Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,4,Mod(1,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(11.6233762711\) |
Analytic rank: | \(0\) |
Dimension: | \(27\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.48735 | 9.71574 | 22.1111 | 4.58132 | −53.3137 | 25.8976 | −77.4324 | 67.3955 | −25.1393 | ||||||||||||||||||
1.2 | −5.12187 | −1.50664 | 18.2336 | −16.6923 | 7.71684 | 18.4353 | −52.4151 | −24.7300 | 85.4958 | ||||||||||||||||||
1.3 | −4.87065 | −7.68695 | 15.7232 | 2.76237 | 37.4404 | 26.4058 | −37.6171 | 32.0892 | −13.4545 | ||||||||||||||||||
1.4 | −4.64024 | 5.04740 | 13.5318 | −14.3374 | −23.4211 | −19.5904 | −25.6688 | −1.52374 | 66.5290 | ||||||||||||||||||
1.5 | −4.19736 | −5.11666 | 9.61786 | 18.9633 | 21.4765 | 9.71359 | −6.79075 | −0.819797 | −79.5957 | ||||||||||||||||||
1.6 | −3.62545 | −4.72863 | 5.14388 | −3.40441 | 17.1434 | −27.4348 | 10.3547 | −4.64009 | 12.3425 | ||||||||||||||||||
1.7 | −3.50700 | 8.13145 | 4.29904 | 12.2669 | −28.5170 | −29.1324 | 12.9793 | 39.1205 | −43.0198 | ||||||||||||||||||
1.8 | −3.11501 | 4.75612 | 1.70330 | 9.27815 | −14.8154 | 28.7970 | 19.6143 | −4.37935 | −28.9015 | ||||||||||||||||||
1.9 | −1.89943 | −3.98313 | −4.39218 | 11.9589 | 7.56566 | −5.63514 | 23.5380 | −11.1347 | −22.7151 | ||||||||||||||||||
1.10 | −1.75778 | 0.628838 | −4.91021 | −15.9710 | −1.10536 | −26.2224 | 22.6933 | −26.6046 | 28.0735 | ||||||||||||||||||
1.11 | −1.18786 | −0.801428 | −6.58899 | −18.4442 | 0.951984 | 18.5342 | 17.3297 | −26.3577 | 21.9092 | ||||||||||||||||||
1.12 | −0.598548 | 9.95206 | −7.64174 | −0.534457 | −5.95679 | −3.08049 | 9.36233 | 72.0436 | 0.319898 | ||||||||||||||||||
1.13 | 0.246877 | −1.02548 | −7.93905 | 3.77286 | −0.253168 | −11.5484 | −3.93498 | −25.9484 | 0.931430 | ||||||||||||||||||
1.14 | 0.270197 | 8.02851 | −7.92699 | 20.5119 | 2.16928 | 14.4694 | −4.30343 | 37.4570 | 5.54226 | ||||||||||||||||||
1.15 | 0.407397 | 5.93866 | −7.83403 | −12.2475 | 2.41939 | 27.0857 | −6.45074 | 8.26769 | −4.98957 | ||||||||||||||||||
1.16 | 0.598148 | −6.46754 | −7.64222 | −12.9216 | −3.86854 | −16.8113 | −9.35636 | 14.8290 | −7.72901 | ||||||||||||||||||
1.17 | 1.52338 | −2.88724 | −5.67933 | 21.0824 | −4.39834 | 21.0908 | −20.8388 | −18.6639 | 32.1164 | ||||||||||||||||||
1.18 | 2.25077 | −8.70988 | −2.93404 | 0.262181 | −19.6039 | −3.36659 | −24.6100 | 48.8621 | 0.590109 | ||||||||||||||||||
1.19 | 3.02359 | 5.94916 | 1.14207 | 8.38076 | 17.9878 | 4.69758 | −20.7355 | 8.39253 | 25.3400 | ||||||||||||||||||
1.20 | 3.07527 | −6.54222 | 1.45729 | −17.7121 | −20.1191 | 33.6154 | −20.1206 | 15.8007 | −54.4694 | ||||||||||||||||||
See all 27 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(197\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.4.a.b | ✓ | 27 |
3.b | odd | 2 | 1 | 1773.4.a.d | 27 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.4.a.b | ✓ | 27 | 1.a | even | 1 | 1 | trivial |
1773.4.a.d | 27 | 3.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{27} - 4 T_{2}^{26} - 164 T_{2}^{25} + 647 T_{2}^{24} + 11748 T_{2}^{23} - 45616 T_{2}^{22} + \cdots - 5812256768 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(197))\).