Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,2,Mod(4,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(98))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.4");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.h (of order \(98\), degree \(42\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.57305291982\) |
Analytic rank: | \(0\) |
Dimension: | \(672\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{98})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{98}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −2.48438 | − | 0.0796692i | 0.733651 | − | 0.382745i | 4.16990 | + | 0.267717i | 3.41043 | − | 1.01220i | −1.85316 | + | 0.892435i | −0.0933948 | − | 2.91239i | −5.38995 | − | 0.519962i | −1.32460 | + | 1.89891i | −8.55344 | + | 2.24297i |
4.2 | −2.46912 | − | 0.0791800i | 1.01072 | − | 0.527293i | 4.09441 | + | 0.262870i | −1.88441 | + | 0.559284i | −2.53735 | + | 1.22192i | 0.0874837 | + | 2.72806i | −5.17083 | − | 0.498823i | −0.972829 | + | 1.39462i | 4.69714 | − | 1.23173i |
4.3 | −2.23573 | − | 0.0716955i | −2.58744 | + | 1.34986i | 2.99746 | + | 0.192443i | 1.85478 | − | 0.550490i | 5.88159 | − | 2.83242i | 0.0326190 | + | 1.01718i | −2.23462 | − | 0.215571i | 3.15634 | − | 4.52485i | −4.18626 | + | 1.09777i |
4.4 | −1.75886 | − | 0.0564032i | −1.46200 | + | 0.762723i | 1.09451 | + | 0.0702702i | −3.76944 | + | 1.11875i | 2.61447 | − | 1.25906i | −0.154052 | − | 4.80390i | 1.58213 | + | 0.152626i | −0.160662 | + | 0.230321i | 6.69302 | − | 1.75512i |
4.5 | −1.58661 | − | 0.0508795i | 3.00454 | − | 1.56747i | 0.518856 | + | 0.0333117i | −1.18982 | + | 0.353131i | −4.84679 | + | 2.33409i | −0.0447258 | − | 1.39471i | 2.33866 | + | 0.225607i | 4.85396 | − | 6.95852i | 1.90574 | − | 0.499745i |
4.6 | −1.33631 | − | 0.0428530i | −0.967825 | + | 0.504914i | −0.211994 | − | 0.0136105i | 0.517220 | − | 0.153508i | 1.31495 | − | 0.633249i | 0.00760859 | + | 0.237264i | 2.94435 | + | 0.284038i | −1.03460 | + | 1.48318i | −0.697746 | + | 0.182971i |
4.7 | −0.718993 | − | 0.0230567i | 0.693613 | − | 0.361857i | −1.47947 | − | 0.0949852i | −1.65735 | + | 0.491892i | −0.507046 | + | 0.244181i | 0.100126 | + | 3.12229i | 2.49362 | + | 0.240556i | −1.36619 | + | 1.95854i | 1.20296 | − | 0.315454i |
4.8 | −0.431724 | − | 0.0138445i | −1.15502 | + | 0.602572i | −1.80970 | − | 0.116186i | 2.70765 | − | 0.803617i | 0.506991 | − | 0.244154i | 0.0227637 | + | 0.709855i | 1.63958 | + | 0.158168i | −0.745377 | + | 1.06855i | −1.18008 | + | 0.309454i |
4.9 | −0.0545187 | − | 0.00174831i | 1.63079 | − | 0.850780i | −1.99292 | − | 0.127950i | 1.65668 | − | 0.491693i | −0.0903958 | + | 0.0435323i | −0.124611 | − | 3.88583i | 0.217017 | + | 0.0209354i | 0.219288 | − | 0.314366i | −0.0911794 | + | 0.0239101i |
4.10 | 0.723652 | + | 0.0232061i | −2.36317 | + | 1.23286i | −1.47276 | − | 0.0945541i | 0.332877 | − | 0.0987962i | −1.73872 | + | 0.837325i | −0.158779 | − | 4.95130i | −2.50493 | − | 0.241647i | 2.34826 | − | 3.36641i | 0.243180 | − | 0.0637693i |
