1.42094
\(896\) 2942.19 0.109700
\(897\) −12965.5 −0.482615
\(898\) −82063.4 −3.04954
\(899\) −3608.83 −0.133884
\(900\) −19559.1 −0.724413
\(901\) −8374.95 −0.309667
\(902\) 51919.2 1.91654
\(903\) 1010.46 0.0372380
\(904\) 81845.5 3.01122
\(905\) −39816.4 −1.46248
\(906\) −78902.5 −2.89333
\(907\) −4732.57 −0.173255 −0.0866275 0.996241i \(-0.527609\pi\)
−0.0866275 + 0.996241i \(0.527609\pi\)
\(908\) 27506.9 1.00534
\(909\) −18082.6 −0.659804
\(910\) −3698.73 −0.134738
\(911\) 14254.5 0.518411 0.259205 0.965822i \(-0.416539\pi\)
0.259205 + 0.965822i \(0.416539\pi\)
\(912\) −42171.4 −1.53118
\(913\) −6655.47 −0.241253
\(914\) 35421.0 1.28186
\(915\) 44586.6 1.61091
\(916\) −31046.5 −1.11988
\(917\) −3009.53 −0.108379
\(918\) 1554.61 0.0558930
\(919\) −40020.2 −1.43650 −0.718251 0.695784i \(-0.755057\pi\)
−0.718251 + 0.695784i \(0.755057\pi\)
\(920\) 19650.8 0.704204
\(921\) −60743.6 −2.17326
\(922\) 40557.6 1.44869
\(923\) −34900.0 −1.24458
\(924\) 10647.4 0.379083
\(925\) 9972.95 0.354496
\(926\) −63879.6 −2.26697
\(927\) −26176.0 −0.927434
\(928\) −40921.0 −1.44752
\(929\) −25632.2 −0.905236 −0.452618 0.891705i \(-0.649510\pi\)
−0.452618 + 0.891705i \(0.649510\pi\)
\(930\) −4968.02 −0.175170
\(931\) −17666.9 −0.621923
\(932\) 19711.0 0.692762
\(933\) −33063.2 −1.16017
\(934\) −29769.2 −1.04291
\(935\) 4800.73 0.167915
\(936\) 49621.6 1.73283
\(937\) 21589.0 0.752701 0.376351 0.926477i \(-0.377179\pi\)
0.376351 + 0.926477i \(0.377179\pi\)
\(938\) 6029.94 0.209898
\(939\) 1016.37 0.0353226
\(940\) 39728.4 1.37851
\(941\) 1920.06 0.0665167 0.0332584 0.999447i \(-0.489412\pi\)
0.0332584 + 0.999447i \(0.489412\pi\)
\(942\) −11357.6 −0.392834
\(943\) 10536.1 0.363843
\(944\) 32127.2 1.10768
\(945\) −418.605 −0.0144098
\(946\) 15580.7 0.535489
\(947\) 16682.3 0.572441 0.286221 0.958164i \(-0.407601\pi\)
0.286221 + 0.958164i \(0.407601\pi\)
\(948\) −57479.7 −1.96926
\(949\) 8088.28 0.276667
\(950\) −12249.1 −0.418328
\(951\) −42185.4 −1.43844
\(952\) −1267.21 −0.0431412
\(953\) 21054.5 0.715658 0.357829 0.933787i \(-0.383517\pi\)
0.357829 + 0.933787i \(0.383517\pi\)
\(954\) −79051.5 −2.68279
\(955\) −37114.7 −1.25759
\(956\) −91066.4 −3.08085
\(957\) 70522.4 2.38210
\(958\) 49319.8 1.66331
\(959\) −3157.42 −0.106317
\(960\) 1160.18 0.0390050
\(961\) −29552.4 −0.991991
\(962\) −45706.0 −1.53183
\(963\) 35877.3 1.20055
\(964\) 45124.8 1.50765
\(965\) −36704.3 −1.22441
\(966\) 3125.32 0.104095
\(967\) 32902.7 1.09419 0.547093 0.837072i \(-0.315734\pi\)
0.547093 + 0.837072i \(0.315734\pi\)
\(968\) 23662.8 0.785693
\(969\) −4725.39 −0.156658
\(970\) 54406.6 1.80092
\(971\) −24276.1 −0.802325 −0.401163 0.916007i \(-0.631394\pi\)
−0.401163 + 0.916007i \(0.631394\pi\)
\(972\) 91511.8 3.01980
\(973\) 1512.13 0.0498220
\(974\) 67636.7 2.22507
\(975\) 13662.3 0.448764
\(976\) −80292.4 −2.63330
\(977\) −23144.0 −0.757872 −0.378936 0.925423i \(-0.623710\pi\)
−0.378936 + 0.925423i \(0.623710\pi\)
\(978\) −35772.6 −1.16961
\(979\) 13374.2 0.436609
\(980\) −53951.5 −1.75859
\(981\) 28971.7 0.942909
\(982\) 1600.80 0.0520200
\(983\) 21353.3 0.692844 0.346422 0.938079i \(-0.387397\pi\)
0.346422 + 0.938079i \(0.387397\pi\)
\(984\) −86391.7 −2.79885
\(985\) −1748.94 −0.0565745
\(986\) −15162.2 −0.489719
\(987\) 3497.72 0.112800
\(988\) 38811.0 1.24974
\(989\) 3161.85 0.101659
\(990\) 45314.3 1.45473
\(991\) 6413.96 0.205597 0.102798 0.994702i \(-0.467220\pi\)
0.102798 + 0.994702i \(0.467220\pi\)
\(992\) 2705.56 0.0865945
\(993\) 33250.4 1.06261
\(994\) 8412.60 0.268442
\(995\) −27616.4 −0.879899
\(996\) 20005.6 0.636448
\(997\) 27804.9 0.883240 0.441620 0.897202i \(-0.354404\pi\)
0.441620 + 0.897202i \(0.354404\pi\)
\(998\) 25046.6 0.794426
\(999\) −5172.79 −0.163824
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.4.a.b.1.25 27
3.2 odd 2 1773.4.a.d.1.3 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.4.a.b.1.25 27 1.1 even 1 trivial
1773.4.a.d.1.3 27 3.2 odd 2