4.11 | 0.990936 | + | 0.0317774i | 2.04585 | − | 1.06732i | −1.01495 | − | 0.0651617i | 1.62499 | − | 0.482288i | 2.06122 | − | 0.992633i | 0.0921623 | + | 2.87396i | −2.97740 | − | 0.287227i | 1.32999 | − | 1.90664i | 1.62559 | − | 0.426279i |
4.12 | 1.02446 | + | 0.0328524i | −1.30409 | + | 0.680343i | −0.947453 | − | 0.0608285i | −2.32350 | + | 0.689602i | −1.35834 | + | 0.654141i | 0.0568363 | + | 1.77236i | −3.00913 | − | 0.290287i | −0.478567 | + | 0.686062i | −2.40298 | + | 0.630137i |
4.13 | 1.91435 | + | 0.0613896i | 0.516877 | − | 0.269655i | 1.66509 | + | 0.106902i | 1.03412 | − | 0.306923i | 1.00604 | − | 0.484483i | −0.0104517 | − | 0.325921i | −0.631963 | − | 0.0609647i | −1.52190 | + | 2.18176i | 1.99852 | − | 0.524074i |
4.14 | 1.96514 | + | 0.0630184i | 2.20952 | − | 1.15271i | 1.86193 | + | 0.119540i | −3.51840 | + | 1.04424i | 4.41467 | − | 2.12599i | −0.0407428 | − | 1.27051i | −0.262707 | − | 0.0253431i | 1.83691 | − | 2.63335i | −6.97998 | + | 1.83037i |
4.15 | 2.05500 | + | 0.0659000i | −2.67118 | + | 1.39355i | 2.22281 | + | 0.142709i | 2.61768 | − | 0.776914i | −5.58111 | + | 2.68772i | 0.149948 | + | 4.67594i | 0.465360 | + | 0.0448928i | 3.47684 | − | 4.98432i | 5.43054 | − | 1.42406i |
4.16 | 2.66038 | + | 0.0853132i | −0.906974 | + | 0.473168i | 5.07445 | + | 0.325790i | −1.24548 | + | 0.369652i | −2.45326 | + | 1.18143i | −0.0466036 | − | 1.45327i | 8.17327 | + | 0.788465i | −1.11764 | + | 1.60222i | −3.34499 | + | 0.877159i |
7.1 | −1.93241 | + | 1.99537i | −0.313596 | + | 0.190104i | −0.183197 | − | 5.71277i | 1.69226 | + | 2.26748i | 0.226668 | − | 0.993097i | 0.277139 | − | 0.268394i | 7.64054 | + | 6.93894i | −1.32541 | + | 2.54057i | −7.79461 | − | 1.00500i |
7.2 | −1.57782 | + | 1.62922i | 1.63650 | − | 0.992058i | −0.100766 | − | 3.14226i | −1.25967 | − | 1.68785i | −0.965816 | + | 4.23152i | 0.486560 | − | 0.471207i | 1.92052 | + | 1.74416i | 0.306351 | − | 0.587217i | 4.73742 | + | 0.610822i |
7.3 | −1.38244 | + | 1.42748i | −2.28722 | + | 1.38653i | −0.0624630 | − | 1.94782i | 0.447688 | + | 0.599861i | 1.18270 | − | 5.18174i | −3.53302 | + | 3.42154i | −0.0752796 | − | 0.0683669i | 1.92131 | − | 3.68278i | −1.47519 | − | 0.190205i |
7.4 | −1.36347 | + | 1.40790i | −1.88684 | + | 1.14381i | −0.0590143 | − | 1.84028i | −1.20083 | − | 1.60900i | 0.962282 | − | 4.21603i | 3.02946 | − | 2.93387i | −0.230355 | − | 0.209202i | 0.864241 | − | 1.65659i | 3.90260 | + | 0.503185i |
See next 80 embeddings (of 672 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.h | even | 98 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.2.h.a | ✓ | 672 |
197.h | even | 98 | 1 | inner | 197.2.h.a | ✓ | 672 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.2.h.a | ✓ | 672 | 1.a | even | 1 | 1 | trivial |
197.2.h.a | ✓ | 672 | 197.h | even | 98 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(197, [\chi])\).